Review from Chapter 6

Selected Topics

Orthogonal Sets

Definition

A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. It is orthonormal if, in addition, each vector is a unit vector.

Example: $\mathcal{B}_{1}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ is not orthogonal.
Example: $\mathcal{B}_{2}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$ is orthogonal but not orthonormal.
Example: $\mathcal{B}_{3}=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$ is orthonormal.
To go from an orthogonal set $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ to an orthonormal set, replace each u_{i} with $u_{i} /\left\|u_{i}\right\|$.

Theorem

An orthogonal set is linearly independent. In particular, it is a basis for its span.

Orthogonal Projection

Let W be a subspace of \mathbf{R}^{n}, and let $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal basis for W. The orthogonal projection of a vector x onto W is

$$
\operatorname{proj}_{W}(x) \stackrel{\text { def }}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m} .
$$

This is the closest vector to x that lies on W. In other words, the difference $x-\operatorname{proj}_{W}(x)$ is perpendicular to W : it is in W^{\perp}. Notation:

$$
x_{W}=\operatorname{proj}_{W}(x) \quad x_{W \perp}=x-\operatorname{proj}_{W}(x) .
$$

So x_{W} is in $W, x_{W \perp}$ is in W^{\perp}, and $x=x_{W}+x_{W^{\perp}}$.

Orthogonal Projection

Special cases

Special case: If x is in W, then $x=\operatorname{proj}_{W}(x)$, so

$$
x=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m}
$$

In other words, the \mathcal{B}-coordinates of x are

$$
\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{1} \cdot u_{2}}, \ldots, \frac{x \cdot u_{m}}{u_{1} \cdot u_{m}}\right)
$$

where $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$, an orthogonal basis for W.
Special case: If $W=L$ is a line, then $L=\operatorname{Span}\{u\}$ for some nonzero vector u, and

$$
\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u
$$

Orthogonal Projection

Let W be a subspace of \mathbf{R}^{n}.
Theorem
The orthogonal projection proj_{w} is a linear transformation from \mathbf{R}^{n} to \mathbf{R}^{n}. Its range is W.

If A is the matrix for proj_{W}, then $A^{2}=A$ because projecting twice is the same as projecting once: $\operatorname{proj}_{W} \circ \operatorname{proj}_{W}=\operatorname{proj}_{W}$.

Theorem

The only eigenvalues of A are 1 and 0 .
Why?

$$
A v=\lambda v \Longrightarrow A^{2} v=A(A v)=A(\lambda v)=\lambda(A v)=\lambda^{2} v
$$

So if λ is an eigenvalue of A, then λ^{2} is an eigenvalue of A^{2}. But $A^{2}=A$, so $\lambda^{2}=\lambda$, and hence $\lambda=0$ or 1 .

The 1-eigenspace of A is W, and the 0 -eigenspace is W^{\perp}.

The Gram-Schmidt Process

The Gram-Schmidt Process
Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis for a subspace W of \mathbf{R}^{n}. Define:

1. $u_{1}=v_{1}$
$\begin{array}{ll}\text { 2. } u_{2}=v_{2}-\operatorname{proj}_{\operatorname{Span}\left\{u_{1}\right\}}\left(v_{2}\right) & =v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} \\ \text { 3. } u_{3}=v_{3}-\operatorname{proj}_{\mathrm{Span}\left\{u_{1}, u_{2}\right\}}\left(v_{3}\right) & =v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}\end{array}$
m. $u_{m}=v_{m}-\operatorname{proj}_{\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{m-1}\right\}}\left(v_{m}\right)=v_{m}-\sum_{i=1}^{m-1} \frac{v_{m} \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}$

Then $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is an orthogonal basis for the same subspace W.
In fact, for each i,

$$
\operatorname{Span}\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}
$$

Note if v_{i} is in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}=\operatorname{Span}\left\{u_{1}, u_{2}, \ldots, u_{i-1}\right\}$, then $v_{i}=\operatorname{proj}_{\text {Span }\left\{u_{1}, u_{2}, \ldots, u_{i-1}\right\}}\left(v_{i}\right)$, so $u_{i}=0$. So this also detects linear dependence.

Review: Subspaces

Definition

A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:

1. The zero vector is in V.
2. If u and v are in V, then $u+v$ is also in V.
3. If u is in V and c is in \mathbf{R}, then $c u$ is in V.

$$
\begin{aligned}
& \text { "not empty" } \\
& \text { "closed under addition" } \\
& \text { "closed under } \times \text { scalars" }
\end{aligned}
$$

Examples:

- Any $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.
- The column space of a matrix: $\operatorname{Col} A=\operatorname{Span}\{$ columns of $A\}$.
- The range of a linear transformation (same as above).
- The null space of a matrix: $\operatorname{Nul} A=\{x \mid A x=0\}$.
- The row space of a matrix: Row $A=\operatorname{Span}\{$ rows of $A\}$.
- The λ-eigenspace of a matrix, where λ is an eigenvalue.
- The orthogonal complement W^{\perp} of a subspace W.
- The zero subspace $\{0\}$.
- All of \mathbf{R}^{n}.

Review: Subspaces and Bases

Definition

Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in \mathbf{R}^{n} such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.
Every subspace has a basis, so every subspace is a span. But subspaces have many different bases, and some might be better than others. For instance, Gram-Schmidt takes a basis and produces an orthogonal basis. Or, diagonalization produces a basis of eigenvectors of a matrix.

How do I know if a subset V is a subspace or not?

- Can you write V as one of the examples on the previous slide?
- If not, does it satisfy the three defining properties?

Note on subspaces versus subsets: A subset of \mathbf{R}^{n} is any collection of vectors whatsoever. Like, the unit circle in \mathbf{R}^{2}, or all vectors with whole-number coefficients. A subspace is a subset that satisfies three additional properties. Most subsets are not subspaces.

Similarity

Definition

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that

$$
A=P B P^{-1}
$$

Important Facts:

1. Similar matrices have the same characteristic polynomial.
2. It follows that similar matrices have the same eigenvalues.
3. If A is similar to B and B is similar to C, then A is similar to C.

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.
2. Similarity has nothing to do with row equivalence.
3. Similar matrices usually do not have the same eigenvectors.

Similarity

Let $A=P B P^{-1}$, and let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of P. These form a basis \mathcal{B} for \mathbf{R}^{n} because P is invertible. Key relation: for any vector x in \mathbf{R}^{n},

$$
[A x]_{\mathcal{B}}=B[x]_{\mathcal{B}}
$$

This says:
A acts on the usual coordinates of x in the same way that
B acts on the \mathcal{B}-coordinates of x.

Example:

$$
A=\frac{1}{4}\left(\begin{array}{cc}
5 & 3 \\
3 & 5
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Then $A=P B P^{-1}$. B acts on the usual coordinates by scaling the first coordinate by 2 , and the second by $1 / 2$:

$$
B\binom{x_{1}}{x_{2}}=\binom{2 x_{1}}{x_{2} / 2} .
$$

The unit coordinate vectors are eigenvectors: e_{1} has eigenvalue 2 , and e_{2} has eigenvalue $1 / 2$.

Similarity

Example

$A=\frac{1}{4}\left(\begin{array}{cc}5 & 3 \\ 3 & 5\end{array}\right) \quad B=\left(\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right) \quad P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \quad[A x]_{\mathcal{B}}=B[x]_{\mathcal{B}}$.
In this case, $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$. Let $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$.
To compute $y=A x$:

$$
\begin{aligned}
& \text { Say } x=\binom{2}{0} . \\
& \text { 1. } x=v_{1}+v_{2} \text { so }[x]_{\mathcal{B}}=\binom{1}{1} . \\
& \text { 2. }[y]_{\mathcal{B}}=B\binom{1}{1}=\binom{2}{1 / 2} . \\
& \text { 3. } y=2 v_{1}+\frac{1}{2} v_{2}=\binom{5 / 2}{3 / 2} .
\end{aligned}
$$

2. $[y]_{\mathcal{B}}=B[x]_{\mathcal{B}}$.
3. Compute y from $[y]_{\mathcal{B}}$.

Picture:

Review: Consistent and Inconsistent Systems

Definition

A matrix equation $A x=b$ is consistent if it has a solution, and inconsistent otherwise.

If A has columns $v_{1}, v_{2}, \ldots, v_{n}$, then

$$
b=A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}
$$

So if $A x=b$ has a solution, then b is a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$, and conversely. Equivalently, b is in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=\operatorname{Col} A$.

$$
\begin{aligned}
& \text { Important } \\
& A x=b \text { is consistent if and only if } b \text { is in } \operatorname{Col} A \text {. }
\end{aligned}
$$

Least-Squares Solutions

Suppose that $A x=b$ is inconsistent. Let $\widehat{b}=\operatorname{proj}_{\text {Col } A}(b)$ be the closest vector for which $A \widehat{x}=\widehat{b}$ does have a solution.

Definition

A solution to $A \widehat{x}=\widehat{b}$ is a least squares solution to $A x=b$. This is the solution \widehat{x} for which $A \widehat{x}$ is closest to b (with respect to the usual notion of distance in \mathbf{R}^{n}).

Theorem

The least-squares solutions to $A x=b$ are the solutions to

$$
A^{T} A \widehat{x}=A^{T} b
$$

If A has orthogonal columns $u_{1}, u_{2}, \ldots, u_{n}$, then the least-squares solution is

$$
\widehat{x}=\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \cdots, \frac{x \cdot u_{m}}{u_{m} \cdot u_{m}}\right)
$$

because

$$
A \widehat{x}=\widehat{b}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m} .
$$

