
Announcements
Wednesday, November 29

I Please fill out the CIOS form online.
I It is important for me to get responses from most of the class: I use these

for preparing future iterations of this course.
I If we get an 80% response rate before the final, I’ll drop the two lowest quiz

grades instead of one.

I Office hours: Wednesday 5–6pm, Friday 10:00–12:00pm
I As always, TAs’ office hours are posted on the website.
I Math Lab is also a good place to visit.
I Extra review sessions will be announced later.

I There is no quiz on Friday, but this will be the only opportunity to discuss
chapter 6 in recitation.

I I will post details about the final exam, a practice final by Monday

I WeBWorK assignments 6.1, 6.2, 6.3 are due today.

I WeBWorK assignments 6.4 and 6.5,if posted, are only for practice—the
scores do not count.



Section 6.5

Least Squares Problems



Motivation

The motivating problem of last part of the course:

Suppose that Ax = b does not have a solution. What is
the best possible approximate solution?

Problem

Saying Ax = b has no solution means that b is not in ColA.

I Using b̂ = projCol A(b), then Ax̂ = b̂ is a consistent equation.

I Plus: b̂ is the closest vector to b such that Ax̂ = b̂ is consistent.

A solution x̂ to Ax̂ = b̂ is a least squares solution.

Solution



Least Squares Solutions

Definition
Let A be an m× n matrix. A least squares solution to Ax = b is a vector x̂ in
Rn such that

Ax̂ = b̂ = projCol A(b).

A least squares solution x̂ solves Ax = b as closely as possible.

ColA

Ax

Ax

Ax

Ax̂ = b̂ = projCol A(b)

b

b − Ax̂
Note that b − Ax̂

is in (ColA)⊥.

In distance terms, for all x in Rn:

‖b − Ax̂‖ ≤ ‖b − Ax‖



Least Squares Solutions: Orthogonal case

Theorem
Let A be a m × n matrix with orthogonal columns v1, v2, . . . , vn. The least
squares solution to Ax = b is the vector

x̂ =

(
b · v1

v1 · v1
,

b · v2

v2 · v2
, · · · , b · vn

vn · vn

)
.

This is because we have formulas for the B-coordinates of orthogonal basis:

Ax̂ =
n∑

i=1

b · vi
vi · vi

vi = projCol A(b)

ColA

Ax

Ax

Ax

Ax̂ = b̂ = projCol A(b)

b

b − Ax̂



Least Squares Solutions: General Solution

Theorem
Let A be a m × n matrix. Least squares solutions to Ax = b are any of the
solutions to

(ATA)x̂ = ATb.

Now we can solve the problem without computing b̂ first.

This is just another sysmtem of equations,
but now it is consistent and uses square matrix ATA!

ColA

Ax

Ax

Ax

Ax̂ = b̂ = projCol A(b)

b

b − Ax̂

Note that b − Ax̂
is in (ColA)⊥.

Why is this true?

Recall: (ColA)⊥ = Nul(AT ).

Now, b − Ax̂ is in (ColA)⊥

if and only if

AT (b − Ax̂) = 0.

In other words, ATAx̂ = ATb.



Least Squares Solutions
Example 1

Find the least squares solutions to Ax = b where:

A =

 1 0
1 1
1 2

 b =

6
0
0

 .

First: Compute new matrix and vector

ATA =

(
1 1 1
0 1 2

) 1 0
1 1
1 2

 =

(
3 3
3 5

)

and

ATb =

(
1 1 1
0 1 2

)6
0
0

 =

(
6
0

)
.

Second: Solve the new system; row reduce:(
3 3 6
3 5 0

) (
1 0 5
0 1 −3

)
.

So the unique least squares solution is x̂ =

(
5
−3

)
.



Least Squares Solutions
Example 2

Find the least squares solutions to Ax = b where:

A =

 2 0
−1 1

0 2

 b =

 1
0
−1

 .

First: Compute new matrix and vector

ATA =

(
2 −1 0
0 1 2

) 2 0
−1 1

0 2

 =

(
5 −1
−1 5

)

and

ATb =

(
2 −1 0
0 1 2

) 1
0
−1

 =

(
2
−2

)
.

Second: Solve the new system; row reduce:(
5 −1 2
−1 5 −2

) (
1 0 1/3
0 1 −1/3

)
.

So the unique least squares solution is x̂ =

(
1/3
−1/3

)
.



Least Squares Solutions: Uniqueness

When does Ax = b have a unique least squares solution x̂?

I ATA is always a square matrix, but it need not be invertible.

Theorem
Let A be an m × n matrix. The following are equivalent:

1. ATA is invertible.

2. The columns of A are linearly independent.

3. Ax = b has a unique least squares solution for all b in Rn, which is

(ATA)−1(ATb).

ColA

v1

v2

v3

b̂ = Ax̂

b

I If the columns of A are linearly dependent, then Ax̂ = b̂ has many
solutions.



Extra: More details
From Example 1

Ax̂ =

 1 0
1 1
1 2

( 5
−3

)
=

 5
2
−1

 = b̂

1. The solution x̂ makes the distance
from b to its approximation:

‖b − Ax̂‖ =

∥∥∥∥∥∥
6

0
0

−
 5

2
−1

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 1
−2
1

∥∥∥∥∥∥ =
√

6.

x

y

z

ColA

v1

v2
5v1

−3v2
√

6

b̂ = A

(
5
−3

)

b

2. If ATA is invertible: Let v1, v2 be the columns of A, and B = {v1, v2},
then x̂ =

(
5
−3

)
are the B-coordinates of b̂, in ColA = Span{v1, v2}.



Data modeling: best fit line

Find the best fit line through (0, 6), (1, 0), and (2, 0).

The general equation of a line is

c + dx = y .

So we want to solve:

c + d · 0 = 6

c + d · 1 = 0

c + d · 2 = 0.

In matrix form: 1 0
1 1
1 2

(c
d

)
=

6
0
0

.

We already saw: the least squares solution is(
5
−3

)
. So the best fit line has ĉ = 5 and

d̂ = −3:
y = −3x + 5.

(0, 6)

(1, 0)

(2, 0)

1

−2

1

y
=

−
3x

+
5

A

(
5
−3

)
−

6
0
0

 =

 1
−2
1





Data Modeling: Best fit line

Best fit line minimizes the sum of the squares of the vertical
distances from the data points to the line.

What does it minimize?

(0, 6)

(1, 0)

(2, 0)

1

−2

1

y
=

−
3x

+
5



Data modeling: best fit parabola

What least squares problem Ax = b finds the best parabola through the
points (−1, 0.5), (1,−1), (2,−0.5), (3, 2)?

The general equation for a parabola is

ax2 + bx + c = y .

So we want to solve:

a(−1)2 + b(−1) + c = 0.5

a(1)2 + b(1) + c = −1

a(2)2 + b(2) + c = −0.5

a(3)2 + b(3) + c = 2

In matrix form: 
1 −1 1
1 1 1
4 2 1
9 3 1


a
b
c

 =


0.5
−1
−0.5

2

.

Answer: â = 53
88
, b̂ = 379

440
, ĉ = 82

88
so best fit is: 53x2 − 379

5
x − 82 = 88y



Data modeling: best fit parabola
Picture

(−1, 0.5)

(1,−1)
(2,−0.5)

(3, 2)

88y = 53x2 − 379

5
x − 82



Data modeling: best fit ellipse

Find the best fit ellipse for the points (0, 2), (2, 1), (1,−1), (−1,−2), (−3, 1).

The general equation for an ellipse is

x2 + ay 2 + bxy + cx + dy + e = 0

So we want to solve:

(0)2 + A(2)2 + B(0)(2) + C(0) + D(2) + E = 0

(2)2 + A(1)2 + B(2)(1) + C(2) + D(1) + E = 0

(1)2 + A(−1)2 + B(1)(−1) + C(1) + D(−1) + E = 0

(−1)2 + A(−2)2 + B(−1)(−2) + C(−1) + D(−2) + E = 0

(−3)2 + A(1)2 + B(−3)(1) + C(−3) + D(1) + E = 0

In matrix form: 
4 0 0 2 1
1 2 2 1 1
1 −1 1 −1 1
4 2 −1 −2 1
1 −3 −3 1 1



a
b
c
d
e

 =


0
−4
−1
−1
−9

.



Data modeling: best fit ellipse
Complete procedure

A =


4 0 0 2 1
1 2 2 1 1
1 −1 1 −1 1
4 2 −1 −2 1
1 −3 −3 1 1

 b =


0

−4
−1
−1
−9

 .

ATA =


35 6 −4 1 11

6 18 10 −4 0
−4 10 15 0 −1

1 −4 0 11 1
11 0 −1 1 5

 ATb =


−18

18
19

−10
−15


Row reduce:

35 6 −4 1 11 −18
6 18 10 −4 0 18

−4 10 15 0 −1 19
1 −4 0 11 1 −10

11 0 −1 1 5 −15




1 0 0 0 0 16/7
0 1 0 0 0 −8/7
0 0 1 0 0 15/7
0 0 0 1 0 −6/7
0 0 0 0 1 −52/7


Best fit ellipse:

x2 +
16

7
y 2−8

7
xy +

15

7
x−6

7
y−52

7
= 0

or

7x2 + 16y 2 − 8xy + 15x − 6y − 52 = 0.



Data modeling: best fit ellipse
Picture

(0, 2)

(2, 1)

(1,−1)

(−1,−2)

(−3, 1)

7x2 + 16y 2 − 8xy + 15x − 6y − 52 = 0

Remark: Gauss invented the method of least squares to do exactly this: he
predicted the (elliptical) orbit of the asteroid Ceres as it passed behind the sun
in 1801.



Extra: Best fit linear function

What least squares problem Ax = b finds the best
linear function f (x , y) fitting the following data?

The general equation for a linear function in two
variables is

f (x , y) = ax + by + c.

x y f (x , y)
1 0 0
0 1 1
−1 0 3

0 −1 4

So we want to solve
a(1) + b(0) + c = 0

a(0) + b(1) + c = 1

a(−1) + b(0) + c = 3

a(0) + b(−1) + c = 4

In matrix form: 
1 0 1
0 1 1
−1 0 1

0 −1 1


a
b
c

 =


0
1
3
4

.

Answer: â = − 3
2
, b̂ = − 3

2
, ĉ = 2 so best fit is: f (x , y) = −3

2
x − 3

2
y + 2



Extra: Best fit linear function
Picture

x

y

f (x , y)
Graph of

f (x , y) = −
3

2
x −

3

2
y + 2

f (1, 0)

(1, 0, 0)f (0, 1)

(0, 1, 1)

f (−1, 0)

(−1, 0, 3)

f (0,−1)

(0,−1, 4)


