
Chapter 6

Orthogonality and Least Squares



Section 6.1

Inner Product, Length, and Orthogonality



Orientation

We are now aiming at the last topic.

I Almost solve the equation Ax = b

Problem: In the real world, data is imperfect.

u

v

x

But due to measurement error, the measured x is not actually in Span{u, v}.
But you know, for theoretical reasons, it must lie on that plane.

What do you do?
The real value is probably the closest point, on the plane, to x .

New terms: Orthogonal projection (‘closest point’), orthogonal vectors, angle.



The Dot Product

The dot product encodes the notion of angle between two vectors. We will use
it to define orthogonality (i.e. when two vectors are perpendicular)

Definition
The dot product of two vectors x , y in Rn is

x · y =


x1
x2
...
xn

 ·

y1
y2
...
yn

 def
= x1y1 + x2y2 + · · ·+ xnyn.

This is the same as xT y .

Example1
2
3

 ·
4

5
6

 =
(

1 2 3
)4

5
6

 =

1 · 4 + 2 · 5 + 3 · 6 = 32.



Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot
two vectors together, and that the result is a scalar.

I x · y = y · x
I (x + y) · z = x · z + y · z
I (cx) · y = c(x · y)

Dotting a vector with itself is special:
x1
x2
...
xn

 ·

x1
x2
...
xn

 = x2
1 + x2

2 + · · ·+ x2
n .

Hence:

I x · x ≥ 0

I x · x = 0 if and only if x = 0.

Important: x · y = 0 does not imply x = 0 or y = 0. For example,
(
1
0

)
·
(
0
1

)
= 0.



The Dot Product and Length

Definition
The length or norm of a vector x in Rn is

‖x‖ =
√
x · x =

√
x2
1 + x2

2 + · · ·+ x2
n .

Why is this a good definition? The Pythagorean theorem!(
3
4

)
√ 3

2
+
4
2
=
5

3

4

∥∥∥∥(3
4

)∥∥∥∥ =
√
32 + 42 = 5

Fact
If x is a vector and c is a scalar, then ‖cx‖ = |c| · ‖x‖.∥∥∥∥(6

8

)∥∥∥∥ =

∥∥∥∥2

(
3
4

)∥∥∥∥ =

2

∥∥∥∥(3
4

)∥∥∥∥ = 10



The Dot Product and Distance

The following is just the length of the vector from x to y .

Definition
The distance between two points x , y in Rn is

dist(x , y) = ‖y − x‖.

Example

Let x = (1, 2) and y = (4, 4). Then

dist(x , y) =

‖y − x‖ =

∥∥∥∥(3
2

)∥∥∥∥ =
√

32 + 22 =
√

13.

0

x

y

y −
x



Unit Vectors

Definition
A unit vector is a vector v with length ‖v‖ = 1.

Example

The unit coordinate vectors are unit vectors:

‖e1‖ =

∥∥∥∥∥∥
1

0
0

∥∥∥∥∥∥ =
√

12 + 02 + 02 = 1

Definition
Let x be a nonzero vector in Rn. The unit vector in the direction of x is the

vector
x

‖x‖ .

Is this really a unit vector? ∥∥∥∥ x

‖x‖

∥∥∥∥ =
1

‖x‖‖x‖ = 1.scalar



Unit Vectors
Example

Example

What is the unit vector in the direction of x =

(
3
4

)
?

u =
x

‖x‖ =
1√

32 + 42

(
3
4

)
=

1

5

(
3
4

)
.

x

u
0



Orthogonality

Definition
Two vectors x , y are orthogonal or perpendicular if x · y = 0.
Notation: Write it as x ⊥ y .

Why is this a good definition? The Pythagorean theorem / law of cosines!

x

y

‖x‖

‖y‖

‖x − y‖

x and y are
perpendicular ⇐⇒ ‖x‖2 + ‖y‖2 = ‖x − y‖2

⇐⇒ x · x + y · y = (x − y) · (x − y)

⇐⇒ x · x + y · y = x · x + y · y − 2x · y
⇐⇒ x · y = 0

Fact: x ⊥ y ⇐⇒ ‖x − y‖2 = ‖x‖2 + ‖y‖2 (Pythagorean Theorem)



Orthogonality
Example

Problem: Find all vectors orthogonal to v =

 1
1
−1

.

We have to find all vectors x such that x · v = 0. This means solving the
equation

0 = x · v =

x1
x2
x3

 ·
 1

1
−1

 = x1 + x2 − x3.

The parametric form for the solution is x1 = −x2 + x3,
so the parametric vector form of the general solution is

x =

x1
x2
x3

 = x2

−1
1
0

+ x3

1
0
1

 .

For instance,

−1
1
0

 ⊥
 1

1
−1

 because

−1
1
0

 ·
 1

1
−1

 = 0.



Orthogonality
Example

Problem: Find all vectors orthogonal to both v =

 1
1
−1

 and w =

1
1
1

.

Now we have to solve the system of two homogeneous equations

0 = x · v =

x1
x2
x3

 ·
 1

1
−1

 = x1 + x2 − x3

0 = x · w =

x1
x2
x3

 ·
1

1
1

 = x1 + x2 + x3.

In matrix form: (
1 1 −1
1 1 1

)
rref

(
1 1 0
0 0 1

)
.

The parametric vector form of the solution isx1
x2
x3

 = x2

−1
1
0

 .

The rows are v and w



Orthogonality
General procedure

Problem: Find all vectors orthogonal to v1, v2, . . . , vm in Rn.

This is the same as finding all vectors x such that

0 = vT
1 x = vT

2 x = · · · = vT
m x .

Putting the row vectors vT
1 , vT

2 , . . . , vT
m

into a matrix, this is the same as finding
all x such that


— vT

1 —
— vT

2 —...
— vT

m —

x =


v1 · x
v2 · x...
vm · x

 = 0.

The set of all vectors orthogonal to some vec-
tors v1, v2, . . . , vm in Rn is the null space of
the m × n matrix:


— vT

1 —
— vT

2 —...
— vT

m —

 .

In particular, this set is a subspace!

The key observation



Orthogonal Complements

Definition
Let W be a subspace of Rn. Its orthogonal complement is

W⊥ =
{
v in Rn | v · w = 0 for all w in W

}
read “W perp”.

W⊥ is orthogonal complement
AT is transpose

Pictures:

The orthogonal complement of a line in R2 is the
perpendicular line.

W
W⊥

The orthogonal complement of a line in R3 is the
perpendicular plane.

W⊥ W

The orthogonal complement of a plane in R3 is the
perpendicular line.

W
W⊥



Poll

Let W be a plane in R4. How would you describe W⊥?

A. The zero space {0}.
B. A line in R4.

C. A plane in R4.

D. A 3-dimensional space in R4.

E. All of R4.

Poll



Orthogonal Complements
Basic properties

Facts: Let W be a subspace of Rn.

1. W⊥ is also a subspace of Rn

2. (W⊥)⊥ = W
3. dimW + dimW⊥ = n
4. If W = Span{v1, v2, . . . , vm}, then

W⊥ = all vectors orthogonal to each v1, v2, . . . , vm

=
{
x in Rn | x · vi = 0 for all i = 1, 2, . . . ,m

}
= Nul


— vT

1 —
— vT

2 —...
— vT

m —

 .

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —


Property 4



Orthogonal Complements
Row space, column space, null space

Definition
The row space of an m × n matrix A is the span of the rows of A. It is
denoted RowA. Equivalently, it is the column span of AT :

RowA = ColAT .

It is a subspace of Rn.

We showed before that if A has rows vT
1 , vT

2 , . . . , vT
m , then

Span{v1, v2, . . . , vm}⊥ = NulA.

Hence we have shown: (RowA)⊥ = NulA.

Other Facts:

I (ColA)⊥ = NulAT .

(Replacing A by AT , and remembering RowAT = ColA)

I (NulA)⊥ = RowA and ColA = (NulAT )⊥.

(Using property 2 and taking the orthogonal complements of both sides)



Extra: Reference sheet

Orthogonal Complements of Most of the Subspaces We’ve Seen

For any vectors v1, v2, . . . , vm:

(Span{v1, v2, . . . , vm})⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —


For any matrix A:

RowA = ColAT

thus

(RowA)⊥= NulA RowA = (NulA)⊥

(ColA)⊥ = NulAT ColA = (NulAT )⊥



Extra: Practice proving a set is subspace and some facts

Example

Let’s check W⊥ is a subspace.

I Is 0 in W⊥?

Yes: 0 · w = 0 for any w in W .

I Closed under addition: Suppose x , y are in W⊥. So x · w = 0 and
y · w = 0 for all w in W .

Then (x + y) · w = x · w + y · w = 0 + 0 = 0 for all w in W . So x + y is
also in W⊥.

I Closed under scalar product: Suppose x is in W⊥. So x · w = 0 for all w
in W .

If c is a scalar, then (cx) · w = c(x · 0) = c(0) = 0 for any w in W .

So cx is in W⊥.


