Announcements

Wednesday, November 01

Poll today: Open now!

- Webwork due today.
- ► This Friday, Quiz type of question: 'Find the error'

(1) Circle the error and write down a correction

By the cofactor expansion along the first row:

$$\det\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & -1 & 1 \end{pmatrix} = 1 \cdot \det\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} = 2(-1) - 3 \cdot 1 = -5$$

<u>do not carry on</u> with the rest of the computations.

Section 5.2

The Characteristic Equation

The Characteristic Polynomial

Last section we learn that for a square matrix A:

$$\lambda$$
 is an eigenvalue of $A \iff Ax = \lambda x$ has a nontrivial solution $\iff (A - \lambda I)x = 0$ has a nontrivial solution $\iff A - \lambda I$ is not invertible $\iff \det(A - \lambda I) = 0$.

Compute Eigenvalues

The *eigenvalues* of A are **the roots** of $det(A - \lambda I)$, which is the characteristic polynomial of A.

Definition

Let A be a square matrix. The characteristic polynomial of A is

$$f(\lambda) = \det(A - \lambda I).$$

The characteristic equation of A is the equation

$$f(\lambda) = \det(A - \lambda I) = 0.$$

Question: What are the eigenvalues of

$$A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}?$$

Answer: First we find the characteristic polynomial:

$$f(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \det\begin{pmatrix} 5 - \lambda & 2 \\ 2 & 1 - \lambda \end{pmatrix}$$
$$= (5 - \lambda)(1 - \lambda) - 2 \cdot 2$$
$$= \lambda^2 - 6\lambda + 1.$$

The eigenvalues are the roots of the characteristic polynomial, which we can find *using the quadratic formula*:

$$\lambda = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2}.$$

Definition

The **trace** of a square matrix A is Tr(A) = sum of the diagonal entries of A.

What do you notice about: the characteristic polynomial of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$?

$$\det(A - \lambda I) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

- ▶ The coefficient of λ is the trace of A and the constant term is det(A).
- ▶ Recall that A is not invertible if and only if $\lambda = 0$ is a root.

Shortcut

The characteristic polynomial of a 2×2 matrix A is

$$f(\lambda) = \lambda^2 - \text{Tr}(A) \lambda + \text{det}(A).$$

Question: What are the eigenvalues of the rabbit population matrix

$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}?$$

Answer: First we find the characteristic polynomial:

$$f(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} -\lambda & 6 & 8\\ \frac{1}{2} & -\lambda & 0\\ 0 & \frac{1}{2} & -\lambda \end{pmatrix}$$
$$= 8\left(\frac{1}{4} - 0 \cdot -\lambda\right) - \lambda\left(\lambda^2 - 6 \cdot \frac{1}{2}\right)$$
$$= -\lambda^3 + 3\lambda + 2.$$

Already know one eigenvalue is $\lambda = 2$, check : f(2) = -8 + 6 + 2 = 0.

Doing polynomial long division, we get:

$$\frac{-\lambda^3 + 3\lambda + 2}{\lambda - 2} = -\lambda^2 - 2\lambda - 1 = -(\lambda + 1)^2.$$

Hence $f(\lambda) = -(\lambda + 1)^2(\lambda - 2)$ and so $\lambda = -1$ is also an eigenvalue.

Algebraic Multiplicity

Definition

The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

There is a geometric multiplicity notion, but this one is easier to work with.

Example

In the rabbit population matrix, $f(\lambda) = -(\lambda - 2)(\lambda + 1)^2$. The algebraic multiplicities are

$$\lambda = \begin{cases} 2 & \text{multiplicity 1,} \\ -1 & \text{multiplicity 2} \end{cases}$$

Example

In the matrix
$$\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$
, $f(\lambda) = (\lambda - (3 + 2\sqrt{2}))(\lambda - (3 - 2\sqrt{2}))$. The algebraic multiplicities are $\lambda = \begin{cases} 3 + 2\sqrt{2} & \text{alg. multiplicity 1,} \\ 3 - 2\sqrt{2} & \text{alg. multiplicity 1} \end{cases}$

Multiplicities

Theorem

If A is an $n \times n$ matrix, the characteristic polynomial

$$f(\lambda) = \det(A - \lambda I)$$

is a polynomial of degree n, and its roots are the eigenvalues of A:

$$f(\lambda) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \dots + a_1 \lambda + a_0.$$

Complex numbers

If you **count the eigenvalues** of *A*, with their algebraic multiplicities, depending on *whether you allow complex eigenvalues*, you will get :

- ▶ **Do allow** complex numbers: *Always n*.
- ▶ Only real numbers: Always at most *n*, but *sometimes less*.

This is because any degree-n polynomial has exactly n complex roots, counted with multiplicity. Stay tuned!

Similarity

Definition

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix C such that

$$A = CBC^{-1}$$
.

The intuition

C keeps record of a basis $C = \{v_1, \dots, v_n\}$ of \mathbf{R}^n .

B transforms the \mathcal{C} -coordinates of x: $B[x]_{\mathcal{C}} = [Ax]_{\mathcal{C}}$ in the same way that A transforms the standard coordinates of x

Why does it work?

▶ First, $C = \{v_1, v_2, ..., v_n\}$ is a basis for \mathbf{R}^n (C is invertible), so

$$w = c_1 v_1 + c_2 v_2 + c_n v_n = C[w]_C$$

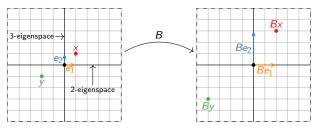
- Using C-coordinates for any vector w, is $[w]_C = C^{-1}w$.
- ▶ Then $A = CBC^{-1}$ implies $C^{-1}A = BC^{-1}$. Using C-coordinates:

$$[Ax]_{\mathcal{C}} = C^{-1}(Ax) = B(C^{-1}x) = B([x]_{\mathcal{C}}).$$

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \Longrightarrow \quad A = CBC^{-1}.$$

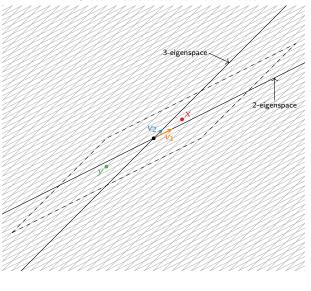
What does B do geometrically? **Scaling:** x-direction by 2 and y-direction by 3.

B acting on the usual coordinates



Now A will do to the standard coordinates what B does to the $\mathcal{C}\text{-coordinates}$, where $\mathcal{C} = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$.

From C-coordinates to standard coordinates

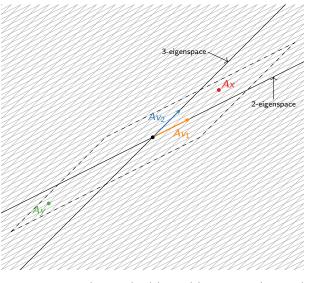


$$v_{1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{cases} v_{1} \\ v_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{cases} \qquad \begin{cases} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{cases}$$

$$[x]_{c} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad x = v_{1} + v_{2} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$[y]_{c} = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \qquad y = -2v_{1} - v_{2} \qquad z = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$

A does to the usual coordinates what B does to the C-coordinates



$$Av_1 = 2v_1 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$Av_2 = 3v_2 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$B[x]_c = \begin{pmatrix} 2 \\ 3 \end{pmatrix} = [Ax]_c$$

$$Ax = 2v_1 + 3v_2 = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

$$B[y]_c = \begin{pmatrix} -4 \\ -3 \end{pmatrix} = [Ay]_c$$

$$Ay = -4v_1 - 3v_2$$

$$= \begin{pmatrix} -11 \\ -7 \end{pmatrix}$$

Check:
$$Ax = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$
 $Ay = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} -5 \\ -3 \end{pmatrix} = \begin{pmatrix} -11 \\ -7 \end{pmatrix}$

Similar Matrices Have the Same Characteristic Polynomial

Fact

If A and B are similar, then they have the same characteristic polynomial.

Consequence:

similar matrices have the *same eigenvalues*! Though different eigenvectors in general.

Why? Suppose
$$A = CBC^{-1}$$
. We can show that $\det(A - \lambda I) = \det(B - \lambda I)$.
$$A - \lambda I = CBC^{-1} - \lambda I$$
$$= CBC^{-1} - C(\lambda I)C^{-1}$$
$$= C(B - \lambda I)C^{-1}.$$

Therefore,

$$det(A - \lambda I) = det(C(B - \lambda I)C^{-1})$$

$$= det(C) det(B - \lambda I) det(C^{-1})$$

$$= det(B - \lambda I),$$

because $det(C^{-1}) = det(C)^{-1}$.

Similarity Caveats

Warning

 Matrices with the same eigenvalues need not be similar. For instance,

$$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \quad \text{ and } \quad \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

both only have the eigenvalue 2, but they are not similar.

Similarity is *lost in row equivalence*. For instance,

$$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \quad \text{ and } \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

are row equivalent, but they have different eigenvalues.

Once more: The Invertible Matrix Theorem

We have a couple of new ways of saying "A is invertible" now:

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10 T is onto

- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- A^T is invertible.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbb{R}^n$.
- 16. $\dim \operatorname{Col} A = n$.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.
- 19. $\dim \text{Nul } A = 0$.
- 19. The determinant of A is not equal to zero.
- 20. The number 0 is *not an eigenvalue* of A.