Math 1553 Worksheet §§6.1-6.5

Solutions

1. a) Find the standard matrix B for proj_{L}, where $L=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$.
b) What are the eigenvalues of B ? What are their algebraic multiplicities?

Solution.

a) The columns of B are $\operatorname{proj}_{L}\left(e_{1}\right), \operatorname{proj}_{L}\left(e_{2}\right)$, and $\operatorname{proj}_{L}\left(e_{3}\right)$. Letting $u=(1,1,-1)$, we compute

$$
\begin{gathered}
\operatorname{proj}_{L}\left(e_{1}\right)=\frac{e_{1} \cdot u}{u \cdot u} u=\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\operatorname{proj}_{L}\left(e_{2}\right)=\frac{e_{2} \cdot u}{u \cdot u} u=\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\operatorname{proj}_{L}\left(e_{3}\right)=\frac{e_{3} \cdot u}{u \cdot u} u=-\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\Longrightarrow B
\end{gathered} \begin{aligned}
& =\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

b) The 1-eigenspace of B has dimension 1, and the 0 -eigenspace has dimension 2. Since these sum to 3 , and since the geometric multiplicity is at most the algebric multiplicity, we must have equality: $\lambda=1$ is an eigenvalue of B of multiplicity 1 , and $\lambda=0$ is an eigenvalue with multiplicity 2 .
2. Find an orthonormal basis for the subspace of \mathbf{R}^{4} spanned by $\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}6 \\ -2 \\ 2 \\ 6\end{array}\right)$, and $\left(\begin{array}{c}4 \\ 20 \\ -14 \\ 10\end{array}\right)$.

Solution.

Let $v_{1}=\left(\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right), \quad v_{2}=\left(\begin{array}{r}6 \\ -2 \\ 2 \\ 6\end{array}\right), \quad v_{3}=\left(\begin{array}{r}4 \\ 20 \\ -14 \\ 10\end{array}\right)$.

We apply Gram-Schmidt to $\left\{v_{1}, v_{2}, v_{3}\right\}$:

$$
\begin{aligned}
& u_{1}=v_{1} \\
& u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left(\begin{array}{r}
6 \\
-2 \\
2 \\
6
\end{array}\right)-\frac{16}{4}\left(\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{r}
2 \\
2 \\
-2 \\
2
\end{array}\right) \\
& u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\left(\begin{array}{r}
4 \\
20 \\
-14 \\
10
\end{array}\right)+\frac{20}{4}\left(\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right)-\frac{96}{16}\left(\begin{array}{r}
2 \\
2 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
-3 \\
3 \\
3 \\
3
\end{array}\right) .
\end{aligned}
$$

An orthonormal basis is

$$
\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \frac{u_{2}}{\left\|u_{2}\right\|}, \frac{u_{3}}{\left\|u_{3}\right\|}\right\}=\left\{\left(\begin{array}{r}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right),\left(\begin{array}{r}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right),\left(\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right)\right\}
$$

3. a) Find the least squares solution \hat{x} to $A x=e_{1}$, where $A=\left(\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -1 & 1\end{array}\right)$.
b) Find the best fit line $y=A x+B$ through the points $(0,0),(1,8),(3,8)$, and $(4,20)$.
c) Set up an equation to find the best fit parabola $y=A x^{2}+B x+C$ through the points $(0,0),(1,8),(3,8)$, and $(4,20)$.

Solution.

a) We need to solve the equation $A^{T} A \widehat{x}=A^{T} e_{1}$. We compute:

$$
\begin{aligned}
A^{T} A & =\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \\
A^{T} e_{1} & =\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right) e_{1}=\binom{1}{1} .
\end{aligned}
$$

Now we form the augmented matrix:

$$
\left(\begin{array}{ll|l}
2 & 0 & 1 \\
0 & 3 & 1
\end{array}\right) \xrightarrow{\text { ref }}\left(\begin{array}{ll|l}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 3
\end{array}\right) \Longrightarrow \widehat{x}=\binom{1 / 2}{1 / 3}
$$

b) We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =A(0)+B \\
8 & =A(1)+B \\
8 & =A(3)+B \\
20 & =A(4)+B
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)\binom{A}{B}=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)
$$

We compute

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)=\left(\begin{array}{cc}
26 & 8 \\
8 & 4
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)=\binom{112}{36} \\
& \left(\begin{array}{rr|r}
26 & 8 & 112 \\
8 & 4 & 36
\end{array}\right) \xrightarrow{\operatorname{rref}}\left(\begin{array}{ll|l}
1 & 0 & 4 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Hence the least squares solution is $A=4$ and $B=1$, so the best fit line is $y=4 x+1$.
c) We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =A\left(0^{2}\right)+B(0)+C \\
8 & =A\left(1^{2}\right)+B(1)+C \\
8 & =A\left(3^{2}\right)+B(3)+C \\
20 & =A\left(4^{2}\right)+B(4)+C
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

We compute

$$
\begin{aligned}
&\left(\begin{array}{llll}
0 & 1 & 9 & 16 \\
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right)=\left(\begin{array}{ccc}
338 & 92 & 26 \\
92 & 26 & 8 \\
26 & 8 & 4
\end{array}\right) \\
&\left(\begin{array}{rrrr}
0 & 1 & 9 & 16 \\
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)=\left(\begin{array}{c}
400 \\
112 \\
36
\end{array}\right) \\
&\left(\begin{array}{rrr|r}
338 & 92 & 26 & 400 \\
92 & 26 & 8 & 112 \\
26 & 8 & 4 & 36
\end{array}\right) \underset{\text { rref }}{\text { rrin }}\left(\begin{array}{lll|r}
1 & 0 & 0 & 2 / 3 \\
0 & 1 & 0 & 4 / 3 \\
0 & 0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Hence the least squares solution is $A=2 / 3, B=4 / 3$, and $C=2$, so the best fit quadratic is $y=\frac{2}{3} x^{2}+\frac{4}{3} x+2$.

There is a picture on the next page. The "best fit cubic" would be the cubic $y=\frac{5}{3} x^{3}-\frac{28}{3} x^{2}+\frac{47}{3} x$, which actually passes through all four points.

