Math 1553 Worksheet §2.1, 2.2, 2.3 Solutions

- **1.** If *A* is a 3×5 matrix and *B* is a 3×2 matrix, which of the following are defined?
 - **a)** *A*−*B*
 - **b)** *AB*
 - c) $A^T B$
 - **d)** $B^T A$
 - **e)** *A*²

Solution.

Only (c) and (d).

A-B is nonsense. In order for A-B to be defined, A and B need to have the same number of rows and same number of columns as each other.

AB is undefined since the number of columns of *A* does not equal the number of rows of *B*.

 A^{T} is 5 × 3 and *B* is 3 × 2, so $A^{T}B$ is a 5 × 2 matrix. B^{T} is 2 × 3 and *A* is 3 × 5, so $B^{T}A$ is a 2 × 5 matrix. A^{2} is nonsense (can't do 3 × 5 times 3 × 5).

2. Find all matrices *B* that satisfy

$$\begin{pmatrix} 1 & -3 \\ -3 & 5 \end{pmatrix} B = \begin{pmatrix} -3 & -11 \\ 1 & 17 \end{pmatrix}.$$

Solution.

B must have two rows and two columns for the above to compute, so $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We calculate

$$\begin{pmatrix} 1 & -3 \\ -3 & 5 \end{pmatrix} B = \begin{bmatrix} a-3c & b-3d \\ -3a+5c & -3b+5d \end{bmatrix}.$$

Setting this equal to $\begin{pmatrix} -3 & -11 \\ 1 & 17 \end{pmatrix}$ gives us
 $a-3c = -3,$
 $-3a+5c = 1,$
(solving gives us $a = 3, c = 2$)
 $b-3d = -11,$
 $-3b+5d = 17.$
(solving gives us $b = 1, d = 4$).

Therefore, $B = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$.

- **3.** a) If the columns of an $n \times n$ matrix *Z* are linearly independent, is *Z* necessarily invertible? Justify your answer.
 - **b)** Solve AB = BC for A, assuming A, B, C are $n \times n$ matrices and B is invertible. Be careful!

Solution.

a) Yes. The transformation $x \to Zx$ is one-to-one since the columns of Z are linearly independent. Thus Z has a pivot in all *n* columns, so Z has *n* pivots. Since Z also has *n* rows, this means that Z has a pivot in every row, so $x \to Zx$ is onto. Therefore, Z is invertible.

Alternatively, since Z is an $n \times n$ matrix whose columns are linearly independent, the Invertible Matrix Theorem (2.3) in 2.3 says that Z is invertible.

b)

AB = BC $AB(B^{-1}) = BC(B^{-1})$ $AI_n = BCB^{-1}$ $A = BCB^{-1}$

It is very important that we multiplied by B^{-1} on the same side in each equation, since matrix multiplication generally is not commutative.

- **4.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* is an $m \times n$ matrix and *B* is an $n \times p$ matrix, then each column of *AB* is a linear combination of the columns of *A*.
 - **b)** If *A* and *B* are $n \times n$ and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
 - c) If A^T is not invertible, then A is not invertible.
 - **d)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - e) If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.
 - **f)** If *A* and *B* are $n \times n$ matrices and ABx = 0 has a unique solution, then Ax = 0 has a unique solution.

Solution.

- **a)** True. If we let v_1, \ldots, v_p be the columns of *B*, then $AB = (Av_1 \ Av_2 \ \ldots \ Av_p)$, where Av_i is in the column span of *A* for every *i* (this is part of the definition of matrix multiplication of vectors).
- **b)** False. $(AB)^{-1} = B^{-1}A^{-1}$.
- **c)** True. If there is a matrix A so that A^T is not invertible but A is invertible, then from our notes in 2.2 it would follow that A^T is invertible in the first place!

Alternatively, this problem could be quoted as part of the Invertible Matrix Theorem in 2.3.

- d) True. The first part says $x \to Ax$ is onto. Since *A* is $n \times n$, this is the same as saying *A* is invertible, so $x \to Ax$ is one-to-one and onto. Therefore, the equation Ax = b has exactly one solution for each *b* in \mathbb{R}^n .
- e) False. A + B might not be invertible in the first place. For example, if $A = I_2$ and $B = -I_2$ then A + B = 0 which is not invertible. Even in the case when A + B is invertible, it still might not be true that $(A + B)^{-1} = A^{-1} + B^{-1}$. For example, $(I_2 + I_2)^{-1} = (2I_2)^{-1} = \frac{1}{2}I_2$, whereas $(I_2)^{-1} + (I_2)^{-1} = I_2 + I_2 = 2I_2$.
- **f)** True. Since *AB* is an $n \times n$ matrix and ABx = 0 has a unique solution, the Invertible Matrix Theorem says that *AB* is invertible. Note *A* is invertible and its inverse is $B(AB)^{-1}$, since these are square matrices and

$$A(B(AB)^{-1}) = AB(AB)^{-1} = I_n.$$

Since A is invertible, Ax = 0 has a unique solution by the Invertible Matrix Theorem.

5. Suppose *A* is an invertible 3×3 matrix and

$$A^{-1}e_1 = \begin{pmatrix} 4\\1\\0 \end{pmatrix}, \quad A^{-1}e_2 = \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \quad A^{-1}e_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Find A.

Solution.

The columns of A^{-1} are

$$(A^{-1}e_1 \ A^{-1}e_2 \ A^{-1}e_3),$$
 so $A^{-1} = \begin{pmatrix} 4 & 3 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

To get *A*, we just find $(A^{-1})^{-1}$. Row-reducing $(A^{-1} | I)$ eventually gives us

$$\begin{pmatrix} 1 & 0 & 0 & | & \frac{2}{5} & -\frac{3}{5} & 0 \\ 0 & 1 & 0 & | & -\frac{1}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}, \text{ so } A = \begin{pmatrix} \frac{2}{5} & -\frac{3}{5} & 0 \\ -\frac{1}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$