## Section 5.2

## The Characteristic Equation

## The Characteristic Polynomial

Last section we learn that for a square matrix $A$ :
$\lambda$ is an eigenvalue of $A \Longleftrightarrow A x=\lambda x$ has a nontrivial solution $\Longleftrightarrow(A-\lambda I) x=0$ has a nontrivial solution
$\Longleftrightarrow A-\lambda I$ is not invertible $\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$.

Compute Eigenvalues
The eigenvalues of $A$ are the roots of $\operatorname{det}(A-\lambda I)$

Definition
Let $A$ be a square matrix. The characteristic polynomial of $A$ is

$$
f(\lambda)=\operatorname{det}(A-\lambda /) .
$$

The characteristic equation of $A$ is the equation

$$
f(\lambda)=\operatorname{det}(A-\lambda /)=0 .
$$

## The Characteristic Polynomial

Example

Question: What are the eigenvalues of

$$
A=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right) ?
$$

## The Characteristic Polynomial

Example

Definition
The trace of a square matrix $A$ is $\operatorname{Tr}(A)=$ sum of the diagonal entries of $A$.

What do you notice about: the characteristic polynomial of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ ?

Shortcut
The characteristic polynomial of a $2 \times 2$ matrix $A$ is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)
$$

## The Characteristic Polynomial

Question: What are the eigenvalues of the rabbit population matrix

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) ?
$$

## Algebraic Multiplicity

## Definition

The algebraic multiplicity of an eigenvalue $\lambda$ is its multiplicity as a root of the characteristic polynomial.

## Example

In the rabbit population matrix, $f(\lambda)=-(\lambda-2)(\lambda+1)^{2}$. The algebraic multiplicities are

$$
\lambda= \begin{cases}2 & \text { multiplicity } 1 \\ ,-1 & \text { multiplicity } 2\end{cases}
$$

## Example

In the matrix $\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right), f(\lambda)=(\lambda-(3+2 \sqrt{2}))(\lambda-(3-2 \sqrt{2}))$. The
algebraic multiplicities are $\lambda= \begin{cases}3+2 \sqrt{2} & \text { alg. multiplicity } 1 \\ , 3-2 \sqrt{2} & \text { alg. multiplicity } 1\end{cases}$

## Multiplicities

Theorem
If $A$ is an $n \times n$ matrix, the characteristic polynomial

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

is a polynomial of degree $n$, and its roots are the eigenvalues of $A$ :

$$
f(\lambda)=(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}
$$

Complex numbers
If you count the eigenvalues of $A$, with their algebraic multiplicities, depending on whether you allow complex eigenvalues, you will get :

- Do allow complex numbers: Always $n$.
- Only real numbers: Always at most $n$, but sometimes less.


## Similarity

## Definition

Two $n \times n$ matrices $A$ and $B$ are similar if there is an invertible $n \times n$ matrix $C$ such that

$$
A=C B C^{-1} .
$$

The intuition
$C$ keeps record of a basis $\mathcal{C}=\left\{v_{1}, \ldots, v_{n}\right\}$ of $\mathbf{R}^{n}$.
$B$ transforms the $\mathcal{C}$-coordinates of $x: B[x]_{\mathcal{C}}=[A x]_{\mathcal{C}}$
in the same way that $\boldsymbol{A}$ transforms the standard coordinates of
$x$

## Similarity

Example

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right) \quad B=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \quad C=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad \Longrightarrow \quad A=C B C^{-1}
$$

What does $B$ do geometrically? Scaling: $x$-direction by 2 and $y$-direction by 3 .
$B$ acting on the usual coordinates


Now $A$ will do to the standard coordinates what
$B$ does to the $\mathcal{C}$-coordinates, where $\mathcal{C}=\left\{\binom{2}{1},\binom{1}{1}\right\}$.

From $\mathcal{C}$-coordinates to standard coordinates

$A$ does to the usual coordinates what $B$ does to the $\mathcal{C}$-coordinates


Check:

## Similar Matrices Have the Same Characteristic Polynomial

Fact
If $A$ and $B$ are similar, then they have the same characteristic polynomial.

Consequence: similar matrices have the same eigenvalues! Though different eigenvectors in general.

Why? Suppose $A=C B C^{-1}$. We can show that $\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)$.

## Similarity Caveats

## Warning

1. Matrices with the same eigenvalues need not be similar. For instance,

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

both only have the eigenvalue 2, but they are not similar.
2. Similarity is lost in row equivalence.

For instance,

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

are row equivalent, but they have different eigenvalues.

## Once more: The Invertible Matrix Theorem

## Addenda

We have a couple of new ways of saying " $A$ is invertible" now:
The Invertible Matrix Theorem
Let $A$ be a square $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. $A$ is invertible.
2. $T$ is invertible.
3. $A$ is row equivalent to $I_{n}$.
4. $A$ has $n$ pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of $A$ are linearly independent.
7. $T$ is one-to-one.
8. $A x=b$ is consistent for all $b$ in $\mathbf{R}^{n}$.
9. The columns of $A$ span $\mathbf{R}^{n}$.
10. $T$ is onto.
11. $A$ has a left inverse (there exists $B$ such that $B A=I_{n}$ ).
12. $A$ has a right inverse (there exists $B$ such that $A B=I_{n}$ ).
13. $A^{T}$ is invertible.
14. The columns of $A$ form a basis for $\mathbf{R}^{n}$.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.
20. The determinant of $A$ is not equal to zero.
21. The number 0 is not an eigenvalue of $A$.
