Math 1553 Worksheet §2.1, 2.2, 2.3

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
a) $A-B$
b) $A B$
c) $A^{T} B$
d) $B^{T} A$
e) A^{2}
2. Find all matrices B that satisfy

$$
\left(\begin{array}{cc}
1 & -3 \\
-3 & 5
\end{array}\right) B=\left(\begin{array}{cc}
-3 & -11 \\
1 & 17
\end{array}\right)
$$

3. a) If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
b) Solve $A B=B C$ for A, assuming A, B, C are $n \times n$ matrices and B is invertible. Be careful!
4. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then each column of $A B$ is a linear combination of the columns of A.
b) If A and B are $n \times n$ and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
c) If A^{T} is not invertible, then A is not invertible.
d) If A is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}, then the solution is unique for each b in \mathbf{R}^{n}.
e) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible and $(A+B)^{-1}=$ $A^{-1}+B^{-1}$.
f) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, then $A x=0$ has a unique solution.
5. Suppose A is an invertible 3×3 matrix and

$$
A^{-1} e_{1}=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right), \quad A^{-1} e_{2}=\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right), \quad A^{-1} e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Find A.

