
Announcements
Monday, December 04

I Please fill out the CIOS form
online.

I We got an 80% response rate:
I’ll drop the two lowest quiz
grades instead of one.

I Office hours and review sessions:
I As always, TAs’ office hours are

posted on the website.
I Math Lab is also a good place

to visit.
I Extra review sessions will be

announced later.

I Exam time and location
I L4 Howey Building (this room)
I Tuesday Dec. 12th,

6:00pm-8:50pm
I If you have time conflict, let me

know asap



Review from Chapter 6

Selected Topics



Orthogonal Sets

Definition
A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. It
is orthonormal if, in addition, each vector is a unit vector.

Example: B1 =


1

1
1

 ,

 1
−2
1

 ,

1
0
1

 is not orthogonal.

Example: B2 =


1

1
1

 ,

 1
−2
1

 ,

 1
0
−1

 is orthogonal but not orthonormal.

Example: B3 =

 1√
3

1
1
1

 ,
1√
6

 1
−2
1

 ,
1√
2

 1
0
−1

 is orthonormal.

To go from an orthogonal set {u1, u2, . . . , um} to an orthonormal set, replace
each ui with ui/‖ui‖.

Theorem
An orthogonal set is linearly independent. In particular, it is a basis for its span.



Orthogonal Projection

Let W be a subspace of Rn, and let B = {u1, u2, . . . , um} be an orthogonal
basis for W . The orthogonal projection of a vector x onto W is

projW (x)
def
=

m∑
i=1

x · ui
ui · ui

ui =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 + · · ·+ x · um

um · um
um.

This is the closest vector to x that lies on W . In other words, the difference
x − projW (x) is perpendicular to W : it is in W⊥. Notation:

xW = projW (x) xW⊥ = x − projW (x).

So xW is in W , xW⊥ is in W⊥, and x = xW + xW⊥ .

W
xW⊥ xW

x

W
projW (x)

x

x − projW (x)



Orthogonal Projection
Special cases

Special case: If x is in W , then x = projW (x), so

x =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 + · · ·+ x · um

um · um
um.

In other words, the B-coordinates of x are(
x · u1

u1 · u1
,

x · u2

u1 · u2
, . . . ,

x · um
u1 · um

)
,

where B = {u1, u2, . . . , um}, an orthogonal basis for W .

Special case: If W = L is a line, then L = Span{u} for some nonzero vector u,
and

projL(x) =
x · u
u · u u

L

u

x

xL = projL(x)

xL⊥



Orthogonal Projection
And matrices

Let W be a subspace of Rn.

Theorem
The orthogonal projection projW is a linear transformation from Rn to Rn. Its
range is W .

If A is the matrix for projW , then A2 = A because projecting twice is the same
as projecting once: projW ◦ projW = projW .

Theorem
The only eigenvalues of A are 1 and 0.

Why?

Av = λv =⇒ A2v = A(Av) = A(λv) = λ(Av) = λ2v .

So if λ is an eigenvalue of A, then λ2 is an eigenvalue of A2. But A2 = A, so
λ2 = λ, and hence λ = 0 or 1.

The 1-eigenspace of A is W , and the 0-eigenspace is W⊥.



The Gram–Schmidt Process

The Gram–Schmidt Process
Let {v1, v2, . . . , vm} be a basis for a subspace W of Rn. Define:

1. u1 = v1

2. u2 = v2 − projSpan{u1}(v2) = v2 −
v2 · u1

u1 · u1
u1

3. u3 = v3 − projSpan{u1,u2}(v3) = v3 −
v3 · u1

u1 · u1
u1 −

v3 · u2

u2 · u2
u2

...

m. um = vm − projSpan{u1,u2,...,um−1}(vm) = vm −
m−1∑
i=1

vm · ui
ui · ui

ui

Then {u1, u2, . . . , um} is an orthogonal basis for the same subspace W .

In fact, for each i ,

Span{u1, u2, . . . , ui} = Span{v1, v2, . . . , vi}.

Note if vi is in Span{v1, v2, . . . , vi−1} = Span{u1, u2, . . . , ui−1}, then
vi = projSpan{u1,u2,...,ui−1}(vi ), so ui = 0. So this also detects linear dependence.



Review: Subspaces

Definition
A subspace of Rn is a subset V of Rn satisfying:

1. The zero vector is in V . “not empty”

2. If u and v are in V , then u + v is also in V . “closed under addition”

3. If u is in V and c is in R, then cu is in V . “closed under × scalars”

Examples:

I Any Span{v1, v2, . . . , vm}.
I The column space of a matrix: ColA = Span{columns of A}.
I The range of a linear transformation (same as above).

I The null space of a matrix: NulA =
{
x | Ax = 0

}
.

I The row space of a matrix: RowA = Span{rows of A}.
I The λ-eigenspace of a matrix, where λ is an eigenvalue.

I The orthogonal complement W⊥ of a subspace W .

I The zero subspace {0}.
I All of Rn.



Review: Subspaces and Bases

Definition
Let V be a subspace of Rn. A basis of V is a set of vectors {v1, v2, . . . , vm} in
Rn such that:

1. V = Span{v1, v2, . . . , vm}, and

2. {v1, v2, . . . , vm} is linearly independent.

The number of vectors in a basis is the dimension of V , and is written dimV .

Every subspace has a basis, so every subspace is a span. But subspaces have
many different bases, and some might be better than others. For instance,
Gram–Schmidt takes a basis and produces an orthogonal basis. Or,
diagonalization produces a basis of eigenvectors of a matrix.

How do I know if a subset V is a subspace or not?

I Can you write V as one of the examples on the previous slide?

I If not, does it satisfy the three defining properties?

Note on subspaces versus subsets: A subset of Rn is any collection of vectors
whatsoever. Like, the unit circle in R2, or all vectors with whole-number
coefficients. A subspace is a subset that satisfies three additional properties.
Most subsets are not subspaces.



Similarity

Definition
Two n× n matrices A and B are similar if there is an invertible n× n matrix P
such that

A = PBP−1.

Important Facts:

1. Similar matrices have the same characteristic polynomial.

2. It follows that similar matrices have the same eigenvalues.

3. If A is similar to B and B is similar to C , then A is similar to C .

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.

2. Similarity has nothing to do with row equivalence.

3. Similar matrices usually do not have the same eigenvectors.



Similarity
Geometric meaning

Let A = PBP−1, and let v1, v2, . . . , vn be the columns of P. These form a basis
B for Rn because P is invertible. Key relation: for any vector x in Rn,

[Ax ]B = B[x ]B.

This says:

A acts on the usual coordinates of x
in the same way that

B acts on the B-coordinates of x .

Example:

A =
1

4

(
5 3
3 5

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
.

Then A = PBP−1. B acts on the usual coordinates by scaling the first
coordinate by 2, and the second by 1/2:

B

(
x1

x2

)
=

(
2x1

x2/2

)
.

The unit coordinate vectors are eigenvectors: e1 has eigenvalue 2, and e2 has
eigenvalue 1/2.



Similarity
Example

A =
1

4

(
5 3
3 5

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
[Ax ]B = B[x ]B.

In this case, B =
{(

1
1

)
,
(

1
−1

)}
. Let v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

To compute y = Ax :

1. Find [x ]B.

2. [y ]B = B[x ]B.

3. Compute y from [y ]B.

Say x =
(

2
0

)
.

1. x = v1 + v2 so [x ]B =
(

1
1

)
.

2. [y ]B = B
(

1
1

)
=
(

2
1/2

)
.

3. y = 2v1 + 1
2
v2 =

(
5/2
3/2

)
.

Picture:

v1

v2

x

Av1

Av2

AxA

A scales the v1-
coordinate by
2, and the v2-

coordinate by 1
2

.



Review: Consistent and Inconsistent Systems

Definition
A matrix equation Ax = b is consistent if it has a solution, and inconsistent
otherwise.

If A has columns v1, v2, . . . , vn, then

b = Ax =

 | | |
v1 v2 · · · vm
| | |


x1

...
xn

 = x1v1 + x2v2 + · · ·+ xnvn.

So if Ax = b has a solution, then b is a linear combination of v1, v2, . . . , vn, and
conversely. Equivalently, b is in Span{v1, v2, . . . , vn} = ColA.

Ax = b is consistent if and only if b is in ColA.

Important



Least-Squares Solutions

Suppose that Ax = b is inconsistent. Let b̂ = projCol A(b) be the closest vector

for which Ax̂ = b̂ does have a solution.

Definition
A solution to Ax̂ = b̂ is a least squares solution to Ax = b. This is the
solution x̂ for which Ax̂ is closest to b (with respect to the usual notion of
distance in Rn).

Theorem
The least-squares solutions to Ax = b are the solutions to

ATAx̂ = ATb.

If A has orthogonal columns u1, u2, . . . , un, then the least-squares solution is

x̂ =

(
x · u1

u1 · u1
,

x · u2

u2 · u2
, · · · , x · um

um · um

)
because

Ax̂ = b̂ =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 + · · ·+ x · um

um · um
um.


