Math 1553 Worksheet, Chapter 3

1. Let $A=\left(\begin{array}{rrrr}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6\end{array}\right)$.
a) Compute $\operatorname{det}(A)$ using row reduction.
b) Compute $\operatorname{det}\left(A^{-1}\right)$ without doing any more work.
c) Compute $\operatorname{det}\left(\left(A^{T}\right)^{5}\right)$ without doing any more work.

Solution.

a) Below, r counts the row swaps and s measures the scaling factors.

$$
\begin{gathered}
\left(\begin{array}{rrrr}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right) \xrightarrow{R_{1}=\frac{R_{1}}{2}}\left(\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right)\left(r=0, s=\frac{1}{2}\right) \\
\underset{R_{3}=R_{3}+3 R_{1}, R_{4}=R_{4}-R_{1}}{R_{2}=R_{2}-3 R_{1}}\left(\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & -3 & 2
\end{array}\right)\left(r=0, s=\frac{1}{2}\right) \\
\\
\xrightarrow{R_{3}=R_{3}+4 R_{2}}\left(\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & -3 & 2
\end{array}\right)\left(r=0, s=\frac{1}{2}\right) \\
\\
\operatorname{det}(A)=(-1)^{0} \frac{1 \cdot 3 \cdot(-6) \cdot 1}{1 / 2}=-36 .
\end{gathered}
$$

b) From our notes, we know $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=-\frac{1}{36}$.
c) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)=-36$. By the multiplicative property of determinants, if B is any $n \times n$ matrix, then $\operatorname{det}\left(B^{n}\right)=(\operatorname{det} B)^{n}$, so

$$
\operatorname{det}\left(\left(A^{T}\right)^{5}\right)=\left(\operatorname{det} A^{T}\right)^{5}=(-36)^{5}=-60,466,176
$$

2. Compute the determinant of

$$
A=\left(\begin{array}{cccc}
4 & 0 & 0 & 5 \\
1 & 7 & 2 & -5 \\
3 & 0 & 0 & 0 \\
8 & 3 & 1 & 7
\end{array}\right)
$$

using cofactor expansions. Expand along the rows or columns that require the least amount of work.

Solution.

The expand along the third row because it only has one nonzero entry.
$\operatorname{det}(A)=3(-1)^{3+1} \cdot \operatorname{det}\left(\begin{array}{ccc}0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7\end{array}\right)=3 \cdot 5(-1)^{1+3} \operatorname{det}\left(\begin{array}{ll}7 & 2 \\ 3 & 1\end{array}\right)=3(5)(1)(7-6)=15$.
(In the second step, we used the cofactor expansion along the first row since it had only one nonzero entry)
3. If A is a 3×3 matrix and $\operatorname{det}(A)=1$, what is $\operatorname{det}(2 A)$?

Solution.

By determinant properties, scaling one row by c multiplies the determinant by c. When we take $c A$ for an $n \times n$ matrix A, we are multiplying each row by c. This multiplies the determinant by c a total of n times.

Thus, if A is $n \times n$, then $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$. Here $n=3$, so

$$
\operatorname{det}(2 A)=2^{3} \operatorname{det}(A)=8 \operatorname{det}(A)=8
$$

Supplemental Problems

For those who want additional practice problems after completing the worksheet, here are some extra practice problems.

1. Let A be an $n \times n$ matrix.
a) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has adjacent identical columns.

Solution.

a) If A has zeros for all entries in row i (so $a_{i 1}=a_{i 2}=\cdots=a_{i n}=0$), then the cofactor expansion along row i is
$\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}=0 \cdot C_{i 1}+0 \cdot C_{i 2}+\cdots+0 \cdot C_{i n}=0$.
Similarly, if A has zeros for all entries in column j, then the cofactor expansion along column j is the sum of a bunch of zeros and is thus 0 .
b) If A has identical adjacent columns, then the cofactor expansions will be identical except that one expansion's terms for $\operatorname{det}(A)$ will have plus signs where the other expansion's terms for $\operatorname{det}(A)$ have minus signs (due to the $(-1)^{\text {power }}$ factors) and vice versa.

Therefore, $\operatorname{det}(A)=-\operatorname{det}(A)$, so $\operatorname{det} A=0$.
2. Find the volume of the parallelepiped naturally formed by $\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$.

Solution.

We compute

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 3 \\
-2 & 1 & 1
\end{array}\right) & =2 \operatorname{det}\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)-1 \operatorname{det}\left(\begin{array}{cc}
1 & 3 \\
-2 & 1
\end{array}\right)+1 \operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right) \\
& =2(2-3)-1(1+6)+1(1+4) \\
& =-2-7+5=-4
\end{aligned}
$$

The volume is $|-4|=4$.
3. Is there a 3×3 matrix A with only real entries, such that $A^{4}=-I$? Either write such an A, or show that no such A exists.

Solution.

No. If $A^{4}=-I$ then

$$
[\operatorname{det}(A)]^{4}=\operatorname{det}\left(A^{4}\right)=\operatorname{det}(-I)=(-1)^{3}=-1
$$

In other words, if $A^{4}=-I$ then $[\operatorname{det}(A)]^{4}=-1$, which is impossible since $\operatorname{det}(A)$ is a real number.

Similarly, $A^{4}=-I$ is impossible if A is $5 \times 5,7 \times 7$, etc.
Note that if A is 2×2, then it is possible to get $A^{4}=-I$. Just take A to be the matrix of counterclockwise rotation by $\frac{\pi}{4}$ radians.
4. Find the inverse of

$$
A=\left(\begin{array}{lll}
4 & 1 & 4 \\
3 & 0 & 2 \\
0 & 5 & 0
\end{array}\right)
$$

using the formula

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right)
$$

Solution.

We can compute $\operatorname{det}(A)=20$.

$$
\begin{array}{lll}
C_{11}=(-1)^{2} \operatorname{det}\left(\begin{array}{ll}
0 & 2 \\
5 & 0
\end{array}\right)=-10 & C_{21}=(-1)^{3} \operatorname{det}\left(\begin{array}{ll}
1 & 4 \\
5 & 0
\end{array}\right)=20 & C_{31}=(-1)^{4} \operatorname{det}\left(\begin{array}{ll}
1 & 4 \\
0 & 2
\end{array}\right)=2 . \\
C_{12}=(-1)^{3} \operatorname{det}\left(\begin{array}{ll}
3 & 2 \\
0 & 0
\end{array}\right)=0 & C_{22}=(-1)^{4} \operatorname{det}\left(\begin{array}{ll}
4 & 4 \\
0 & 0
\end{array}\right)=0 & C_{32}=(-1)^{5} \operatorname{det}\left(\begin{array}{ll}
4 & 4 \\
3 & 2
\end{array}\right)=4 . \\
C_{13}=(-1)^{4} \operatorname{det}\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right)=15 & C_{23}=(-1)^{5} \operatorname{det}\left(\begin{array}{ll}
4 & 1 \\
0 & 5
\end{array}\right)=-20 & C_{33}=(-1)^{6} \operatorname{det}\left(\begin{array}{ll}
4 & 1 \\
3 & 0
\end{array}\right)=-3 .
\end{array}
$$

Therefore,

$$
A^{-1}=\frac{1}{20}\left(\begin{array}{ccc}
-10 & 20 & 2 \\
0 & 0 & 4 \\
15 & -20 & -3
\end{array}\right)=\left(\begin{array}{ccc}
-\frac{1}{2} & 1 & \frac{1}{10} \\
0 & 0 & \frac{1}{5} \\
\frac{3}{4} & -1 & -\frac{3}{20}
\end{array}\right)
$$

