Section 5.5

Complex Eigenvalues (Part II)

Motivation: Complex Versus Two Real Eigenvalues

Today's decomposition is very analogous to diagonalization.
Theorem
Let A be a 2×2 matrix with linearly independent eigenvectors v_{1}, v_{2} and associated eigenvalues λ_{1}, λ_{2}. Then

$$
A=P D P^{-1}
$$

where

$$
\text { scale } x \text {-axis by } \lambda_{1}
$$

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

Theorem
Let A be a 2×2 real matrix with a complex eigenvalue $\lambda=a+b i$ (where $b \neq 0$), and let v be an eigenvector. Then

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
\operatorname{Re} v & \operatorname{Im} v \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad C=(\text { rotation }) \cdot(\text { scaling }) .
$$

Computing Eigenvectors of 2×2 Matrices

Let A be a 2×2 matrix, and let λ be an eigenvalue of A.
Then $A-\lambda I$ is not invertible, so its rows are linearly independent.
When we row reduce, the second row entries are zeros.
Save time! there is no need to find the exact entries of second row
2×2 Shortcut

$$
\text { If } A-\lambda I=\left(\begin{array}{cc}
a & b \\
\star & \star
\end{array}\right) \text {, then use }\binom{b}{-a} \text { or }\binom{-b}{a} \text { as eigenvector }
$$ for λ.

Example:

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \lambda=\frac{1-i}{\sqrt{2}} .
$$

Poll Example Completed

Last poll used the matrix of rotation by $\pi / 4$:

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \text { has eigenvalues } \quad \lambda=\frac{1 \pm i}{\sqrt{2}} .
$$

Compute an eigenvector for $\lambda=(1+i) / \sqrt{2}$ (factor out $\sqrt{2}$):

$$
A-\lambda I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1-(1+i) & -1 \\
1 & 1-(1+i)
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right) .
$$

Row reducing:

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right) \text { mn } \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-i & -1 \\
0 & 0
\end{array}\right) \leadsto m \leadsto\left(\begin{array}{cc}
-i & -1 \\
0 & 0
\end{array}\right) .
$$

The parametric form is $-i x=y$, so an eigenvector is $v=\binom{1}{-i}$.

A 3×3 Example

Find the complex eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{ccc}
\frac{4}{5} & -\frac{3}{5} & 0 \\
\frac{3}{5} & \frac{4}{5} & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

Recall: When we find an eigenvector v with eigenvalue λ then we automatically know that \bar{v} is eigenvector with eigenvalue $\bar{\lambda}$.

A 3×3 Example

$$
A=\left(\begin{array}{ccc}
\frac{4}{5} & -\frac{3}{5} & 0 \\
\frac{3}{5} & \frac{4}{5} & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Find eigenvector v with eigenvalue $\frac{4+3 i}{5}$. Row reduce:

Complex Eigenvectors: Matrix Decomposition

Theorem

Let A be a 2×2 real matrix with a complex (non-real) eigenvalue λ, and let v be an eigenvector. Then

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
\operatorname{Re} v & \operatorname{Im} v \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right)
$$

The matrix C is a composition of scaling by $|\lambda|$ and rotation by $\theta=-\arg (\lambda)$:

$$
C=|\lambda|\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

With a complex eigenvalue λ
The matrix C correspond to multiplication by $\bar{\lambda}$ in $\mathbf{C} \sim \mathbf{R}^{2}$.
The matrix A is similar to C; that is to a rotation by the argument of $\bar{\lambda}$ composed with scaling by $|\lambda|$.

Decomposition: Geometric Interpretation

Example 1
What does $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ do geometrically?

Decomposition: Geometric Interpretation

Example 1, continued

Decomposition: Geometric Interpretation

Example 2

$$
\text { What does } A=\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \text { do geometrically? }
$$

Decomposition: Geometric Interpretation

Example 2, continued

$$
A=\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \quad C=\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right) \quad \lambda=\sqrt{3}-i
$$

- The matrix C scales by a factor of

$$
|\lambda|=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=\sqrt{4}=2
$$

- The argument of λ is $-\pi / 6$:

Therefore C rotates by $+\pi / 6$.

Decomposition: Geometric Interpretation

Example 2, continued
What does $A=\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)$ do geometrically?

$A=P C P^{-1}$ does the same as C.
but with respect to the basis $\mathcal{P}=\left\{\binom{1}{1},\binom{-1}{0}\right\}$ of columns of P

The 3-Dimensional Case

Theorem
Let A be a real 3×3 matrix. Suppose that A has

- one real eigenvalue λ_{1} with eigenvector v_{1},
- and one conjugate pair of complex eigenvalues $\lambda_{2}, \bar{\lambda}_{2}$ with eigenvectors v_{2}, \bar{v}_{2}.

Then $A=P C P^{-1}$, where

$$
P=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & \operatorname{Re} v_{2} & \operatorname{Im} v_{2} \\
\mid & \mid & \mid
\end{array}\right) \quad C=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \operatorname{Re} \lambda_{2} & \operatorname{Im} \lambda_{2} \\
0 & -\operatorname{Im} \lambda_{2} & \operatorname{Re} \lambda_{2}
\end{array}\right)
$$

The 3-Dimensional Case

Pictures

Let $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. This acts on the $x y$-plane by rotation by $\pi / 4$ and
scaling by $\sqrt{2}$. This acts on the z-axis by scaling by 2 . Pictures:

looking down y-axis

Note: A is already a block diagonal. In general, this dynamics occur along the axes given by the columns of P (if $A=P C P^{-1}$).

Extra: The n-Dimensional Case

Theorem

Let A be a real $n \times n$ matrix. Suppose that for each (real or complex) eigenvalue, the dimension of the eigenspace equals the algebraic multiplicity.
Then $A=P C P^{-1}$, where

1. C is block diagonal:

- the blocks containing the real eigenvalues (with their multiplicities) are 1×1 blocks.
- the blocks containing the pairs of conjugate complex eigenvalues (with their multiplicities) are 2×2 blocks.

$$
\left(\begin{array}{cc}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right)
$$

(λ must have an imaginary part)
2. P has columns that either form bases for the eigenspaces for the real eigenvectors, or come in pairs ($\operatorname{Re} v \operatorname{Im} v$) for the non-real eigenvectors.

Extra: Why This Is Not A Weird Thing To Do

An anachronistic historical aside

In the beginning, people only used counting numbers for, well, counting things: $1,2,3,4,5, \ldots$.
Then someone (Persian mathematician Muḥammad ibn Mūsā al-Khwārizmī, 825) had the ridiculous idea that there should be a number that represents an absence of quantity (number 0). This blew everyone's mind.

Then it occurred to someone (Chinese mathematician Liu Hui, c. 3rd century) that there should be negative numbers to represent a deficit in quantity. That seemed reasonable, until people realized that $10+(-3)$ would have to equal 7 . This is when people started saying, "bah, math is just too hard for me."

At this point it was inconvenient that you couldn't divide 2 by 3. Thus someone (Indian mathematician Aryabhatta, c. 5th century) invented fractions (rational numbers) to represent fractional quantities. These proved very popular. The Pythagoreans developed a whole belief system around the notion that any quantity worth considering could be broken down into whole numbers in this way.

Then the Pythagoreans (c. 6th century BCE) discovered that the hypotenuse of an isosceles right triangle with side length 1 (i.e. $\sqrt{2}$) is not a fraction. This caused a serious existential crisis and led to at least one death by drowning. The real number $\sqrt{2}$, which is not a fraction, was thus invented to solve the equation $x^{2}-2=0$.

Now we come to invent a number i that solves the equation $x^{2}+1=0$.

