Announcements
Monday, December 04

» Please fill out the CIOS form
online.

> We got an 80% response rate:
I'll drop the two lowest quiz
grades instead of one.

» Office hours and review sessions:
> As always, TAs' office hours are
posted on the website.
> Math Lab is also a good place
to visit.
> Extra review sessions will be
announced later.

» Exam time and location
> L4 Howey Building (this room)
> Tuesday Dec. 12th,
6:00pm-8:50pm
> If you have time conflict, let me
know asap
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Review from Chapter 6

Selected Topics



Orthogonal Sets

Definition
A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. It
is orthonormal if, in addition, each vector is a unit vector.

1 1 1
Example: By = 11, (-2],1(0 is not orthogonal.
1 1 1
1 1 1
Example: By = 1]1,1-2], 0 is orthogonal but not orthonormal.
1 1 -1
1 1 1 1 1 L
Example: B3=< — (1], —=|-2], —=1| O is orthonormal.
Vv3\y) Ve 4 v2 \
To go from an orthogonal set {u1, Uz, ..., un} to an orthonormal set, replace

each uj with u;/||uil.

Theorem
An orthogonal set is linearly independent. In particular, it is a basis for its span.



Orthogonal Projection

Let W be a subspace of R”, and let B = {u1, w,

..., Un} be an orthogonal
basis for W. The orthogonal projection of a vector x onto W is
f e X - U
. de: Ui
proju (x) = Y

XU
uj - uj
i=1 !

X - U X Um
i+ u + Um.
ui - U1 uz + Up Um - Um
This is the closest vector to x that lies on W. In other words, the difference
x — proj, (x) is perpendicular to W: it is in W=. Notation:

(s = proju (x)

Xyl =X — projW(X).J
So xw isin W, x, L isin W+, and X = xw + XpL-

x — projyy ()

projykx)



Orthogonal Projection

Special cases

Special case: If x is in W, then x = proj,,(x), so

XU XU X Um
u + Uyt " .

1
u - th uz - u2 Um - Um

X =

In other words, the B-coordinates of x are
XU X-U X+ Um
up - oucwe’ T u U )

where B = {u1, ta, ..., um}, an orthogonal basis for W.

Special case: If W = L is a line, then L = Span{u} for some nonzero vector u,
and

. X
proj, (x) = —

X, = proj; (x)



Orthogonal Projection
And matrices
Let W be a subspace of R".

Theorem
The orthogonal projection proj, is a /inear transformation from R” to R". lts
range is W.

If Ais the matrix for proj,,, then A*> = A because projecting twice is the same
as projecting once: proj,, o proj,, = projy,.

Theorem
The only eigenvalues of A are 1 and 0.

Why?

The 1-eigenspace of A is W, and the O-eigenspace is W*.



The Gram—Schmidt Process

The Gram—=Schmidt Process

Let {vi, v,...,Vm} be a basis for a subspace W of R". Define:
1. u =w
2. uy = wv» — proj (v2) - 2y,
S =V — 2 =v— 1
Span{up } -
3. u3 = v3 — proj (v3) vy — 21 ot
. U3 =v3— 5 3 =vs 2
pan{uy,u} - U - U
m—1
_ . o Vm * Uj
m. Um = Vm — prOJSPan{Ulvu%-'-va—l}(Vm) =Vm— Z Ui - U ui
. 1 1
i=1
Then {u1, uz, ..., um} is an orthogonal basis for the same subspace W.

In fact, for each i,
Span{uy, w2, ..., ui} = Span{vi, vo,..., vj}.

Note if v; is in Span{vi, vz, ..., vi—1} = Span{ui, t2, ..., ui_1}, then
Vi = Projspan{usup,...,u_; 3 (Vi) S0 ti = 0. So this also detects linear dependence.



Review: Subspaces

Definition

A subspace of R" is a subset V of R" satisfying:
1. The zero vector is in V. “not empty”
2. If uand v arein V, then u+ v is also in V. “closed under addition”
3. Ifuisin V and cisin R, then cuisin V. “closed under x scalars”

Examples:

> Any Span{vi,v2,..., Vm}.

> The column space of a matrix: Col A = Span{columns of A}.
> The range of a linear transformation (same as above).

> The null space of a matrix: Nul A = {X | Ax = O}.

» The row space of a matrix: Row A = Span{rows of A}.

> The A-eigenspace of a matrix, where A is an eigenvalue.

» The orthogonal complement W™ of a subspace W.

» The zero subspace {0}.

> All of R".



Review: Subspaces and Bases

Definition
Let V be a subspace of R". A basis of V is a set of vectors {vi,vo,...,Vn} in
R" such that:

1. V =Span{vi,va,...,Vm}, and
2. {vi,V2,..., vV} is linearly independent.

The number of vectors in a basis is the dimension of V, and is written dim V.

Every subspace has a basis, so every subspace is a span. But subspaces have
many different bases, and some might be better than others. For instance,
Gram—-Schmidt takes a basis and produces an orthogonal basis. Or,
diagonalization produces a basis of eigenvectors of a matrix.

How do | know if a subset V is a subspace or not?
» Can you write V as one of the examples on the previous slide?

» If not, does it satisfy the three defining properties?

Note on subspaces versus subsets: A subset of R” is any collection of vectors
whatsoever. Like, the unit circle in R?, or all vectors with whole-number
coefficients. A subspace is a subset that satisfies three additional properties.
Most subsets are not subspaces.



Similarity

Definition
Two n X n matrices A and B are similar if there is an invertible n x n matrix P
such that
A= PBP.
Important Facts:
1. Similar matrices have the same characteristic polynomial.
2. It follows that similar matrices have the same eigenvalues.

3. If Ais similar to B and B is similar to C, then A is similar to C.

Caveats:
1. Matrices with the same characteristic polynomial need not be similar.
2. Similarity has nothing to do with row equivalence.

3. Similar matrices usually do not have the same eigenvectors.



Similarity

Geometric meaning

Let A= PBP~1, and let vi, vo, ..., v, be the columns of P. These form a basis
B for R" because P is invertible. Key relation: for any vector x in R",

[Ax]z = B[x]5.
This says:

A acts on the usual coordinates of x
in the same way that
B acts on the B-coordinates of x.

AZ%(? g) B:(g 1(/)2> P:G jl)

Then A = PBP~!. B acts on the usual coordinates by scaling the first
coordinate by 2, and the second by 1/2:

X; 2

X2 X2 /2
The unit coordinate vectors are eigenvectors: e; has eigenvalue 2, and e, has
eigenvalue 1/2.



Similarity

Example

A:%(g 2) B:(g 1‘/)2) P:G _11) [Ax]s = Blxs.

In this case, B={(}), ()} Let vi=(}) and va = (1)).

To compute y = Ax: Say x = (3).
1. Find [x]5. 1. x=wvi+wso[x]g= (1)
2. [yls = B[x]s. 2. yls = B(}) = (152)'
3. Compute y from [y]5. 3. y=2w+ %V2 — (gg)
Picture:
Avi
Vi A //;é\.X
‘/\\Q‘( /\ | L
7 A scales the vi- N
Y ’ coordinate by Ava
2 2, and the v»-
coordinate by %




Review: Consistent and Inconsistent Systems

Definition

A matrix equation Ax = b is consistent if it has a solution, and inconsistent

otherwise.

If A has columns vi,va, ..., vy, then
I | =

b=Ax=|lwv wv - vy : =x1V1 + XoVo + -+ + XpVp.

| AW

So if Ax = b has a solution, then b is a linear combination of vi, v2,..., v,, and

conversely. Equivalently, b is in Span{vi, v2,..., vy} = Col A.

Important
Ax = b is consistent if and only if b is in Col A. ]




Least-Squares Solutions

Suppose that Ax = b is inconsistent. Let b = Projco a(b) be the closest vector
for which AX = b does have a solution.

Definition R

A solution to AX = b is a least squares solution to Ax = b. This is the
solution X for which AX is closest to b (with respect to the usual notion of
distance in R").

Theorem
The least-squares solutions to Ax = b are the solutions to

T pc T
A AXx=A b.
If A has orthogonal columns uy, up, ..., u,, then the least-squares solution is
R X - U X - Up X Um
X = T Ty T Ty T, T
uy-up Uz - U2 Um - Un
because
~ ~ XU X - U X - U
AX:b: u u2+...+7mum.

1
ui - U1 uz - Up Um - Um



