Review for Midterm 3

Selected Topics

Determinants

Ways to compute them

1. Special formulas for 2×2 and 3×3 matrices.
2. For [upper or lower] triangular matrices:

$$
\operatorname{det} A=\text { (product of diagonal entries). }
$$

3. Cofactor expansion along any row or column:

$$
\begin{aligned}
\operatorname{det} A & =\sum_{j=1}^{n} a_{i j} C_{i j} \text { for any fixed } i \\
\operatorname{det} A & =\sum_{i=1}^{n} a_{i j} C_{i j} \text { for any fixed } j
\end{aligned}
$$

Start here for matrices with a row or column with lots of zeros.
4. By row reduction without scaling:

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }}(\text { product of diagonal entries in REF) }
$$

This is fastest for big and complicated matrices.
5. Cofactor expansion and any other of the above. (The cofactor formula is recursive.)

Determinants

Definition

The determinant is a function

$$
\text { det: }\{\text { square matrices }\} \longrightarrow \mathbf{R}
$$

with the following defining properties:

1. $\operatorname{det}\left(I_{n}\right)=1$
2. If we do a row replacement on a matrix (add a multiple of one row to another), the determinant does not change.
3. If we swap two rows of a matrix, the determinant scales by -1 .
4. If we scale a row of a matrix by k, the determinant scales by k.

When computing a determinant via row reduction, try to only use row replacement and row swaps. Then you never have to worry about scaling by the inverse.

Determinants

1. There is one and only one function det: $\{$ square matrices $\} \rightarrow \mathbf{R}$ satisfying the defining properties (1)-(4).
2. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
3. If we row reduce A without row scaling, then

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }} \text { (product of diagonal entries in REF). }
$$

4. The determinant can be computed using any of the $2 n$ cofactor expansions.
5. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad$ and $\quad \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
6. $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
7. $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.
8. If A is an $n \times n$ matrix with transformation $T(x)=A x$, and S is a subset of \mathbf{R}^{n}, then the volume of $T(S)$ is $|\operatorname{det}(A)|$ times the volume of S. (Even for curvy shapes S.)
9. The determinant is multi-linear.

Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then $T(S)$ is the parallelepiped defined by the columns of A, since the columns of A are $T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)$. In this case, Property 8 is the same as Property 7.

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is scaled by $|\operatorname{det}(A)| ;$ then you use calculus to reduce to the previous situation!

Eigenvectors and Eigenvalues

Definition

Let A be an $n \times n$ matrix.

1. An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}. In other words, $A v$ is a multiple of v.
2. An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A v=\lambda v$ has a nontrivial solution.
If $A v=\lambda v$ for $v \neq 0$, we say λ is the eigenvalue for v, and v is an eigenvector for λ.

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-eigenspace of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\begin{aligned}
\lambda \text {-eigenspace } & =\left\{v \text { in } \mathbf{R}^{n} \mid A v=\lambda v\right\} \\
& =\left\{v \text { in } \mathbf{R}^{n} \mid(A-\lambda I) v=0\right\} \\
& =\operatorname{Nul}(A-\lambda I)
\end{aligned}
$$

You find a basis for the λ-eigenspace by finding the parametric vector form for the general solution to $(A-\lambda I) x=0$ using row reduction.

The Characteristic Polynomial

Definition

Let A be an $n \times n$ matrix. The characteristic polynomial of A is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

Important Facts:

1. The characteristic polynomial is a polynomial of degree n, of the following form:

$$
f(\lambda)=(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}
$$

2. The eigenvalues of A are the roots of $f(\lambda)$.
3. The constant term $f(0)=a_{0}$ is equal to $\operatorname{det}(A)$:

$$
f(0)=\operatorname{det}(A-0 I)=\operatorname{det}(A)
$$

4. The characteristic polynomial of a 2×2 matrix A is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)
$$

Definition
The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

Similarity

Definition

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that

$$
A=P B P^{-1}
$$

Important Facts:

1. Similar matrices have the same characteristic polynomial.
2. It follows that similar matrices have the same eigenvalues.
3. If A is similar to B and B is similar to C, then A is similar to C.

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.
2. Similarity has nothing to do with row equivalence.
3. Similar matrices usually do not have the same eigenvectors.

Similarity

Geometric meaning

Let $A=P B P^{-1}$, and let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of P. These form a basis \mathcal{B} for \mathbf{R}^{n} because P is invertible. Key relation: for any vector x in \mathbf{R}^{n},

$$
[A x]_{\mathcal{B}}=B[x]_{\mathcal{B}}
$$

This says:
A acts on the usual coordinates of x in the same way that
B acts on the \mathcal{B}-coordinates of x.
Example:

$$
A=\frac{1}{4}\left(\begin{array}{cc}
5 & 3 \\
3 & 5
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

Then $A=P B P^{-1}$. B acts on the usual coordinates by scaling the first coordinate by 2 , and the second by $1 / 2$:

$$
B\binom{x_{1}}{x_{2}}=\binom{2 x_{1}}{x_{2} / 2} .
$$

The unit coordinate vectors are eigenvectors: e_{1} has eigenvalue 2 , and e_{2} has eigenvalue $1 / 2$.

Similarity

Example

$A=\frac{1}{4}\left(\begin{array}{cc}5 & 3 \\ 3 & 5\end{array}\right) \quad B=\left(\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right) \quad P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \quad[A x]_{\mathcal{B}}=B[x]_{\mathcal{B}}$.
In this case, $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$. Let $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$.
To compute $y=A x$:

$$
\begin{aligned}
& \text { Say } x=\binom{2}{0} . \\
& \text { 1. } x=v_{1}+v_{2} \text { so }[x]_{\mathcal{B}}=\binom{1}{1} . \\
& \text { 2. }[y]_{\mathcal{B}}=B\binom{1}{1}=\binom{2}{1 / 2} . \\
& \text { 3. } y=2 v_{1}+\frac{1}{2} v_{2}=\binom{5 / 2}{3 / 2} .
\end{aligned}
$$

2. $[y]_{\mathcal{B}}=B[x]_{\mathcal{B}}$.
3. Compute y from $[y]_{\mathcal{B}}$.

Picture:

Diagonalization

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { for } D \text { diagonal. }
$$

It is easy to take powers of diagonalizable matrices:

$$
A^{n}=P D^{n} P^{-1} .
$$

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

Corollary
An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Non-Distinct Eigenvalues

Definition

Let A be a square matrix with eigenvalue λ. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Theorem

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if, for every eigenvalue λ, the algebraic multiplicity of λ is equal to the geometric multiplicity.
(And all eigenvalues are real, unless you want to diagonalize over C.)

Notes:

- The algebraic and geometric multiplicities are both whole numbers ≥ 1, and the algebraic multiplicity is always greater than or equal to the geometric multiplicity. In particular, they're equal if the algebraic multiplicity is 1.
- Equivalently, A is diagonalizable if and only if the sum of the geometric multiplicities of its eigenvalues is n.

Non-Distinct Eigenvalues

Example

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

This has eigenvalues 1 and 2 , with algebraic multiplicities 2 and 1 , respectively.
The geometric multiplicity of 2 is automatically 1 .
Let's compute the geometric multiplicity of 1 :

$$
A-I=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow[\sim]{\text { rref }}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

This has 1 free variable, so the geometric multiplicity of 1 is 1 . This is less than the algebraic multiplicity, so the matrix is not diagonalizable.

Complex Eigenvectors

Complex eigenvalues and eigenvectors work just like their real counterparts, with the additional fact:

Both eigenvalues and eigenvectors of real square matrices occur in conjugate pairs.

Example: $A=\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)$. The characteristic polynomial is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-2 \sqrt{3} \lambda+4
$$

The quadratic formula tells us the eigenvalues are

$$
\lambda=\frac{2 \sqrt{3} \pm \sqrt{(2 \sqrt{3})^{2}-16}}{2}=\sqrt{3} \pm i
$$

Let's compute an eigenvector v with eigenvalue $\lambda=\sqrt{3}-i$.

$$
A-\lambda I=\left(\begin{array}{cc}
1+i & -2 \\
\star & \star
\end{array}\right) \quad \text { m } \rightarrow v=\binom{2}{1+i} \text {. }
$$

An eigenvector with eigenvalue $\sqrt{3}+i$ is (automatically) $\binom{2}{1-i}$.

Geometric Interpretation of Complex Eigenvalues

Theorem

Let A be a 2×2 matrix with complex (non-real) eigenvalue λ, and let v be an eigenvector. Then

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
\operatorname{Re} v & \operatorname{Im} v \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{rr}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right) .
$$

The matrix C is a composition of a counterclockwise rotation by $-\arg (\lambda)$, and a scale by a factor of $|\lambda|$.

Example:

$$
A=\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \quad \lambda=\sqrt{3}-i \quad v=\binom{1-i}{1}
$$

This gives

$$
\begin{aligned}
C & =\left(\begin{array}{rr}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right) \\
P & =\left(\begin{array}{ll}
\operatorname{Re}(1-i) & \operatorname{Im}(1-i) \\
\operatorname{Re}(1) & \operatorname{Im}(1)
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Geometric Interpretation of Complex Eigenvalues

Example

$$
A=\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \quad C=\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right) \quad P=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \quad \lambda=\sqrt{3}-i
$$

The Theorem says that C scales by a factor of

$$
|\lambda|=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=\sqrt{3+1}=2 .
$$

It rotates counterclockwise by the argument of $\bar{\lambda}=\sqrt{3}+i$, which is $\pi / 6$:

$$
\theta=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
$$

"rotate around an ellipse" scale by 2

Computing the Argument of a Complex Number

Warning: if $\lambda=a+b i$, you can't just plug $\tan ^{-1}(b / a)$ into your calculator and expect to get the argument of λ.

Example: If $\lambda=-1-\sqrt{3} i$ then

$$
\tan ^{-1}\left(\frac{-\sqrt{3}}{-1}\right)=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}
$$

Anyway that's the number your calculator will give you.
You have to draw a picture:

$$
\begin{aligned}
& \theta=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3} \\
& \text { argument }=\theta+\pi=\frac{4 \pi}{3}
\end{aligned}
$$

