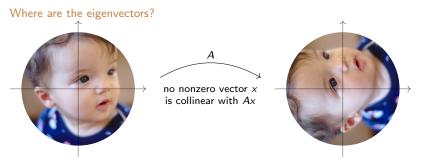
Section 5.5

Complex Eigenvalues

Motivation: Describe rotations

Among transformations, rotations are very simple to describe geometrically.



The corresponding matrix has no real eigenvalues.

$$A = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$
 $f(\lambda) = \lambda^2 + 1.$

Definition

The **number** *i* is defined such that $i^2 = -1$.

Now we have to allow all possible combinations a + bi

Definition

A complex number is a number of the form a + bi for a, b in **R**. The set of all complex numbers is denoted **C**.

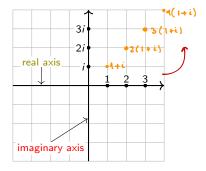
- **C** expands **R**: real numbers are written a + 0i.
- Vector representation of a + bi: 2-coordinates $\binom{a}{b}$.
- What does it mean that $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are linearly independent?

Operations on Complex Numbers (I)

Addition: Same as vector addition (a + bi) + (c + di) = (a + b) + (b + d)i. Usually, *vectors cannot be multiplied*, but complex numbers can! Multiplication:

$$(a+bi)(c+di)=ac+(bc+ad)i+bdi^2=(ac-bd)+(bc+ad)i.$$

A plane representation of multiplication of $\{1, 2, 3, ...\}$ by complex z = 1 + i



When z is a *real* number, multiplication *means stretching*.

When z has an imaginary part, **multiplication also means** rotation.

For a complex number z = a + bi, the complex conjugate of z is $\overline{z} = a - bi$.

The following is a convenient definition because:

• If
$$z = a + bi$$
 then

$$z\overline{z} = (a + bi)(a - bi) = a^2 - b^2i^2 = a^2 + b^2$$

which is a real number!

• Note that the *length* of the vector
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 is $\sqrt{a^2 + b^2}$,

• There is no geometric interpretation of complex division, but if $z \neq 0$ then:

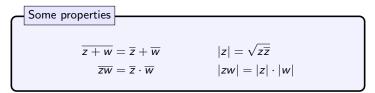
$$\frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{z\overline{w}}{|w|^2}.$$

Example:

$$\frac{1+i}{1-i} = \frac{(1+i)^2}{1^2 + (-1)^2} = \frac{1+2i+i^2}{2} = i.$$

Notation and Polar coordinates

Real and imaginary part: $\operatorname{Re}(a + bi) = a$ $\operatorname{Im}(a + bi) = b$. Absolute value: $|a + bi| = \sqrt{a^2 + b^2}$.

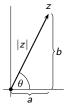


Any complex number z = a + bi has the **polar coordinates**: angle and length.

- The length is $|z| = \sqrt{a^2 + b^2}$
- The angle θ = arctan(b/a) is called the argument of z, and is denoted θ = arg(z).

The relation with cartesian coordiantes is:

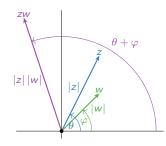
$$z = |z| \underbrace{(\cos \theta + i \sin \theta)}_{\text{unit 'vector'}}.$$



More on multiplication

It turns out that multiplication has a precise geometric meaning:

Complex multiplication Multiply the absolute values and add the arguments: |zw| = |z| |w| $\arg(zw) = \arg(z) + \arg(w).$



• Note $\arg(\overline{z}) = -\arg(z)$.

• Multiplying z by \overline{z} gives a real number because the *angles cancel out*.

The point of using complex numbers is to find all eigenvalues of the characteristic polynomial.

Fundamental Theorem of Algebra

Every **polynomial** of degree *n* has *exactly n complex roots*, counted *with multiplicity*. That is, if $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ then

$$f(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$$

for (*not necessarily distinct*) complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Conjugate pairs of roots

If *f* is a polynomial with **real coefficients**, then the *complex roots* of real polynomials come in *conjugate pairs*. (Real roots are conjugate of themselves).

The Fundamental Theorem of Algebra

Degree 2 and 3

Degree 2:

The quadratic formula gives the (real or complex) roots:

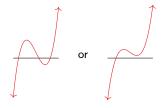
$$f(x) = x^2 + bx + c \implies x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

For real polynomials, the roots are *complex conjugates if* $b^2 - 4c$ *is negative*.

Degree 3:

A **real cubic polynomial** has either three real roots, or one real root and a conjugate pair of complex roots.

The graph looks like:



respectively.

The Fundamental Theorem of Algebra Examples

Example Degree 2:

If $f(\lambda) = \lambda^2 - \sqrt{2\lambda} + 1$ then

$$\lambda = \frac{\sqrt{2} \pm \sqrt{-2}}{2} = \frac{\sqrt{2}}{2}(1 \pm i) = \frac{1 \pm i}{\sqrt{2}}.$$

Example Degree 3:

Let $f(\lambda) = 5\lambda^3 - 18\lambda^2 + 21\lambda - 10$.

Since f(2) = 0, we can do polynomial long division by $\lambda - 2$: We get $f(\lambda) = (\lambda - 2) (5\lambda^2 - 8\lambda + 5)$. Using the quadratic formula, the second polynomial has a root when

$$\lambda = \frac{8 \pm \sqrt{64 - 100}}{10} = \frac{4}{5} \pm \frac{\sqrt{-36}}{10} = \frac{4 \pm 3i}{5}$$

Therefore,

$$f(\lambda) = 5(\lambda - 2)\left(\lambda - \frac{4 + 3i}{5}\right)\left(\lambda - \frac{4 - 3i}{5}\right)$$

The characteristic polynomial of

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

is $f(\lambda) = \lambda^2 - \sqrt{2}\lambda + 1$. This has two complex roots $(1 \pm i)/\sqrt{2}$.

the eigenvalue
$$\frac{1+i}{\sqrt{2}}$$
 has eigenvector $\begin{pmatrix} i\\1 \end{pmatrix}$.
the eigenvalue $\frac{1-i}{\sqrt{2}}$ has eigenvector $\begin{pmatrix} -i\\1 \end{pmatrix}$.

Do you notice a pattern?

Conjugate Eigenvectors

Allowing complex numbers both eigenvalues and eigenvectors of real square matrices occur in conjugate pairs.

Conjugate eigenvectors

Let A be a **real square matrix**. If λ is an eigenvalue with eigenvector v, then $\overline{\lambda}$ is an eigenvalue with eigenvector \overline{v} .

Conjugate pairs of roots in polynomial:

If λ is a root of f, then so is $\overline{\lambda}$:

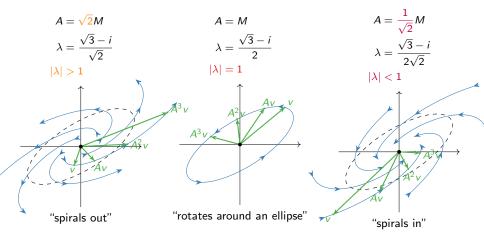
$$0 = \overline{f(\lambda)} = \overline{\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0}$$
$$= \overline{\lambda}^n + a_{n-1}\overline{\lambda}^{n-1} + \dots + a_1\overline{\lambda} + a_0 = f(\overline{\lambda}).$$

Conjugate pairs of eigenvectors:

$$Av = \lambda \implies A\overline{v} = \overline{Av} = \overline{\lambda v} = \overline{\lambda v}.$$

Classification of 2×2 Matrices with no Real Eigenvalue $_{\text{Triptych}}$

Pictures of sequence of vectors $v, Av, A^2v, \ldots M = \frac{1}{2}\begin{pmatrix} \sqrt{3}+1 & -2\\ 1 & \sqrt{3}-1 \end{pmatrix}$ (in general, a real matrix with not real eigenvalues, depending on the length of eigenvalues).



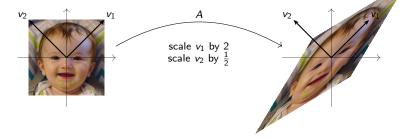
Picture with 2 Real Eigenvalues

Recall the pictures for a matrix with 2 real eigenvalues.

Example: Let $A = \frac{1}{4} \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$. This has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = \frac{1}{2}$, with eigenvectors

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

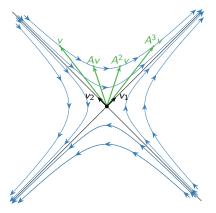
So A expands the v_1 -direction by 2 and shrinks the v_2 -direction by $\frac{1}{2}$.



Picture with 2 Real Eigenvalues

We can also draw the sequence of vectors v, Av, A^2v, \ldots

$$A = \frac{1}{4} \begin{pmatrix} 5 & 3\\ 3 & 5 \end{pmatrix}$$
$$\lambda_1 = 2 \qquad \lambda_2 = \frac{1}{2}$$
$$\lambda_1 | > 1 \qquad |\lambda_1| < 1$$



Exercise:

Draw analogous pictures when $|\lambda_1|, |\lambda_2|$ are any combination of < 1, = 1, > 1.