
Announcements
Monday, November 13

I Midterm 3 this Friday
I Exam covers: Sections 3.1,3.2,5.1,5.2,5.3 and 5.5
I Many problems will be computational (see Practice exam, e.g. Problem 4)
I For the rest 20-30% you need to have understood the motivation/high-level

idea of the topics

I Review: Recitation Style at Howey L4 Wednesday 5-6pm
I Solve and discuss Practice problems in groups
I Preparing for the exam tips and strategies
I It is not mandatory



Section 5.5

Complex Eigenvalues (Part II)



Motivation: Complex Versus Two Real Eigenvalues

Today’s decomposition is very analogous to diagonalization.

Theorem
Let A be a 2× 2 matrix with linearly independent eigenvectors v1, v2 and
associated eigenvalues λ1, λ2. Then

A = PDP−1

where

P =

 | |
v1 v2

| |

 and D =

(
λ1 0
0 λ2

)
.

scale x-axis by λ1

scale y -axis by λ2

Theorem
Let A be a 2× 2 real matrix with a complex eigenvalue λ = a + bi (where
b 6= 0), and let v be an eigenvector. Then

A = PCP−1

where

P =

 | |
Re v Im v
| |

 and C =(rotation)·(scaling).



Computing Eigenvectors of 2× 2 Matrices
Specially useful for complex eigenvalues

Let A be a 2× 2 matrix, and let λ be an eigenvalue of A.

Then A− λI is not invertible, so its rows are linearly independent.

When we row reduce, the second row entries are zeros.

Save time! there is no need to find the exact entries of second row

If A− λI =

(
a b
? ?

)
, then use

(
b
−a

)
or

(
−b
a

)
as eigenvector

for λ.

2× 2 Shortcut

Example:

A =
1√
2

(
1 −1
1 1

)
λ =

1− i√
2
.

Then:

A− λI =
1√
2

(
i −1
? ?

)
so an eigenvector is v =

(
1
i

)
.



Poll Example Completed

Last poll used the matrix of rotation by π/4:

A =
1√
2

(
1 −1
1 1

)
has eigenvalues λ =

1± i√
2
.

Compute an eigenvector for λ = (1 + i)/
√

2 (factor out
√

2):

A− λI =
1√
2

(
1− (1 + i) −1

1 1− (1 + i)

)
=

1√
2

(
−i −1
1 −i

)
.

Row reducing:

1√
2

(
−i −1
1 −i

)
1√
2

(
−i −1
0 0

) (
−i −1
0 0

)
.

The parametric form is −ix = y , so an eigenvector is v =

(
1
−i

)
.

When row reducing we can also divide by i and obtain

(
i
1

)
Can use a similar computation for conjugate eigenvalue. Instead, save time:
take conjugates for both λ and v above.



A 3× 3 Example

Find the complex eigenvalues and eigenvectors of

A =

 4
5
− 3

5
0

3
5

4
5

0
0 0 2

 .

The characteristic polynomial is

f (λ) = det

 4
5
− λ − 3

5
0

3
5

4
5
− λ 0

0 0 2− λ

 = (2− λ)

(
λ2 − 8

5
λ+ 1

)
.

This factors out
automatically if you

expand cofactors along
the third row or column

We computed the roots of this polynomial (times 5) before:

λ = 2,
4 + 3i

5
,

4− 3i

5
.

Recall: When we find an eigenvector v with eigenvalue λ then we automatically
know that v is eigenvector with eigenvalue λ.



A 3× 3 Example
Continued

A =

 4
5
− 3

5
0

3
5

4
5

0
0 0 2


Find eigenvector v with eigenvalue 4+3i

5
. Row reduce:

A− 4 + 3i

5
I =

− 3
5
i − 3

5
0

3
5

− 3
5
i 0

0 0 2− 4+3i
5

 scale rows

−i −1 0
1 −i 0
0 0 1


The second row is i times the first:

row replacement
−i −1 0

0 0 0
0 0 1

 divide by −i ,swap
 1 −i 0

0 0 1
0 0 0

 .

The parametric form is x = iy , z = 0, so an eigenvector is

 i
1
0

.

Therefore, an eigenvector with conjugate eigenvalue
4− 3i

5
is

−i1
0

.



Complex Eigenvectors: Matrix Decomposition
2 × 2 case

Theorem
Let A be a 2× 2 real matrix with a complex (non-real) eigenvalue λ, and let v
be an eigenvector. Then

A = PCP−1

where

P =

 | |
Re v Im v
| |

 and C =

(
Reλ Imλ
− Imλ Reλ

)
.

The matrix C is a composition of scaling by |λ| and rotation by θ = − arg(λ):

C = |λ|
(

cos θ − sin θ
sin θ cos θ

)
.

The matrix C correspond to multiplication by λ in C ∼ R2.

The matrix A is similar to C ; that is to a rotation by the argument of
λ composed with scaling by |λ|.

With a complex eigenvalue λ



Decomposition: Geometric Interpretation
Example 1

What does A =

(
1 −1
1 1

)
do geometrically?

I The characteristic polynomial is f (λ) = λ2 − 2λ+ 2.

By the quadratic formula, the roots are 2±
√

4−8
2

= 1± i .

I For λ = 1− i , we compute an eigenvector v :

A− λI =

(
i −1
? ?

)
v =

(
1
i

)
.

I Therefore, A = PCP−1 where

P =

(
Re

(
1
i

)
Im

(
1
i

))
=

(
1 0
0 1

)
C =

(
Reλ Imλ
− Imλ Reλ

)
=

(
1 −1
1 1

)



Decomposition: Geometric Interpretation
Example 1, continued

I The matrix C = A scales by a factor of

|λ| =
√

12 + 12 =
√

2.

I The argument of λ is −π/4:

λ

π
4

Therefore C = A rotates by +π/4.

A

rotate by π/4

scale by
√

2



Decomposition: Geometric Interpretation
Example 2

What does A =

(√
3 + 1 −2

1
√

3− 1

)
do geometrically?

I The characteristic polynomial is f (λ) = λ2 − 2
√

3λ+ 4. By the quadratic

formula, the roots are 2
√

3±
√

12−16
2

=
√

3± i .

I For λ =
√

3− i , we compute an eigenvector v :

A− λI =

(
1 + i −2
? ?

)
v =

(
1− i

1

)
.

I It follows that A = PCP−1 where

P =

(
Re

(
1− i

1

)
Im

(
1− i

1

))
=

(
1 −1
1 0

)
C =

(
Reλ Imλ
− Imλ Reλ

)
=

(√
3 −1

1
√

3

)
.



Decomposition: Geometric Interpretation
Example 2, continued

A =

(√
3 + 1 −2

1
√

3− 1

)
C =

(√
3 −1

1
√

3

)
λ =
√

3− i

I The matrix C scales by a factor of

|λ| =

√
(
√

3)2 + (−1)2 =
√

4 = 2.

I The argument of λ is −π/6:

λ

π
6 1

√
3

Therefore C rotates by +π/6.

C

rotate by π/6
scale by 2



Decomposition: Geometric Interpretation
Example 2, continued

What does A =

(√
3 + 1 −2

1
√

3− 1

)
do geometrically?

A

“rotate around an ellipse”
scale by 2

A = PCP−1 does the same as C .

but with respect to the basis P =
{(

1
1

)
,
(−1

0

)}
of columns of P



The 3-Dimensional Case

Theorem
Let A be a real 3× 3 matrix. Suppose that A has

I one real eigenvalue λ1 with eigenvector v1,

I and one conjugate pair of complex eigenvalues λ2, λ2 with eigenvectors
v2, v 2.

Then A = PCP−1, where

P =

 | | |
v1 Re v2 Im v2

| | |

 C =

λ1 0 0
0 Reλ2 Imλ2

0 − Imλ2 Reλ2


1. C is a block diagonal

2. The columns of P form a basis for the eigenspace for the real eigenvector,
and have columns ( Re v Im v ) for the pair of non-real eigenvectors.

3. The order of blocks in C determines the order of columns in P.



The 3-Dimensional Case
Pictures

Let A =

 1 −1 0
1 1 0
0 0 2

. This acts on the xy -plane by rotation by π/4 and

scaling by
√

2. This acts on the z-axis by scaling by 2. Pictures:

x

y

z

x

y

from above

x

z

looking down y -axis

Note: A is already a block diagonal. In general, this dynamics occur along the
axes given by the columns of P (if A = PCP−1).



Extra: The n-Dimensional Case

Theorem
Let A be a real n × n matrix. Suppose that for each (real or complex)
eigenvalue, the dimension of the eigenspace equals the algebraic multiplicity.

Then A = PCP−1, where

1. C is block diagonal:
I the blocks containing the real eigenvalues (with their multiplicities) are

1× 1 blocks.
I the blocks containing the pairs of conjugate complex eigenvalues (with their

multiplicities) are 2× 2 blocks.(
Reλ Imλ
− Imλ Reλ

)
(λ must have an imaginary part)

2. P has columns that either form bases for the eigenspaces for the real
eigenvectors, or come in pairs ( Re v Im v ) for the non-real eigenvectors.



Extra: Why This Is Not A Weird Thing To Do
An anachronistic historical aside

In the beginning, people only used counting numbers for, well, counting things:
1, 2, 3, 4, 5, . . ..
Then someone (Persian mathematician Muh.ammad ibn Mūsā al-Khwārizm̄ı, 825) had
the ridiculous idea that there should be a number that represents an absence of
quantity (number 0). This blew everyone’s mind.

Then it occurred to someone (Chinese mathematician Liu Hui, c. 3rd century) that
there should be negative numbers to represent a deficit in quantity. That seemed
reasonable, until people realized that 10 + (−3) would have to equal 7. This is when
people started saying, “bah, math is just too hard for me.”

At this point it was inconvenient that you couldn’t divide 2 by 3. Thus someone
(Indian mathematician Aryabhatta, c. 5th century) invented fractions (rational
numbers) to represent fractional quantities. These proved very popular. The
Pythagoreans developed a whole belief system around the notion that any quantity
worth considering could be broken down into whole numbers in this way.

Then the Pythagoreans (c. 6th century BCE) discovered that the hypotenuse of an

isosceles right triangle with side length 1 (i.e.
√

2) is not a fraction. This caused a
serious existential crisis and led to at least one death by drowning. The real number√

2, which is not a fraction, was thus invented to solve the equation x2 − 2 = 0.

Now we come to invent a number i that solves the equation x2 + 1 = 0.


