Math 1553 Worksheet §2.8, 2.9

1. Find bases for the column space and the null space of

$$A = \begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix}.$$

Solution.

We can row reduce to find that the RREF of $(A \mid 0)$ is

$$\begin{pmatrix} 1 & 0 & 5 & -6 & 1 & 0 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

so x_3, x_4, x_5 are free, and

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -5x_3 + 6x_4 - x_5 \\ 3x_3 - x_4 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = x_3 \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Therefore, a basis for Nul A is $\left\{ \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$

To find a basis for Col *A*, we use the pivot columns as they were written in the *original* matrix *A*, *not its RREF*. These are the first two columns:

$$\left\{ \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-2 \end{pmatrix} \right\}.$$

2. Consider the following vectors in \mathbf{R}^3 :

$$b_1 = \begin{pmatrix} 2\\2\\2 \end{pmatrix} \qquad b_2 = \begin{pmatrix} 1\\4\\3 \end{pmatrix} \qquad u = \begin{pmatrix} 1\\10\\7 \end{pmatrix}$$

Let $V = \text{Span}\{b_1, b_2\}$.

- **a)** Explain why $\mathcal{B} = \{b_1, b_2\}$ is a basis for *V*.
- **b)** Determine if *u* is in *V*.
- **c)** Find a vector b_3 such that $\{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 .

Solution.

- a) A quick check shows that b_1 and b_2 are linearly independent (verify!), and we already know they span *V*, so $\{b_1, b_2\}$ is a basis for *V*.
- **b)** *u* is in *V* if and only if $c_1b_1 + c_2b_2 = u$ for some c_1 and c_2 (in which case $[u]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ looking ahead to problem 5(b)). We form the augmented matrix $\begin{pmatrix} b_1 & b_2 \mid u \end{pmatrix}$ and see if the system is consistent.

$$\begin{pmatrix} 2 & 1 & | & 1 \\ 2 & 4 & | & 10 \\ 2 & 3 & | & 7 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 & | & 1 \\ 0 & 3 & | & 9 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_3 = R_3 - \frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & | & 1 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 0 \end{pmatrix}$$

The right column is not a pivot column, so the system is consistent, therefore u is in Span{ b_1, b_2 }.

c) By the increasing span criterion, if we choose b_3 which is not in Span $\{b_1, b_2\}$, then Span $\{b_1, b_2, b_3\}$ will be strictly larger than the 2-plane *V*, so it will be a 3-plane within \mathbb{R}^3 . In other words, the span will be all of \mathbb{R}^3 .

We could choose
$$b_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, since $\begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$ is inconsistent below.
$$\begin{pmatrix} 2 & 1 & | & 1 \\ 2 & 4 & | & 0 \\ 2 & 3 & | & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 & | & 0 \\ 0 & 3 & | & -1 \\ 0 & 2 & | & -1 \end{pmatrix} \xrightarrow{R_3 = R_3 - \frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & | & 1 \\ 0 & 3 & | & -1 \\ 0 & 0 & | & -1/3 \end{pmatrix}.$$

- **3.** For (a) and (b), answer "yes" if the statement is always true, "no" if it is always false, and "maybe" otherwise.
 - a) If A is an $n \times n$ matrix and Col $A = \mathbf{R}^n$, then Ax = 0 has a nontrivial solution.
 - **b)** If *A* is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the columns of *A* form a basis for \mathbb{R}^m .
 - c) Give an example of 2 × 2 matrix whose column space is the same as its null space.

Solution.

- a) No. Since $Col(A) = \mathbb{R}^n$, the linear transformation T(x) = Ax from \mathbb{R}^n to \mathbb{R}^n is onto, hence *T* is one-to-one, so Ax = 0 has only the trivial solution.
- **b)** Maybe. If Ax = 0 has only the trivial solution and m = n, then A is invertible, so the columns of A are linearly independent and span \mathbb{R}^m .

so the columns of *A* are integring independent and c_r . If m > n then the statement is false. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ has only the trivial solution for Ax = 0, but its columns form only a 2-plane within \mathbb{R}^3 .

c) Take
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Its null space and column space are Span $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.

4. In each case, determine whether the given set is a subspace of \mathbb{R}^4 . If it is a subspace, justify why. If it is not a subspace, state a subspace property that it fails.

a)
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x + y = 0 \text{ and } z + w = 0 \right\}$$

b) $W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid xy - zw = 0 \right\}$

Solution.

a) The null space of a 2×4 matrix is automatically a subspace of \mathbb{R}^4 , and V is equal to the null space of the matrix below, so V is a subspace of \mathbb{R}^4 :

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Alternatively, we can verify the subspace properties:

(1) The zero vector is in *V*, since 0 + 0 = 0 and 0 + 0 = 0.

(2) If
$$u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$$
 and $v = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}$ are in V. Compute $u + v = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \\ w_1 + w_2 \end{pmatrix}$.
Are $(x_1 + x_2) + (y_1 + y_2) = 0$ and $(z_1 + z_2) + (w_1 + w_2) = 0$? Yes.
 $(x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) = 0 + 0 = 0$,
 $(z_1 + z_2) + (w_1 + w_2) = (z_1 + w_1) + (z_2 + w_2) = 0 + 0 = 0$.
(3) If $u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$ is in V then so is cu for any scalar:
 $cx_1 + cy_1 = c(x_1 + y_1) = c(0) = 0$, $cz_1 + cw_1 = c(z_1 + w_1) = c(0) = 0$.
An alternative justification:

An alternative justification:

b) Not a subspace. Note
$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 and $v = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ are in *W*, but $u + v$ is not in *W*.

$$u + v = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, $1 \cdot 1 - 0 \cdot 0 = 1 \neq 0$. (*W* is not closed under addition)

- 5. This problem covers section 2.9. Parts (a), (b), and (c) are unrelated to each other.
 a) True or false: If *A* is a 3 × 100 matrix of rank 2, then dim(Nul*A*) = 97.
 - **b)** For *u* and \mathcal{B} from problem 2, find $[u]_{\mathcal{B}}$ (the \mathcal{B} -coordinates of *u*).

c) Let
$$\mathcal{D} = \left\{ \begin{pmatrix} -2\\1 \end{pmatrix}, \begin{pmatrix} 3\\1 \end{pmatrix} \right\}$$
, and suppose $[x]_{\mathcal{D}} = \begin{pmatrix} -1\\3 \end{pmatrix}$. Find x.

Solution.

- a) No. By the Rank Theorem, rank(A) + dim(NulA) = 100, so dim(NulA) = 98.
- **b)** *u* is in *V* if and only if $c_1b_1 + c_2b_2 = u$ for some c_1 and c_2 , in which case $[u]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$. We form the augmented matrix $\begin{pmatrix} b_1 & b_2 \mid u \end{pmatrix}$ and solve:

$$\begin{pmatrix} 2 & 1 & | & 1 \\ 2 & 4 & | & 10 \\ 2 & 3 & | & 7 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 & | & 1 \\ 0 & 3 & | & 9 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_3 = R_3 - \frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & | & 1 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{R_1 = R_1 - R_2} \begin{pmatrix} 1 & 0 & | & -1 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 0 \end{pmatrix}.$$

We found $c_1 = -1$ and $c_2 = 3$. This means $-b_1 + 3b_2 = u$, so $[u]_{\mathcal{B}} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

c) From
$$[x]_{\mathcal{D}} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
, we have
 $x = -d_1 + 3d_2 = -\begin{pmatrix} -2 \\ 1 \end{pmatrix} + 3\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 9 \\ 3 \end{pmatrix} = \begin{pmatrix} 11 \\ 2 \end{pmatrix}$.