Section 5.5

Complex Eigenvalues

Motivation: Describe rotations

Among transformations, rotations are very simple to describe geometrically.
Where are the eigenvectors?

The corresponding matrix has no real eigenvalues.

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad f(\lambda)=\lambda^{2}+1
$$

Complex Numbers

Definition

The number i is defined such that $i^{2}=-1$.
Now we have to allow all possible combinations $a+b i$

Definition

A complex number is a number of the form $a+b i$ for a, b in \mathbf{R}. The set of all complex numbers is denoted \mathbf{C}.

A picture of \mathbf{C} uses a plane representation:

- C expands R: real numbers are written $a+0 i$.
- Vector representation of $a+b i$: 2-coordinates $\binom{a}{b}$.
- What does it mean that $\binom{1}{0}$ and $\binom{0}{1}$ are linearly independent?

Operations on Complex Numbers (I)

Addition: Same as vector addition $(a+b i)+(c+d i)=(a+b)+(b+d) i$.
Usually, vectors cannot be multiplied, but complex numbers can!

Multiplication:

$$
(a+b i)(c+d i)=a c+(b c+a d) i+b d i^{2}=(a c-b d)+(b c+a d) i
$$

A plane representation of multiplication of $\{1,2,3, \ldots\}$ by complex $z=1+i$

When z is a real number, multiplication means stretching.

When z has an imaginary part, multiplication also means rotation.

Operations on Complex Numbers (II)

The conjugate

For a complex number $z=a+b i$, the complex conjugate of z is $\bar{z}=a-b i$.

The following is a convenient definition because:

- If $z=a+b i$ then

$$
z \bar{z}=(a+b i)(a-b i)=a^{2}-b^{2} i^{2}=a^{2}+b^{2}
$$

which is a real number!

- Note that the length of the vector $\binom{a}{b}$ is $\sqrt{a^{2}+b^{2}}$,
- There is no geometric interpretation of complex division, but if $z \neq 0$ then:

$$
\frac{z}{w}=\frac{z \bar{w}}{w \bar{w}}=\frac{z \bar{w}}{|w|^{2}}
$$

Example:

$$
\frac{1+i}{1-i}=\frac{(1+i)^{2}}{1^{2}+(-1)^{2}}=\frac{1+2 i+i^{2}}{2}=i
$$

Notation and Polar coordinates

Real and imaginary part: $\operatorname{Re}(a+b i)=a \quad \operatorname{Im}(a+b i)=b$.
Absolute value: $|a+b i|=\sqrt{a^{2}+b^{2}}$.

Some properties

$$
\begin{aligned}
\overline{z+w} & =\bar{z}+\bar{w} & & |z|=\sqrt{z \bar{z}} \\
\overline{z w} & =\bar{z} \cdot \bar{w} & & |z w|=|z| \cdot|w|
\end{aligned}
$$

Any complex number $z=a+b i$ has the polar coordinates: angle and length.

- The length is $|z|=\sqrt{a^{2}+b^{2}}$
- The angle $\theta=\arctan (b / a)$ is called the argument of z, and is denoted $\theta=\arg (z)$.

The relation with cartesian coordiantes is:

$$
z=|z| \underbrace{(\cos \theta+i \sin \theta)}_{\text {unit 'vector' }} .
$$

More on multiplication

It turns out that multiplication has a precise geometric meaning:
Complex multiplication
Multiply the absolute values and add the arguments:

$$
|z w|=|z||w| \quad \arg (z w)=\arg (z)+\arg (w)
$$

- Note $\arg (\bar{z})=-\arg (z)$.
- Multiplying z by \bar{z} gives a real number because the angles cancel out.

Towards Matrix transformations

The point of using complex numbers is to find all eigenvalues of the characteristic polynomial.

Fundamental Theorem of Algebra

Every polynomial of degree n has exactly n complex roots, counted with multiplicity. That is, if $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ then

$$
f(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right)
$$

for (not necessarily distinct) complex numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Conjugate pairs of roots
If f is a polynomial with real coefficients, then the complex roots of real polynomials come in conjugate pairs. (Real roots are conjugate of themselves).

The Fundamental Theorem of Algebra

Degree 2:

The quadratic formula gives the (real or complex) roots:

$$
f(x)=x^{2}+b x+c \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

For real polynomials, the roots are complex conjugates if $b^{2}-4 c$ is negative.

Degree 3:

A real cubic polynomial has either three real roots, or one real root and a conjugate pair of complex roots.

The graph looks like:

or

The Fundamental Theorem of Algebra

Examples

Example Degree 2:

If $f(\lambda)=\lambda^{2}-\sqrt{2} \lambda+1$ then

$$
\lambda=\frac{\sqrt{2} \pm \sqrt{-2}}{2}=\frac{\sqrt{2}}{2}(1 \pm i)=\frac{1 \pm i}{\sqrt{2}} .
$$

Example Degree 3:

Let $f(\lambda)=5 \lambda^{3}-18 \lambda^{2}+21 \lambda-10$.
Since $f(2)=0$, we can do polynomial long division by $\lambda-2$: We get $f(\lambda)=(\lambda-2)\left(5 \lambda^{2}-8 \lambda+5\right)$. Using the quadratic formula, the second polynomial has a root when

$$
\lambda=\frac{8 \pm \sqrt{64-100}}{10}=\frac{4}{5} \pm \frac{\sqrt{-36}}{10}=\frac{4 \pm 3 i}{5}
$$

Therefore,

$$
f(\lambda)=5(\lambda-2)\left(\lambda-\frac{4+3 i}{5}\right)\left(\lambda-\frac{4-3 i}{5}\right)
$$

Poll

The characteristic polynomial of

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

is $f(\lambda)=\lambda^{2}-\sqrt{2} \lambda+1$. This has two complex roots $(1 \pm i) / \sqrt{2}$.

Poll
Let's allow vectors with complex entries. What are the eigenvectors of A ?

> the eigenvalue $\frac{1+i}{\sqrt{2}}$ has eigenvector $\binom{i}{1}$. the eigenvalue $\frac{1-i}{\sqrt{2}}$ has eigenvector $\binom{-i}{1}$.

Do you notice a pattern?

Conjugate Eigenvectors

Allowing complex numbers both eigenvalues and eigenvectors of real square matrices occur in conjugate pairs.

Conjugate eigenvectors
Let A be a real square matrix. If λ is an eigenvalue with eigenvector v, then $\bar{\lambda}$ is an eigenvalue with eigenvector \bar{v}.

Conjugate pairs of roots in polynomial:
If λ is a root of f, then so is $\bar{\lambda}$:

$$
\begin{aligned}
0=\overline{f(\lambda)} & =\overline{\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}} \\
& =\bar{\lambda}^{n}+a_{n-1} \bar{\lambda}^{n-1}+\cdots+a_{1} \bar{\lambda}+a_{0}=f(\bar{\lambda}) .
\end{aligned}
$$

Conjugate pairs of eigenvectors:

$$
A v=\lambda \Longrightarrow A \bar{v}=\overline{A v}=\overline{\lambda v}=\bar{\lambda} \bar{v}
$$

Classification of 2×2 Matrices with no Real Eigenvalue

Triptych

Pictures of sequence of vectors $v, A v, A^{2} v, \ldots M=\frac{1}{2}\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)$ (in general, a real matrix with not real eigenvalues, depending on the length of eigenvalues).

$$
\begin{aligned}
& A=\sqrt{2} M \\
& A=M \\
& \lambda=\frac{\sqrt{3}-i}{2} \\
& |\lambda|=1 \\
& \begin{array}{l}
A=\frac{1}{\sqrt{2}} M \\
\lambda=\frac{\sqrt{3}-i}{2 \sqrt{2}}
\end{array} \\
& |\lambda|<1
\end{aligned}
$$

Picture with 2 Real Eigenvalues

Recall the pictures for a matrix with 2 real eigenvalues.
Example: Let $A=\frac{1}{4}\left(\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right)$.
This has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=\frac{1}{2}$, with eigenvectors

$$
v_{1}=\binom{1}{1} \quad \text { and } \quad v_{2}=\binom{-1}{1}
$$

So A expands the v_{1}-direction by 2 and shrinks the v_{2}-direction by $\frac{1}{2}$.

Picture with 2 Real Eigenvalues

We can also draw the sequence of vectors $v, A v, A^{2} v, \ldots$

$$
\begin{array}{rlrl}
A & =\frac{1}{4}\left(\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right) \\
\lambda_{1} & =2 & \lambda_{2} & =\frac{1}{2} \\
\left|\lambda_{1}\right| & >1 & & \left|\lambda_{1}\right|
\end{array}
$$

Exercise:

Draw analogous pictures when $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|$ are any combination of $<1,=1,>1$.

