Math 1553 J1-J3 Quiz : Sections 5.1-5.2

Solutions

The quiz has a total of 10 points and you have 10 minutes. Read carefully.

1. [2 points each] Justify your work, you can state any theorem or statement from the lecture notes.
a) Is $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ in the 1-eigenspace of the matrix $A=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$?
b) Write down the definition of characteristic polynomial of matrix B.

Solution.

a) Yes. $A\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, so $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ is an eigenvector with eigenvalue 1 .

2 pt . if answer is yes and there is a reason (e.g. matrix multiplication)
1 pt . if reason/work is missing
b) The characteristic polynomial of B is the function $f(\lambda)=\operatorname{det}(B-\lambda I)$.
up to 1 pt . if they attempt any approach
2 pt for correct formula
2. [3 points each] Justify your work, you can state any theorem or statement from the lecture notes.
a) If v_{0} is an eigenvector of B with eigenvalue 3 , compute $v_{4}=B^{4} v_{0}$
b) Find a 2×2 matrix whose characteristic polynomial is

$$
f(\lambda)=\lambda^{2}+9
$$

Solution.

a) We can repetively apply the identity $B v_{0}=3 v_{0}$. Then $v_{4}=81 v_{0}$ since

$$
B^{4} v_{0}=B^{3}\left(B v_{0}\right)=3 B^{3} v_{0}=3 B^{2}\left(B v_{0}\right)=9 B^{2} v_{0}=27 B v_{0}=81 v_{0}
$$

2 pt . if they mention or write formulas for difference equations
3 pt if the answer does not include any power of matrix B
-1 pt if there is no justification for the answer
b) It is not difficult to guess the entries of the matrix. Or you can use the formula for 2×2 matrices $f(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)$ to devise a matrix whose diagonal
entries sum zero and the determinant is 9 . Two examples are $A=\left(\begin{array}{cc}1 & 2 \\ -5 & -1\end{array}\right)$ and $A=\left(\begin{array}{cc}0 & -1 \\ 9 & 0\end{array}\right)$.
up to 2 pt . if they attempt any approach
3 pt if the matrix has the correct characteristic polynomial

