Math 1553 Worksheet: Lines and planes in \mathbb{R}^{n} and §1.1

Solutions

1. Which of the following equations are linear? Justify your answers.
a) $3 x_{1}+\sqrt{x_{2}}=4$
b) $x_{1}=x_{2}-x_{3}+10 x_{4}$.
c) $\pi x+\ln (13) y+z=\sqrt[3]{2}$

Solution.

a) No. The $\sqrt{x_{2}}$ term makes it non-linear.
b) Yes.
c) Yes. The $\sqrt[3]{2}$ term is just a constant. Don't be misled by the appearance of the natural logarithm: $\ln (13)$ is just the coefficient for y.

If the second term had been $\ln (13 y)$ instead of $\ln (13) y$, then y would have been inside the logarithm and the equation would have been non-linear.
2. Find all values of h so that the lines $x+h y=-5$ and $2 x-8 y=6$ do not intersect.

Solution.

We can use standard algebra, row operations, or geometric intuition.
Using standard algebra: Let's see what happens when the lines do intersect. In that case, there is a point (x, y) where

$$
\begin{aligned}
& x+h y=-5 \\
& 2 x-8 y=6
\end{aligned}
$$

Subtracting twice the first equation from the second equation gives us

$$
\begin{gathered}
x+h y=-5 \\
0+(-8-2 h) y=16
\end{gathered}
$$

If $-8-2 h=0$ (so $h=-4$), then the second line is $0 \cdot y=16$, which is impossible. In other words, if $h=-4$ then we cannot find a solution to the system of two equations, so the two lines do not intersect.

On the other hand, if $h \neq-4$, then we can solve for y above:

$$
(-8-2 h) y=16 \quad y=\frac{16}{-8-2 h} \quad y=\frac{8}{-4-h}
$$

We can now substitute this value of y into the first equation to find x :

$$
x+h y=-5 \quad x+h \cdot \frac{8}{-4-h}=-5 \quad x=-5-\frac{8 h}{-4-h} .
$$

Therefore, the lines fail to intersect if and only if $h=-4$.

Using row operations: Like the previous technique, let's see what happens if the lines intersect. We put the equations into augmented matrix form and use row operations.

$$
\left[\begin{array}{cc|c}
1 & h & -5 \\
2 & -8 & 6
\end{array}\right] \xrightarrow{R_{2}=R_{2}-2 R_{1}}\left[\begin{array}{cc|c}
1 & h & -5 \\
0 & -8-2 h & 16
\end{array}\right] .
$$

If $-8-2 h=0$ (so $h=-4$), then the second equation is $0=16$, so our system has no solutions. In other words, the lines do not intersect.

If $h \neq-4$, then the second equation is $(-8-2 h) y=16$, so $y=\frac{16}{-8-2 h}=\frac{8}{-4-h}$, and $x=-5-h y=-5-\frac{8 h}{-4-h}$, so the lines intersect at $\left(-5-\frac{8 h}{-4-h}, \frac{8}{-4-h}\right)$. Therefore, our answer is $h=-4$.

Using intuition from geometry in \mathbb{R}^{2} : Two non-identical lines in \mathbb{R}^{2} intersect if and only if they are not parallel. The second line is $y=\frac{1}{4} x-\frac{3}{4}$, so its slope is $\frac{1}{4}$. If $h \neq 0$, then the first line is $y=-\frac{1}{h} x-\frac{5}{h}$, so the lines are parallel when $-\frac{1}{h}=\frac{1}{4}$, which means $h=-4$. You can check that when $h=-4$ the lines aren't identical. (And if $h=0$ then the first line is vertical so it isn't parallel to the second).
3. Consider the following three planes in \mathbb{R}^{3} :

$$
\begin{gathered}
2 x+4 y+4 z=1 \\
2 x+5 y+2 z=-1 \\
y+3 z=8 .
\end{gathered}
$$

Do all three of the planes intersect? If so, do they intersect at a single point, a line, or a plane?

Solution.

We can isolate z in the third equation using algebra, but it is probably best to do using an augmented matrix and elementary row operations.

$$
\left[\begin{array}{ccc|c}
2 & 4 & 4 & 1 \\
2 & 5 & 2 & -1 \\
0 & 1 & 3 & 8
\end{array}\right] \xrightarrow{R_{2}=R_{2}-R_{1}}\left[\begin{array}{ccc|c}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 1 & 3 & 8
\end{array}\right] \xrightarrow{R_{3}=R_{3}-R_{2}}\left[\begin{array}{ccc|c}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 0 & 5 & 10
\end{array}\right] .
$$

The last line is $5 z=10$, so $z=2$. Since we don't have much practice with rowreduction, we will use substitution to finish.

The second equation is $y-2 z=-2$, so $y-2(2)=-2$, thus $y=2$.
The first equation is $2 x+4(2)+4(2)=1$, so $2 x=-15$, thus $x=-\frac{15}{2}$.
We have found that the planes intersect at the point $\left(-\frac{15}{2}, 2,2\right)$.
4. For each of the following, answer true or false. Justify your answer.
a) Every system of linear equations has at least one solution.
b) There is a system of linear equations that has exactly 5 solutions.
c) If a, b, and c are real numbers, then the equation $a x+b y=c$ in \mathbb{R}^{3} describes a line.

Solution.

a) False. Some examples from class and this worksheet have no solutions.
b) False. There are only three possibilities: no solutions, exactly one solution, or infinitely many solutions.
c) False. For example, in \mathbb{R}^{3}, the equation $x+y=1$ describes a vertical plane. We could right the plane in parametric form as $(t, 1-t, z)$ where t and z vary among all real numbers.

5. The picture below represents the temperatures at four interior nodes of a mesh.

Let T_{1}, \ldots, T_{4} be the temperatures at nodes 1 through 4 . Suppose that the temperature at each node is the average of the four nearest nodes. For example,

$$
T_{1}=\frac{10+20+T_{2}+T_{4}}{4}
$$

Write a system of four linear equations whose solution would give the temperatures T_{1}, \ldots, T_{4}. Next, write an augmented matrix that represents that system of equations.

Solution.

The first equation was given. The others are:

$$
\begin{array}{llll}
T_{2}=\left(T_{1}+20+40+T_{3}\right) / 4, & \text { or } & 4 T_{2}-T_{1}-T_{3}=60 \\
T_{3}=\left(T_{4}+T_{2}+40+30\right) / 4, & \text { or } & 4 T_{3}-T_{4}-T_{2}=70 \\
T_{4}=\left(10+T_{1}+T_{3}+30\right) / 4, & \text { or } & 4 T_{4}-T_{1}-T_{3}=40
\end{array}
$$

To put this in matrix form, we need to put everything in order.

$$
\begin{aligned}
4 T_{1}-T_{2} & -T_{4} \\
-T_{1}+4 T_{2}-T_{3} & =60 \\
-T_{2}+4 T_{3}-T_{4} & =70 \\
-T_{1} & -T_{3}+4 T_{4}
\end{aligned}=40
$$

This gives the augmented matrix

$$
\left[\begin{array}{rrrrr}
4 & -1 & 0 & -1 & 30 \\
-1 & 4 & -1 & 0 & 60 \\
0 & -1 & 4 & -1 & 70 \\
-1 & 0 & -1 & 4 & 40
\end{array}\right]
$$

