Math 1553 Worksheet §5.3, 5.5

1. Answer yes / no / maybe. In each case, A is a matrix whose entries are real.
a) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2 -dimensional.
b) If A is an invertible 2×2 matrix, then A is diagonalizable.
c) Can a 3×3 matrix A have a non-real complex eigenvalue with multiplicity 2 ?
d) Can a 3×3 matrix A have eigenvalues 3,5 , and $2+i$?

Solution.

a) Maybe. The geometric multiplicity of $\lambda=5$ can be 1 or 2 . For example, the matrix $\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5- eigenspace which is 2-dimensional, whereas the matrix $\left(\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5-eigenspace which is 1-dimensional. Both matrices have characteristic polynomial $-\lambda(\lambda-5)^{2}$.
b) Maybe. The identity matrix is invertible and diagonalizable, but the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is invertible but not diagonalizable.
c) No. If c is a (non-real) complex eigenvalue with multiplicity 2 , then its conjugate \bar{c} is an eigenvalue with multiplicity 2 since complex eigenvalues always occur in conjugate pairs. This would mean A has a characteristic polynomial of degree 4 or more, which is impossible for a 3×3 matrix.
d) No. If $2+i$ is an eigenvalue then so is its conjugate $2-i$.
2. Let $A=\left(\begin{array}{rrr}8 & 36 & 62 \\ -6 & -34 & -62 \\ 3 & 18 & 33\end{array}\right)$.

The characteristic polynomial for A is $-\lambda^{3}+7 \lambda^{2}-16 \lambda+12$, and $\lambda-3$ is a factor. Decide if A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Solution.

By polynomial division,

$$
\frac{-\lambda^{3}+7 \lambda^{2}-16 \lambda+12}{\lambda-3}=-\lambda^{2}+4 \lambda-4=-(\lambda-2)^{2}
$$

Thus, the characteristic poly factors as $-(\lambda-3)(\lambda-2)^{2}$, so the eigenalues are $\lambda_{1}=3$ and $\lambda_{2}=2$.

For $\lambda_{1}=3$, we row-reduce $A-3 I$:

$$
\begin{gathered}
\left(\begin{array}{ccc}
5 & 36 & 62 \\
-6 & -37 & -62 \\
3 & 18 & 30
\end{array}\right) \xrightarrow[\left(\text { New } R_{1}\right) / 3]{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
-6 & -37 & -62 \\
5 & 36 & 62
\end{array}\right) \xrightarrow[R_{3}=R_{3}-5 R_{1}]{R_{2}=R_{2}+6 R_{1}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
0 & -1 & -2 \\
0 & 6 & 12
\end{array}\right) \\
\\
\underset{\text { then } R_{2}=-R_{2}}{R_{3}=R_{3}+6 R_{2}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}=R_{1}-6 R_{2}}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Therefore, the solutions to $(A-3 I \mid 0)$ are $x_{1}=2 x_{3}, x_{2}=-2 x_{3}, x_{3}=x_{3}$.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right) . \quad \text { The 3-eigenspace has basis }\left\{\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)\right\}
$$

For $\lambda_{2}=2$, we row-reduce $A-2 I$:

$$
\left(\begin{array}{ccc}
6 & 36 & 62 \\
-6 & -36 & -62 \\
3 & 18 & 31
\end{array}\right) \quad \text { rref } \quad\left(\begin{array}{ccc}
1 & 6 & \frac{31}{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The solutions to $\left(\begin{array}{ll}A-2 I & 0\end{array}\right)$ are $x_{1}=-6 x_{2}-\frac{31}{3} x_{3}, x_{2}=x_{2}, x_{3}=x_{3}$.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-6 x_{2}-\frac{31}{3} x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-6 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-\frac{31}{3} \\
0 \\
1
\end{array}\right) .
$$

The 2-eigenspace has basis $\left\{\left(\begin{array}{c}-6 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-\frac{31}{3} \\ 0 \\ 1\end{array}\right)\right\}$.
Therefore, $A=P D P^{-1}$ where

$$
P=\left(\begin{array}{ccc}
2 & -6 & -\frac{31}{3} \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad D=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Note that we arranged the eigenvectors in P in order of the eigenvalues $3,2,2$, so we had to put the diagonals of D in the same order.
3. Let $A=\left(\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right)$.
a) Find all eigenvalues and eigenvectors of A.
b) Write $A=P C P^{-1}$, where C is a rotation followed by a scale. Describe what A does geometrically. Draw a picture.

Solution.

a) The characteristic polynomial is

$$
\begin{gathered}
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-2 \lambda+5 \\
\lambda^{2}-2 \lambda+5=0 \Longleftrightarrow \lambda=\frac{2 \pm \sqrt{4-20}}{2}=\frac{2 \pm 4 i}{2}=1 \pm 2 i
\end{gathered}
$$

For the eigenvalue $\lambda=1-2 i$, we row-reduce $(A-(1-2 i) I \mid 0)$.

$$
\left(\begin{array}{rr|r}
2 i & 2 & 0 \\
-2 & 2 i & 0
\end{array}\right) \xrightarrow{R_{1}=R_{1} \cdot 1 / 2 i}\left(\begin{array}{rr|r}
1 & -i & 0 \\
-2 & 2 i & 0
\end{array}\right) \xrightarrow{R_{2}=R_{2}+2 R_{1}}\left(\begin{array}{rr|r}
1 & -i & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

So $x_{1}=i x_{2}$ and $x_{2}=x_{2}$. A corresponding eigenvector is $v=\binom{i}{1}$, and any nonzero complex multiple of v will also be an eigenvector.
(If we used the 2×2 trick from the 5.5 slides, we would have found that an eigenvector is $\binom{2}{-2 i}$, which is really just $-2 i$ times the eigenvector v above.)

From the correspondence between conjugate eigenvalues and their eigenvectors, we know (without doing any additional work!) that for the eigenvalue $\lambda=1+2 i$, a corresponding eigenvector is $w=\bar{v}=\binom{-i}{1}$.
b) We use $\lambda=1-2 i$ and its associated $v=\binom{i}{1}$.

$$
\begin{gathered}
A=P C P^{-1} \text { where } P=\left(\begin{array}{ll}
\operatorname{Re}(v) & \operatorname{Im}(v)
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and } \\
C=\left(\begin{array}{cc}
\operatorname{Re}(\lambda) & \operatorname{Im}(\lambda) \\
-\operatorname{Im}(\lambda) & \operatorname{Re}(\lambda)
\end{array}\right)=\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right) .
\end{gathered}
$$

The scale is by a factor of $|\lambda|=|1+2 i|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$. If we factor this out of C we get

$$
C=\sqrt{5}\left(\begin{array}{cc}
\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right) .
$$

We see $\cos (\theta)=\frac{1}{\sqrt{5}}$ and $\sin (\theta)=\frac{2}{\sqrt{5}}$, so $\tan (\theta)=2$ and $\theta=\arctan (2)$.
C is rotation by the angle $\arctan (2)$, followed by scaling by a factor of $\sqrt{5}$.
See the [interactive] demo for how A acts geometrically.
***Note: there are multiple answers possible for part b).
For example, the 2×2 trick from the 5.5 slides says that if λ is an eigenvalue of A, then one eigenvector is $\binom{b}{-a}$ where $\left(\begin{array}{ll}a & b\end{array}\right)$ is the first row of $A-\lambda I$. Row 1 of $A-\lambda I$ was $\left(\begin{array}{ll}2 i & 2\end{array}\right)$, so $\binom{2}{-2 i}$ as an eigenvector.
This would give us $P=\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right)$ rather than $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. However, it would still be the case that $A=P C P^{-1}$ since

$$
P C P^{-1}=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)=A .
$$

Supplemental Problems

For those who want additional practice problems after completing the worksheet, here are some extra practice problems.

1. Let A and B be 3×3 real matrices. Answer yes / no / maybe:
a) If A and B have the same eigenvalues, then A is similar to B.
b) If A and B both have eigenvalues $-1,0,1$, then A is similar to B.
c) If A is diagonalizable and invertible, then A^{-1} is diagonalizable.

Solution.

a) Maybe. For example, $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ have the same eigenvalues $(\lambda=0$ with alg. multiplicity 2) but are not similar, whereas $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is similar to itself.
b) Yes. In this case, A and B are 3×3 matrices with 3 distinct eigenvalues and thus automatically diagonalizable, and each is similar to $D=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. Since A and D are similar, and B and D are similar, it follows that A and B are similar.

$$
A=P D P^{-1} \quad B=Q D Q^{-1} \quad A=P D P^{-1}=P Q^{-1} B Q P^{-1}=P Q^{-1} B\left(P Q^{-1}\right)^{-1}
$$

c) Yes. If $A=P D P^{-1}$ and A is invertible then its eigenvalues are all nonzero, so the diagonal entries of D are nonzero and thus D is invertible (pivot in every diagonal position). Thus, $A^{-1}=\left(P D P^{-1}\right)^{-1}=\left(P^{-1}\right)^{-1} D^{-1} P^{-1}=P D^{-1} P^{-1}$.
2. Give an example of a non-diagonal 2×2 matrix which is diagonalizable but not invertible. Justify your answer.

Solution.

$\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ is not invertible (row of zeros) but is diagonalizable since its has two distinct eigenvalues 0 and 1 (it is triangular, so its diagonals are its eigenvalues)
3. Suppose A is a 7×7 matrix with four distinct eigenvalues. One eigenspace has dimension 2, while another eigenspace has dimension 3. Is it possible that A is not diagonalizable?

Solution.

A must be diagonalizable. It is a general fact that every eigenvalue of a matrix has a corresponding eigenspace which is at least 1-dimensional. Given this and the fact that A has four total eigenvalues, we see the sum of dimensions of the eigenspaces of A is at least $2+3+1+1=7$, and in fact must equal 7 since that is the max possible for a 7×7 matrix. Therefore, A has 7 linearly independent eigenvectors and is therefore diagonalizable.
4. Let $A=\left(\begin{array}{rrr}4 & -3 & 3 \\ 3 & 4 & -2 \\ 0 & 0 & 2\end{array}\right)$.
a) Find all (complex) eigenvalues and eigenvectors of A.
b) Write $A=P C P^{-1}$, where C is a block diagonal matrix, as in the slides near the end of section 5.5.
c) What $\operatorname{does} A$ do geometrically? Draw a picture.

Solution.

a) First we compute the characteristic polynomial by expanding cofactors along the third row:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
4-\lambda & -3 & 3 \\
3 & 4-\lambda & -2 \\
0 & 0 & 2-\lambda
\end{array}\right)=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
4-\lambda & -3 \\
3 & 4-\lambda
\end{array}\right) \\
& =(2-\lambda)\left((4-\lambda)^{2}+9\right)=(2-\lambda)\left(\lambda^{2}-8 \lambda+25\right)
\end{aligned}
$$

Using the quadratic equation on the second factor, we find the eigenvalues

$$
\lambda_{1}=2 \quad \lambda_{2}=4-3 i \quad \bar{\lambda}_{2}=4+3 i
$$

Next compute an eigenvector with eigenvalue $\lambda_{1}=2$:

$$
A-2 I=\left(\begin{array}{ccc}
2 & -3 & 3 \\
3 & 2 & -2 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

The parametric form is $x=0, y=z$, so the parametric vector form of the solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=z\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text { eigenvector } v_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

Now we compute an eigenvector with eigenvalue $\lambda_{2}=4-3 i$:

$$
\begin{aligned}
A=(4-3 i) I= & \left(\begin{array}{ccc}
3 i & -3 & 3 \\
3 & 3 i & -2 \\
0 & 0 & 3 i-2
\end{array}\right) \xrightarrow{R_{1} \longleftrightarrow R_{2}}\left(\begin{array}{ccc}
3 & 3 i & -2 \\
3 i & -3 & 3 \\
0 & 0 & 3 i-2
\end{array}\right) \\
& \xrightarrow{R_{2}=R_{2}-i R_{1}}\left(\begin{array}{ccc}
3 & 3 i & -2 \\
0 & 0 & 3+2 i \\
0 & 0 & 3 i-2
\end{array}\right) \xrightarrow{R_{2}=R_{2} \div(3+2 i)}\left(\begin{array}{ccc}
3 & 3 i & -2 \\
0 & 0 & 1 \\
0 & 0 & 3 i-2
\end{array}\right) \\
& \xrightarrow{\text { row replacements }}\left(\begin{array}{ccc}
3 & 3 i & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}=R_{1} \div 3}\left(\begin{array}{lll}
1 & i & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The parametric form of the solution is $x=-i y, z=0$, so the parametric vector form is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y\left(\begin{array}{c}
-i \\
1 \\
0
\end{array}\right) \underset{\text { eigenvector }}{\text { mammun }} v_{2}=\left(\begin{array}{c}
-i \\
1 \\
0
\end{array}\right) .
$$

An eigenvector for the complex conjugate eigenvalue $\bar{\lambda}_{2}=4+3 i$ is the complex conjugate eigenvector $\bar{v}_{2}=\left(\begin{array}{l}i \\ 1 \\ 0\end{array}\right)$.
b) According to the "block-diagonalization" theorem, we have $A=P C P^{-1}$ where

$$
P=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\operatorname{Re} v_{2} & \operatorname{Im} v_{2} & v_{1} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
C=\left(\begin{array}{ccc}
\operatorname{Re} \lambda_{2} & \operatorname{Im} \lambda_{2} & 0 \\
-\operatorname{Im} \lambda_{2} & \operatorname{Re} \lambda_{2} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right)=\left(\begin{array}{ccc}
4 & -3 & 0 \\
3 & 4 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(l've ordered the eigenvalues in this way to make the picture look nicer in my " z is up" coordinate system.)
c) The matrix C scales by 2 in the z-direction, and rotates by $\arg \left(-\lambda_{2}\right)=\arctan (3 / 4) \sim$.6435 radians and scales by $\left|\lambda_{2}\right|=\sqrt{4^{3}+3^{3}}=5$ in the $x y$-directions. The matrix A does the same thing, with respect to the basis

$$
\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

of columns of P. [interactive]

