Chapter 5

Eigenvalues and Eigenvectors

Section 5.1

Eigenvectors and Eigenvalues

Motivation: Difference equations

A Biology Question

How to predict a population of rabbits with given dynamics:

1. half of the newborn rabbits survive their first year;
2. of those, half survive their second year;
3. their maximum life span is three years;
4. Each rabbit gets $0,6,8$ baby rabbits in their three years, respectively.

Approach: Each year, count the population by age:

$$
v_{n}=\left(\begin{array}{l}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right) \text { where } \begin{cases}f_{n} & =\text { first-year rabbits in year } n \\
s_{n} & =\text { second-year rabbits in year } n \\
t_{n} & =\text { third-year rabbits in year } n\end{cases}
$$

The dynamics say:

$$
\overbrace{\left(\begin{array}{c}
f_{n+1} \\
s_{n+1} \\
t_{n+1}
\end{array}\right)}^{v_{n+1}}=\left(\begin{array}{c}
6 s_{n}+8 t_{n} \\
f_{n} / 2 \\
s_{n} / 2
\end{array}\right)=\overbrace{\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{c}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right)}^{A v_{n}}
$$

Motivation: Difference equations

Continued

This is a difference equation: $A v_{n}=v_{n+1}$
If you know initial population v_{0}, what happens in 10 years v_{10} ?
Plug in a computer:

v_{0}	v_{10}	v_{11}
$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$	$\left(\begin{array}{l}9459 \\ 2434 \\ 577\end{array}\right)$	$\left(\begin{array}{c}19222 \\ 4729 \\ 1217\end{array}\right)$
$\left(\begin{array}{l}3 \\ 7 \\ 9\end{array}\right)$	$\left(\begin{array}{c}30189 \\ 7761 \\ 1844\end{array}\right)$	$\left(\begin{array}{c}61316 \\ 15095 \\ 3881\end{array}\right)$
$\left(\begin{array}{c}16 \\ 4 \\ 1\end{array}\right)$	$\left(\begin{array}{c}16384 \\ 4096 \\ 1024\end{array}\right)$	$\left(\begin{array}{c}32768 \\ 8192 \\ 2048\end{array}\right)$

Notice any patterns?

1. Each segment of the population essentially doubles every year: $A v_{11} \approx 2 v_{10}$.
2. The ratios get close to (16:4:1):

$$
v_{11} \approx(\operatorname{big} \#) \cdot\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right)
$$

New terms coming: eigenvalue, and eigenvector

Motivation: Difference equations

Continued (2)

We want a formula for vectors $v_{0}, v_{1}, v_{2}, \ldots$, such that

$$
A v_{0}=v_{1} \quad A v_{1}=v_{2} \quad A v_{2}=v_{3} \quad \ldots
$$

We can see that $v_{n}=A^{n} v_{0}$. But multiplying by A each time is inefficient!
If v_{0} satisfies $A_{v_{0}}=\lambda v_{0}$ then

$$
v_{n}=A^{n-1}\left(A v_{0}\right)=\lambda A^{n-1} v_{0}=\lambda^{2} A^{n-2} v_{0} \quad \ldots=\lambda^{n} v_{0}
$$

It is much easier to compute $v_{n}=\lambda^{10} v_{0}$.
Example

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) \quad v_{0}=\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right) \quad A v_{0}=2 v_{0}
$$

Eigenvectors and Eigenvalues

This is the most important definition in the course.

Definition

Let A be an $n \times n$ matrix.

1. An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}.
2. We say that the number λ is the eigenvalue for v, and v is an eigenvector for λ.

Notes:

- Eigenvalues and eigenvectors are only for square matrices.
- Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

Verifying Eigenvectors

Example

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) \quad v=\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right)
$$

Multiply:

$$
A v=
$$

Example

$$
A=\left(\begin{array}{cc}
2 & 2 \\
-4 & 8
\end{array}\right) \quad v=\binom{1}{1}
$$

Multiply:

$$
A v=
$$

Verifying Eigenvalues

Question: Is $\lambda=3$ an eigenvalue of $A=\left(\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right)$?
In other words, does

$$
\left.\begin{array}{l}
A v=3 v \\
A v-3 v=0 \\
(A-3 I) v=0
\end{array}\right\} \text { have a nontrivial solution? }
$$

We know how to answer that!

Eigenspaces

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-eigenspace of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\begin{aligned}
\lambda \text {-eigenspace } & =\left\{v \text { in } \mathbf{R}^{n} \mid A v=\lambda v\right\} \\
& =\left\{v \text { in } \mathbf{R}^{n} \mid(A-\lambda I) v=0\right\} \\
& =\operatorname{Nul}(A-\lambda I) .
\end{aligned}
$$

The λ-eigenspace is a subspace of \mathbf{R}^{n}. How to find a basis? Parametric vector form!

Eigenspaces

Find a basis for the 2-eigenspace of

$$
A=\left(\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right)
$$

Eigenspaces

This is how eigenvalues and eigenvectors make matrices easier to understand.

What does this 2-eigenspace look like? A basis is $\left\{\left(\begin{array}{c}\frac{1}{2} \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right)\right\}$.

For any v in the 2-eigenspace, $A v=2 v$ by definition.
This means, on its 2-eigenspace, A acts by scaling by 2 .

Geometrically

Eigenvectors
An eigenvector of a matrix A is a nonzero vector v such that:

- $A v$ is a multiple of v, which means
- Av is on the same line as v.

v is an eigenvector
w is not an eigenvector

Eigenspaces

Geometry; example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: Eigenvalues and eigenspaces of A ? No computations!

Which vectors don't move off their line v is an eigenvector with eigenvalue -1 .

Eigenspaces

Geometry; example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: Eigenvalues and eigenspaces of A ? No computations!

Which vectors don't move off their line w is an eigenvector with eigenvalue 1 .

Eigenspaces

Geometry; example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: Eigenvalues and eigenspaces of A ? No computations!

Which vectors don't move off their line u is not an eigenvector.

Eigenspaces

Geometry; example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: Eigenvalues and eigenspaces of A ? No computations!

Which vectors don't move off their line Neither is z.

Eigenspaces

Geometry; example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: Eigenvalues and eigenspaces of A ? No computations!

Which vectors don't move off their line The 1-eigenspace is L (all the vectors x where $A x=x$).

Eigenspaces

Geometry; example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: Eigenvalues and eigenspaces of A ? No computations!

Which vectors don't move off their line The (-1)-eigenspace is the line $y=x$ (all the vectors x where $A x=-x$).

Eigenspaces

Let A be an $n \times n$ matrix and let λ be a number.

1. λ is an eigenvalue of A if and only if $(A-\lambda I) x=0$ has a nontrivial solution, if and only if $\operatorname{Nul}(A-\lambda I) \neq\{0\}$.
2. Finding a basis for the λ-eigenspace of A means finding a basis for $\operatorname{Nul}(A-\lambda I)$ as usual, through the general solution to $(A-\lambda I) x=0$ (parametric vector form).
3. The eigenvectors with eigenvalue λ are the nonzero elements of $\operatorname{Nul}(A-\lambda I)$ that is, the nontrivial solutions to $(A-\lambda I) x=0$.

Some facts you can work out yourself

Fact 1

A is invertible if and only if 0 is not an eigenvalue of A.

Fact 2
If $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Consequence of Fact 2
An $n \times n$ matrix has at most n distinct eigenvalues.

The Eigenvalues of a Triangular Matrix are the Diagonal Entries

- If we know λ is eigenvalue: easy to find eigenvectors (row reduction).
- And to find all eigenvalues? Will need to compute a determinant.

Theorem

The eigenvalues of a triangular matrix are the diagonal entries.

Example
Find all eigenvalues of $A=\left(\begin{array}{ccc}3 & 4 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$.

