
Review for Midterm 3

Selected Topics



Determinants
Ways to compute them

1. Special formulas for 2× 2 and 3× 3 matrices.

2. For [upper or lower] triangular matrices:

detA = (product of diagonal entries).

3. Cofactor expansion along any row or column:

detA =
n∑

j=1

aijCij for any fixed i

detA =
n∑

i=1

aijCij for any fixed j

Start here for matrices with a row or column with lots of zeros.

4. By row reduction without scaling:

det(A) = (−1)#swaps(product of diagonal entries in REF
)

This is fastest for big and complicated matrices.

5. Cofactor expansion and any other of the above. (The cofactor formula is
recursive.)



Determinants
Defining properties

Definition
The determinant is a function

det : {square matrices} −→ R

with the following defining properties:

1. det(In) = 1

2. If we do a row replacement on a matrix (add a multiple of one row to
another), the determinant does not change.

3. If we swap two rows of a matrix, the determinant scales by −1.

4. If we scale a row of a matrix by k, the determinant scales by k.

When computing a determinant via row reduction, try to only use row
replacement and row swaps. Then you never have to worry about scaling by
the inverse.



Determinants
Magical properties

1. There is one and only one function det : {square matrices} → R satisfying
the defining properties (1)–(4).

2. A is invertible if and only if det(A) 6= 0.

3. If we row reduce A without row scaling, then

det(A) = (−1)#swaps(product of diagonal entries in REF
)
.

4. The determinant can be computed using any of the 2n cofactor
expansions.

5. det(AB) = det(A) det(B) and det(A−1) = det(A)−1.

6. det(A) = det(AT ).

7. | det(A)| is the volume of the parallelepiped defined by the columns of A.

8. If A is an n × n matrix with transformation T (x) = Ax , and S is a subset
of Rn, then the volume of T (S) is | det(A)| times the volume of S . (Even
for curvy shapes S .)

9. The determinant is multi-linear.



Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then T (S) is the
parallelepiped defined by the columns of A, since the columns of A are
T (e1),T (e2), . . . ,T (en). In this case, Property 8 is the same as Property 7.

e1

e2 S

vol(S) = 1

A =

(
1 1
−1 1

)
det(A) = 2

T

T (e1)

T (e2)

T (S)

vol(T (S)) = 2

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is
scaled by | det(A)|; then you use calculus to reduce to the previous situation!

S

vol(T (S)) = 2 vol(S)

T

T (S)



Eigenvectors and Eigenvalues

Definition
Let A be an n × n matrix.

1. An eigenvector of A is a nonzero vector v in Rn such that Av = λv , for
some λ in R. In other words, Av is a multiple of v .

2. An eigenvalue of A is a number λ in R such that the equation Av = λv
has a nontrivial solution.

If Av = λv for v 6= 0, we say λ is the eigenvalue for v , and v is an
eigenvector for λ.

Definition
Let A be an n × n matrix and let λ be an eigenvalue of A. The λ-eigenspace
of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

λ-eigenspace =
{
v in Rn | Av = λv

}
=
{
v in Rn | (A− λI )v = 0

}
= Nul

(
A− λI

)
.

You find a basis for the λ-eigenspace by finding the parametric vector form for
the general solution to (A− λI )x = 0 using row reduction.



The Characteristic Polynomial

Definition
Let A be an n × n matrix. The characteristic polynomial of A is

f (λ) = det(A− λI ).

Important Facts:

1. The characteristic polynomial is a polynomial of degree n, of the following
form:

f (λ) = (−1)nλn + an−1λ
n−1 + an−2λ

n−2 + · · ·+ a1λ+ a0.

2. The eigenvalues of A are the roots of f (λ).

3. The constant term f (0) = a0 is equal to det(A):

f (0) = det(A− 0I ) = det(A).

4. The characteristic polynomial of a 2× 2 matrix A is

f (λ) = λ2 − Tr(A)λ+ det(A).

Definition
The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the
characteristic polynomial.



Similarity

Definition
Two n× n matrices A and B are similar if there is an invertible n× n matrix P
such that

A = PBP−1.

Important Facts:

1. Similar matrices have the same characteristic polynomial.

2. It follows that similar matrices have the same eigenvalues.

3. If A is similar to B and B is similar to C , then A is similar to C .

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.

2. Similarity has nothing to do with row equivalence.

3. Similar matrices usually do not have the same eigenvectors.



Similarity
Geometric meaning

Let A = PBP−1, and let v1, v2, . . . , vn be the columns of P. These form a basis
B for Rn because P is invertible. Key relation: for any vector x in Rn,

[Ax ]B = B[x ]B.

This says:

A acts on the usual coordinates of x
in the same way that

B acts on the B-coordinates of x .

Example:

A =
1

4

(
5 3
3 5

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
.

Then A = PBP−1. B acts on the usual coordinates by scaling the first
coordinate by 2, and the second by 1/2:

B

(
x1

x2

)
=

(
2x1

x2/2

)
.

The unit coordinate vectors are eigenvectors: e1 has eigenvalue 2, and e2 has
eigenvalue 1/2.



Similarity
Example

A =
1

4

(
5 3
3 5

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
[Ax ]B = B[x ]B.

In this case, B =
{(

1
1

)
,
(

1
−1

)}
. Let v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

To compute y = Ax :

1. Find [x ]B.

2. [y ]B = B[x ]B.

3. Compute y from [y ]B.

Say x =
(

2
0

)
.

1. x = v1 + v2 so [x ]B =
(

1
1

)
.

2. [y ]B = B
(

1
1

)
=
(

2
1/2

)
.

3. y = 2v1 + 1
2
v2 =

(
5/2
3/2

)
.

Picture:

v1

v2

x

Av1

Av2

AxA

A scales the v1-
coordinate by
2, and the v2-

coordinate by 1
2

.



Diagonalization

Definition
An n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = PDP−1 for D diagonal.

It is easy to take powers of diagonalizable matrices:

An = PDnP−1.

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. In this case, A = PDP−1 for

P =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).

Corollary

An n × n matrix with n distinct eigenvalues is diagonalizable.



Non-Distinct Eigenvalues

Definition
Let A be a square matrix with eigenvalue λ. The geometric multiplicity of λ
is the dimension of the λ-eigenspace.

Theorem
Let A be an n × n matrix. Then A is diagonalizable if and only if, for every
eigenvalue λ, the algebraic multiplicity of λ is equal to the geometric
multiplicity.

(And all eigenvalues are real, unless you want to diagonalize over C.)

Notes:

I The algebraic and geometric multiplicities are both whole numbers ≥ 1,
and the algebraic multiplicity is always greater than or equal to the
geometric multiplicity. In particular, they’re equal if the algebraic
multiplicity is 1.

I Equivalently, A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.



Non-Distinct Eigenvalues
Example

A =

 1 1 0
0 1 0
0 0 2


This has eigenvalues 1 and 2, with algebraic multiplicities 2 and 1, respectively.

The geometric multiplicity of 2 is automatically 1.

Let’s compute the geometric multiplicity of 1:

A− I =

 0 1 0
0 0 0
0 0 1

 rref

 0 1 0
0 0 1
0 0 0

 .

This has 1 free variable, so the geometric multiplicity of 1 is 1. This is less
than the algebraic multiplicity, so the matrix is not diagonalizable.



Complex Eigenvectors

Complex eigenvalues and eigenvectors work just like their real counterparts,
with the additional fact:

Both eigenvalues and eigenvectors of real square
matrices occur in conjugate pairs.

Example: A =

(√
3 + 1 −2

1
√

3− 1

)
. The characteristic polynomial is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − 2
√

3λ+ 4.

The quadratic formula tells us the eigenvalues are

λ =
2
√

3±
√

(2
√

3)2 − 16

2
=
√

3± i .

Let’s compute an eigenvector v with eigenvalue λ =
√

3− i .

A− λI =

(
1 + i −2
? ?

)
v =

(
2

1 + i

)
.

An eigenvector with eigenvalue
√

3 + i is (automatically)
(

2
1−i

)
.



Geometric Interpretation of Complex Eigenvalues

Theorem
Let A be a 2× 2 matrix with complex (non-real) eigenvalue λ, and let v be an
eigenvector. Then

A = PCP−1

where

P =

 | |
Re v Im v
| |

 and C =

(
Reλ Imλ
− Imλ Reλ

)
.

The matrix C is a composition of a counterclockwise rotation by − arg(λ), and
a scale by a factor of |λ|.

Example:

A =

(√
3 + 1 −2

1
√

3− 1

)
λ =
√

3− i v =

(
1− i

1

)
This gives

C =

(
Reλ Imλ
− Imλ Reλ

)
=

(√
3 −1

1
√

3

)
P =

(
Re(1− i) Im(1− i)
Re(1) Im(1)

)
=

(
1 −1
1 0

)



Geometric Interpretation of Complex Eigenvalues
Example

A =

(√
3 + 1 −2

1
√

3− 1

)
C =

(√
3 −1

1
√

3

)
P =

(
1 −1
1 0

)
λ =
√

3−i

The Theorem says that C scales by a factor of

|λ| =

√
(
√

3)2 + (−1)2 =
√

3 + 1 = 2.

It rotates counterclockwise by the argument of λ =
√

3 + i , which is π/6:

λ

θ
√

3

1 θ = tan−1

(
1√
3

)
=
π

6

A

“rotate around an ellipse”
scale by 2



Computing the Argument of a Complex Number
Caveat

Warning: if λ = a + bi , you can’t just plug tan−1(b/a) into your calculator and
expect to get the argument of λ.

Example: If λ = −1−
√

3i then

tan−1

(
−
√

3

−1

)
= tan−1(

√
3) =

π

3
.

Anyway that’s the number your calculator will give you.

You have to draw a picture:

λ

θ

1

√
3

θ = tan−1(
√

3) =
π

3

argument = θ + π =
4π

3


