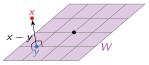
Section 6.2

Orthogonal Sets

Best Approximation

Due to measurement error, the measured x is not actually in the subspace it must lie on (*for theoretical reasons*).



Best approximation: y is the *closest point* to x on W.

Replace x with its orthogonal projection y onto W.

How do you know that y is the closest point?

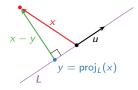
Orthogonal Projection onto a Line

Theorem

Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n , and let x be in \mathbb{R}^n . The closest point to x on L is the point

$$\operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u.$$

This point is called the **orthogonal projection of** \times **onto** L.



Choose term 'ortogonal' because x - y is in L^{\perp} .

Orthogonal Projection onto a Line Example

Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line L spanned by $u = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. $y = \operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u}u$ $\binom{3}{2}$ $-\frac{10}{13}\begin{pmatrix}3\\2\end{pmatrix}$

Orthogonal Sets

Definition

A set of *nonzero* vectors is **orthogonal** if each pair of vectors is orthogonal. Such set is **orthonormal** if, in addition, each vector is a *unit vector*.

Example:
$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
 is an orthogonal set.

Check:

Orthogonal bases

Linearly independent

An orthogonal set of vectors $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$ is linearly independent. Therefore \mathcal{B} forms a basis for $W = \text{Span } \mathcal{B}$.

Theorem

Let $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$ be an orthogonal set, and let x be a vector in $W = \text{Span}\,\mathcal{B}$. Then

$$x = \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$

 An advantage

 For orthogonal bases, is it's easy to compute the B-coordinates of a vector x in W:

 $\left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \dots, \frac{x \cdot u_m}{u_m \cdot u_m}\right).$

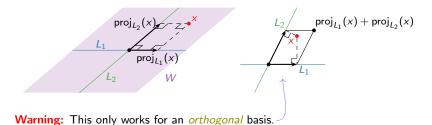
Theorem

Let $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$ be an orthogonal set, and let x be a vector in $W = \text{Span } \mathcal{B}$. Then $proj_{L_2}(u_2)$

$$x = \sum_{i=1}^m \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \underbrace{\frac{x \cdot u_2}{u_2 \cdot u_2}}_{\psi_2 \cdot u_2} u_2 + \cdots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$

If L_i is the line spanned by u_i , then this says

$$x = \operatorname{proj}_{L_1}(x) + \operatorname{proj}_{L_2}(x) + \cdots + \operatorname{proj}_{L_m}(x).$$



Orthogonal Bases Example

х

Problem: Find the \mathcal{B} -coordinates of $x = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, where

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -4 \\ 2 \end{pmatrix} \right\}.$$

Old way:

$$\begin{pmatrix} 1 & -4 & | & 0 \\ 2 & 2 & | & 3 \end{pmatrix}$$
 rref

New way: Exploit that \mathcal{B} is an *orthogonal basis*.

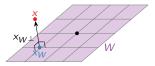
$$= \frac{\mathbf{x} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{x} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

$$\implies [x]_{\mathcal{B}} = \begin{pmatrix} 6/5\\ 6/20 \end{pmatrix}.$$

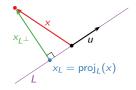
Section 6.3

Orthogonal Projections

Motivation



Example with a line: The closest point to x in L is $proj_L(x) = \frac{x \cdot u}{u \cdot u}u$



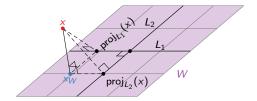
Orthogonal Projections

Definition

Let W be a subspace of \mathbb{R}^n , and let $\{u_1, u_2, \dots, u_m\}$ be an *orthogonal* basis for W. The **orthogonal projection** of a vector x onto W is

$$\operatorname{proj}_{W}(x) \stackrel{\text{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}.$$

The orthogonal projection is formed by adding orthogonal projections onto perpendicular lines.



Best approximation Every vector x can be *decompsed uniquely* as $x = x_W + x_{W^{\perp}}$ where $x_W = y$ is the *closest vector* to x in W, and $x_{W^{\perp}} = x - y$ is in W^{\perp} .

Theorem

Let W be a subspace of \mathbb{R}^n , and let x be a vector in \mathbb{R}^n . Then $\operatorname{proj}_W(x)$ is the closest point to x in W. Therefore

$$x_W = \operatorname{proj}_W(x)$$
 $x_{W^{\perp}} = x - \operatorname{proj}_W(x).$

We can think of orthogonal projection as a transformation:

 $\operatorname{proj}_W \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n \qquad x \mapsto \operatorname{proj}_W(x).$

Theorem

- Let W be a subspace of \mathbf{R}^n .
 - 1. $proj_W$ is a *linear* transformation.
 - 2. For every x in W, we have $\operatorname{proj}_W(x) = x$.
 - 3. For every x in W^{\perp} , we have $\operatorname{proj}_{W}(x) = 0$.
 - 4. The range of proj_W is W.

The following is the property we wanted all along.

Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , and let x be a vector in \mathbb{R}^n . Then $y = \text{proj}_W(x)$ is the closest point in W to x, in the sense that

$$dist(x, y) \le dist(x, y')$$
 for all y' in W .

Poll

Orthogonal Projections

Matrices

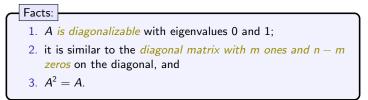
What is the matrix for $\operatorname{proj}_W : \mathbf{R}^3 \to \mathbf{R}^3$, where $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}?$

Answer: Recall how to compute the matrix for a linear transformation:

$$A = \begin{pmatrix} | & | & | \\ \operatorname{proj}_{W}(e_{1}) & \operatorname{proj}_{W}(e_{2}) & \operatorname{proj}_{W}(e_{3}) \\ | & | & | \end{pmatrix}.$$

We compute:

Let A be the matrix for proj_W , where W is an m-dimensional subspace of \mathbb{R}^n .



Example: If W is a plane in \mathbb{R}^3 , then A is similar to projection onto the xy-plane:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

What is the (minimum) distance from e_1 to $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$?

Answer: From e_1 to its closest point on W:

 $\mathsf{dist}(e_1,\mathsf{proj}_W(e_1)) = \|(e_1)_{W^{\perp}}\|.$

