Section 3.2

Properties of Determinants

Plan for Today

Last time, we gave a recursive formula for determinants in terms of cofactor expansions.

Plan for today:

- An abstract definition of the determinant in terms of its properties.
- Computing determinants using row operations.
- Determinants and products: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$,
- interpretation as volume,
- and linear transformations.

Linear Transformations and volumen

If S is the unit cube, then $T(S)$ is the parallelepiped formed by the columns of A. The volumen changes according to $\operatorname{det}(A)$.

For curvy regions: break S up into tiny cubes; each one is scaled by $|\operatorname{det}(A)|$. Then use calculus to reduce to the previous situation!

The Determinant is a Function

We can think of the determinant as a function of the entries of a matrix:

$$
\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\begin{array}{r}
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{array}
$$

The formula for the determinant of an $n \times n$ matrix has $n!$ terms.
When mathematicians encounter a function whose formula is too difficult to write down, we try to characterize it in terms of its properties.
P characterizes object X
Not only does object X have property P, but X is the only one thing that has property P.

Other example:

- e^{x} is unique function that has $f^{\prime}(x)=f(x)$ and $f(0)=1$.

Defining the Determinant in Terms of its Properties

Definition

The determinant is a function

$$
\text { det: }\{\text { square matrices }\} \longrightarrow \mathbf{R}
$$

with the following defining properties:

1. $\operatorname{det}\left(I_{n}\right)=1$
2. If we do a row replacement on a matrix, the determinant does not change.
3. If we swap two rows of a matrix, the determinant scales by -1 .
4. If we scale a row of a matrix by k, the determinant scales by k.

Why would we think of these properties? This is how volumes work!

1. The volume of the unit cube is 1 .
2. Volumes don't change under a shear.
3. Volume of a mirror image is negative of the volume?
4. If you scale one coordinate by k, the volume is multiplied by k.

Properties of the Determinant

2×2 matrix

$$
\operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right)=3
$$

Scale: $R_{2}=\frac{1}{3} R_{2}$

$$
\operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)=1
$$

Row replacement: $R_{1}=R_{1}+2 R_{2}$

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1
$$

Determinant for Elementary matrices

It is easy to calulate the determinant of an elementary matrix:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
1 & 0 & 8 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & = \\
\operatorname{det}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) & = \\
\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 17 & 0 \\
0 & 0 & 1
\end{array}\right) & =
\end{aligned}
$$

Computing the Determinant by Row Reduction

Example first

We can use the properties of the determinant and row reduction to compute the determinant of any matrix!

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
5 & 7 & -4
\end{array}\right)=
$$

Computing the Determinant by Row Reduction

We can use the properties of the determinant and row reduction to compute the determinant of any matrix!

Recall: The determinant of a triangular matrix is the product of the diagonal entries.

Saving some work We can stop row reducing when we get to row echelon form.

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
5 & 7 & -4
\end{array}\right)=\cdots=-\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -9
\end{array}\right)=9
$$

Row reduction
This is almost always the easiest way to compute the determinant of a large, complicated matrix, either by hand or by computer.

Cofactor expansion is $O(n!) \sim O\left(n^{n} \sqrt{n}\right)$, row reduction is $O\left(n^{3}\right)$.

Magical Properties of the Determinant

1. det: \{square matrices\} $\rightarrow \mathbf{R}$ is the only function satisfying the defining properties (1)-(4).
2. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
3. If we row reduce A without row scaling, then

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }} \text { (product of diagonal entries in REF). }
$$

4. The determinant can be computed using any cofactor expansion.
5. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad$ and $\quad \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
6. $\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)$.
7. $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.
8. If A is an $n \times n$ matrix with transformation $T(x)=A x$, and S is a subset of \mathbf{R}^{n}, then the volume of $T(S)$ is $|\operatorname{det}(A)|$ times the volume of S. (Even for curvy shapes S.)
9. The determinant is multi-linear (we'll talk about this next).

Multi-Linearity of the Determinant

Think of det as a function of the columns of an $n \times n$ matrix:

$$
\begin{gathered}
\operatorname{det}: \underbrace{\mathbf{R}^{n} \times \mathbf{R}^{n} \times \cdots \times \mathbf{R}^{n}}_{n \text { times }} \longrightarrow \mathbf{R} \\
\operatorname{det}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\operatorname{det}\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) .
\end{gathered}
$$

Multi-linear: For any i and any vectors $v_{1}, v_{2}, \ldots, v_{n}$ and v_{i}^{\prime} and any scalar c,

$$
\begin{aligned}
\operatorname{det}\left(v_{1}, \ldots, v_{i}+v_{i}^{\prime}, \ldots, v_{n}\right) & =\operatorname{det}\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right)+\operatorname{det}\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{n}\right) \\
\operatorname{det}\left(v_{1}, \ldots, c v_{i}, \ldots, v_{n}\right) & =c \operatorname{det}\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right)
\end{aligned}
$$

- We already knew: Scaling one column by c scales det by c.
- This only works one column at a time.
- Same properties hold if we replace column by row.

Extra: Mathematical intricacies

The characterization of the determinant function in terms of its properties is very useful. It will give us a fast way to compute determinants and prove the other properties.

The disadvantage of defining a function by its properties before having a formula:

- how do you know such a function exists?
- is there only one function satisfying those properties?

Extra: Intricacy applied

Why is Property 5 true? In Lay, there's a proof using elementary matrices. Here's another one.

