MATH 1553
 PRACTICE FINAL EXAMINATION

| Name | Section | |
| :--- | :--- | :--- | :--- |

1	2	3	4	5	6	7	8	9	10	Total

Please read all instructions carefully before beginning.

- The final exam is cumulative, covering all sections and topics on the master calendar.
- Each problem is worth 10 points. The maximum score on this exam is 100 points.
- You have 170 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work, unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Check your answers if you have time left! Most linear algebra computations can be easily verified for correctness.
- Good luck!

This is a practice exam. It is roughly similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems.

Problem 1.

In this problem, you need not explain your answers.
a) The matrix $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ is in reduced row echelon form:

1. True 2. False
b) How many solutions does the linear system corresponding to the augmented matrix $\left(\begin{array}{lll|l}0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$ have?
2. Zero.
3. One.
4. Infinity.
5. Not enough information to determine.
c) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Which of the following are equivalent to the statement that T is one-to-one? (Circle all that apply.)
6. A has a pivot in each row.
7. The columns of A are linearly independent.
8. For all vectors v, w in \mathbf{R}^{n}, if $T(v)=T(w)$ then $v=w$.
9. A has n columns.
10. $\operatorname{Nul} A=\{0\}$.
d) Every square matrix has a (real or) complex eigenvalue.

> 1. True 2. False
e) Let A be an $n \times n$ matrix, and let $T(x)=A x$ be the associated matrix transformation. Which of the following are equivalent to the statement that A is not invertible? (Circle all that apply.)

1. There exists an $n \times n$ matrix B such that $A B=0$.
2. $\operatorname{rank} A=0$.
3. $\operatorname{det}(A)=0$.
4. $\operatorname{Nul} A=\{0\}$.
5. There exist $v \neq w$ in \mathbf{R}^{n} such that $T(v)=T(w)$.

Solution.

a) 2 (false).
b) 1 (zero). The corresponding system is inconsistent.
c) $2,3,5$. If A has a pivot in each row, then T is onto. Option 3 is the definition of one-to-one.
d) 1 (true). Its characteristic polynomial always has a complex root.
e) 3 , 5 . Option 1 is always true: take $B=0$. Option 2 means $A=0$. Option 5 means T is not one-to-one.

Problem 2.

In this problem, you need not explain your answers.
a) Let A be an $m \times n$ matrix, and let b be a vector in \mathbf{R}^{m}. Which of the following are equivalent to the statement that $A x=b$ is consistent? (Circle all that apply.)

1. b is in $\operatorname{Nul} A$.
2. b is in $\operatorname{Col} A$.
3. A has a pivot in every row.
4. The augmented matrix $(A \mid b)$ has no pivot in the last column.
b) Let $A=\left(\begin{array}{lll}1 & a & 0 \\ 0 & b & 0 \\ 0 & 0 & 2\end{array}\right)$. For what values of a and b is A diagonalizable? (Circle all that apply.)
5. $a=1, b=1$
6. $a=2, b=1$
7. $a=1, b=2$
8. $a=0, b=1$
c) Let W be the subset of \mathbf{R}^{2} consisting of the x-axis and the y-axis. Which of the following are true? (Circle all that apply.)
9. W contains the zero vector.
10. If v is in W, then all scalar multiples of v are in W.
11. If v and w are in W, then $v+w$ is in W.
12. W is a subspace of \mathbf{R}^{2}.
d) Every subspace of \mathbf{R}^{n} admits an orthogonal basis:
13. True 2. False
e) Let x and y be nonzero orthogonal vectors in \mathbf{R}^{n}. Which of the following are true? (Circle all that apply.)
14. $x \cdot y=0$
15. $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$
16. $\operatorname{proj}_{\operatorname{Span}\{x\}}(y)=0$
17. $\operatorname{proj}_{\operatorname{span}\{y\}(x)=0}$

Solution.

a) 2, 4. Option 3 means $A x=b$ is consistent for every b.
b) 3,4 .
c) 1,2 . Note that e_{1} and e_{2} are in W, but $e_{1}+e_{2}$ is not.
d) 1 (true). Take any basis, and apply Gram-Schmidt.
e) $1,2,3,4$.

Problem 3.

Short answer questions: you need not explain your answers.
a) Let A be an $n \times n$ matrix. Write the definition of an eigenvector and an eigenvalue of A.
b) Suppose u and v are orthogonal unit vectors, and let $x=2 u+v$. Find $\|x\|$.
c) Give an example of a 2×2 matrix that has no (real) eigenvectors.
d) Let W be the span of $(1,1,1,1)$ in \mathbf{R}^{4}. Find a matrix whose null space is W^{\perp}.
e) Write a 3×3 matrix A with two (non-real) complex eigenvalues, whose eigenspace corresponding to $\lambda=7$ is the x-axis.

Solution.

a) An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}. An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A v=\lambda v$ has a nontrivial solution.
b)

$$
\begin{aligned}
\|x\| & =\sqrt{x \cdot x}=\sqrt{(2 u+v) \cdot(2 u+v)}=\sqrt{4 u \cdot u+2 u \cdot v+2 v \cdot u+v \cdot v} \\
& =\sqrt{4(1)+0+0+1}=\sqrt{5}
\end{aligned}
$$

c) The matrix for rotation by any angle that is not a multiple of 180 degrees works. For instance,

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

d) $\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$
e) $A=\left(\begin{array}{ccc}7 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$.

Problem 4.

Let

$$
A=\left(\begin{array}{rrr}
-5 & 1 & -1 \\
-6 & 5 & 3 \\
0 & 1 & 1
\end{array}\right)
$$

a) Compute A^{-1} and $\operatorname{det}(A)$.
b) Solve for x in terms of the variables b_{1}, b_{2}, b_{3} :

$$
A x=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Solution.

a) One way to invert A is to row reduce the augmented matrix $(A \mid I)$:

$$
\left(\begin{array}{rrr|rrr}
-5 & 1 & -1 & 1 & 0 & 0 \\
-6 & 5 & 3 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\operatorname{rref}}\left(\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & -1 & 4 \\
0 & 1 & 0 & 3 & -\frac{5}{2} & \frac{21}{2} \\
0 & 0 & 1 & -3 & \frac{5}{2} & -\frac{19}{2}
\end{array}\right) .
$$

Hence

$$
A^{-1}=\left(\begin{array}{rrr}
1 & -1 & 4 \\
3 & -\frac{5}{2} & \frac{21}{2} \\
-3 & \frac{5}{2} & -\frac{19}{2}
\end{array}\right) .
$$

One can simultaneously compute $\operatorname{det}(A)$ by keeping track of the row swaps and the row scaling; the answer is $\operatorname{det}(A)=2$.
b) $\quad x=A^{-1}\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{rrr}1 & -1 & 4 \\ 3 & -\frac{5}{2} & \frac{21}{2} \\ -3 & \frac{5}{2} & -\frac{19}{2}\end{array}\right)\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{r}b_{1}-b_{2}+4 b_{3} \\ 3 b_{1}-\frac{5}{2} b_{2}+\frac{21}{2} b_{3} \\ -3 b_{1}+\frac{5}{2} b_{2}-\frac{19}{2} b_{3}\end{array}\right)$

Problem 5.

Consider the matrix

$$
A=\left(\begin{array}{lll}
2 & 5 & 0 \\
0 & 1 & 4 \\
1 & 0 & 5
\end{array}\right)
$$

a) [4 points] Find an orthogonal basis for $\operatorname{Col} A$.
b) [2 points] Find a different orthogonal basis for $\operatorname{Col} A$. (Reordering and scaling your basis in (a) does not count.)
c) [4 points] Let W be the subspace spanned by $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}5 \\ 1 \\ 0\end{array}\right)$. Find the matrix P so that $P x=\operatorname{proj}_{W}(x)$ for all x in \mathbf{R}^{3}.

Solution.

a) Let

$$
v_{1}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
5 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
4 \\
5
\end{array}\right)
$$

be the columns of A. We will perform Gram-Schmidt on $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let

$$
\begin{array}{lll}
u_{1} & =v_{1} & =\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \\
u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} & =v_{2}-2 u_{1} & =\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) \\
u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} & =v_{3}-u_{1}+u_{2} & =\left(\begin{array}{c}
-1 \\
5 \\
2
\end{array}\right) .
\end{array}
$$

Then $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for $\operatorname{Col} A$.
b) The columns of A are linearly independent (otherwise Gram-Schmidt would have produced the zero vector), so $\operatorname{Col} A=\mathbf{R}^{3}$, and hence $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthogonal basis.
c) In (a), we found $\left\{\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)\right\}$ is an orthogonal basis for W.

$$
\begin{gathered}
\operatorname{proj}_{W}\left(e_{1}\right)=\frac{e_{1} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{1} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{2}{5}\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+\frac{1}{6}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{c}
29 / 30 \\
1 / 6 \\
1 / 15
\end{array}\right) . \\
\operatorname{proj}_{W}\left(e_{2}\right)=\frac{e_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{2} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=0+\frac{1}{6}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{c}
1 / 6 \\
1 / 6 \\
-1 / 3
\end{array}\right) .
\end{gathered}
$$

$$
\operatorname{proj}_{W}\left(e_{3}\right)=\frac{e_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{5}\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)-\frac{2}{6}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{c}
1 / 15 \\
-1 / 3 \\
13 / 15
\end{array}\right) .
$$

Therefore,

$$
P=\left(\begin{array}{ccc}
29 / 30 & 1 / 6 & 1 / 15 \\
1 / 6 & 1 / 6 & -1 / 3 \\
1 / 15 & -1 / 3 & 13 / 15
\end{array}\right)
$$

Problem 6.

Suppose that your roomate Jamie is currently taking Math 1551. Jamie scored 72% on the first exam, 81% on the second exam, and 84% on the third exam. Not having taken linear algebra yet, Jamie does not know what kind of score to expect on the final exam. Luckily, you can help out.
a) [4 points] The general equation of a line in \mathbf{R}^{2} is $y=C+D x$. Write down the system of linear equations in C and D that would be satisfied by a line passing through the points $(1,72),(2,81)$, and $(3,84)$, and then write down the corresponding matrix equation.
b) [4 points] Solve the corresponding least squares problem for C and D, and use this to write down and draw the the best fit line below.

c) [2 points] What score does this line predict for the fourth (final) exam?

Solution.

a) If $y=C+D x$ were satisfied by all three points, then we would have

$$
\begin{aligned}
& 72=C+D(1) \\
& 81=C+D(2) \\
& 84=C+D(3)
\end{aligned} \quad \text { man } \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{C}{D}=\left(\begin{array}{l}
72 \\
81 \\
84
\end{array}\right) .
$$

b) The least squares problem is

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{C}{D}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
72 \\
81 \\
84
\end{array}\right) \xrightarrow[\text { man }]{ }\left(\begin{array}{lc}
3 & 6 \\
6 & 14
\end{array}\right)\binom{C}{D}=\binom{237}{486} \\
& \left(\begin{array}{rr|r}
3 & 6 & 237 \\
6 & 14 & 486
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{ll|r}
1 & 0 & 67 \\
0 & 1 & 6
\end{array}\right) .
\end{aligned}
$$

Hence $C=67$ and $D=6$.
c) $67+6(4)=91 \%$

Problem 7.

Consider the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
2 \\
0 \\
-2 \\
0
\end{array}\right) \quad v_{4}=\left(\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right)
$$

and the subspace $W=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
a) [2 points] Find a linear dependence relation among $v_{1}, v_{2}, v_{3}, v_{4}$.
b) [3 points] What is the dimension of W ?
c) [3 points] Which subsets of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ form a basis for W ?
d) [2 points] Choose a basis \mathcal{B} for W from (c), and find the \mathcal{B}-coordinates of the vector $w=(0,0,4,0)$.
[Hint: it is helpful, but not necessary, to use the fact that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is orthogonal.]

Solution.

a) We know that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, because it is an orthogonal set. Hence v_{4} must be a linear combination of v_{1}, v_{2}, v_{3}, i.e., v_{4} is in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$. We can compute the coordinates using dot products:

$$
v_{4}=\frac{v_{4} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{v_{4} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}+\frac{v_{4} \cdot v_{3}}{v_{3} \cdot v_{3}} v_{3}=v_{1}+v_{2}+v_{3} .
$$

Hence $v_{1}+v_{2}+v_{3}-v_{4}=0$ is a linear dependence relation.
b) We know that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, and it spans W because v_{4} is in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$. Thus $\operatorname{dim}(W)=3$.
c) Any set of three vectors from $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ spans W, because the fourth is a linear combination of the other three (from $v_{1}+v_{2}+v_{3}-v_{4}=0$). Hence any three vectors in $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for W.
d) We choose the basis $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then

$$
[w]_{\mathcal{B}}=\left(\frac{w \cdot v_{1}}{v_{1} \cdot v_{1}}, \frac{w \cdot v_{2}}{v_{2} \cdot v_{2}}, \frac{w \cdot v_{3}}{v_{3} \cdot v_{3}}\right)=(1,1,-1) .
$$

Alternatively, you can ignore the fact that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is orthogonal and use row reduction in (a), (b), and (d), but this requires more work.

Problem 8.

Let

$$
A=\left(\begin{array}{rrrr}
1 & 3 & 1 & 1 \\
-1 & -3 & -4 & 2 \\
5 & 15 & 1 & 9
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
2 \\
1 \\
14
\end{array}\right)
$$

a) [3 points] Find the parametric vector form of the solution set of $A x=b$.
b) [2 points] Find a basis for $\operatorname{Nul} A$.
c) [2 points] What are $\operatorname{dim}(\operatorname{Nul} A)$ and $\operatorname{dim}\left((\operatorname{Nul} A)^{\perp}\right)$?
d) [3 points] Find a basis for $(\operatorname{Nul} A)^{\perp}$.

Solution.

a) Row reducing the augmented matrix $\left(\begin{array}{ll}A & b\end{array}\right)$ yields

$$
\left(\begin{array}{rrrr|r}
1 & 3 & 0 & 2 & 3 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The variables x_{2} and x_{4} are free. The parametric form and the parametric vector form of the general solution are

$$
\begin{array}{rr}
x_{1}+3 x_{2} & +2 x_{4}= \\
x_{2} & =x_{2} \\
& x_{3}-x_{4}=-1 \\
x_{4}= & x_{4}
\end{array} \Longrightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
3 \\
0 \\
-1 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-2 \\
0 \\
1 \\
1
\end{array}\right) .
$$

b) We can read off the null space from the parametric vector form; a basis is

$$
\left\{\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
1 \\
1
\end{array}\right)\right\}
$$

c) From (b) we see $\operatorname{dim}(\operatorname{Nul} A)=2$. Since $\operatorname{Nul} A$ is a subspace of \mathbf{R}^{4}, we have

$$
\operatorname{dim}\left((\operatorname{Nul} A)^{\perp}\right)=4-\operatorname{dim}(\operatorname{Nul} A)=2
$$

d) Recall that $(\operatorname{Nul} A)^{\perp}=\operatorname{Row} A$. The first two rows of A are not multiples of each other, so they are linearly independent. We know already that $\operatorname{dim}\left((\operatorname{Nul} A)^{\perp}\right)=2$, so the first two rows of A form a basis:

$$
\left\{\left(\begin{array}{l}
1 \\
3 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
-3 \\
-4 \\
2
\end{array}\right)\right\}
$$

Problem 9.

Consider the matrix

$$
A=\left(\begin{array}{rr}
3 & 2 \\
-10 & 7
\end{array}\right) .
$$

a) [2 points] Compute the characteristic polynomial of A.
b) [2 points] The complex number $\lambda=5-4 i$ is an eigenvalue of A. What is the other eigenvalue? Produce eigenvectors for both eigenvalues.
c) [3 points] Find an invertible matrix P and a rotation-scaling matrix C such that

$$
A=P C P^{-1} .
$$

d) [1 point] By what factor does C scale?
e) [2 points] What ray does C rotate the positive x-axis onto? Draw it below.

Solution.

a) $f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-10 \lambda+41$.
b) The other eigenvalue is $\bar{\lambda}=5+4 i$.

$$
A-\lambda I=\left(\begin{array}{cc}
-2+4 i & 2 \\
\star & \star
\end{array}\right) \text { eigenvector } \quad\binom{2}{2-4 i} .
$$

Hence an eigenvector for $\bar{\lambda}$ is $\bar{v}=\binom{2}{2+4 i}$.
c) We can take

$$
P=\left(\begin{array}{ll}
\operatorname{Re} v & \operatorname{Im} v
\end{array}\right)=\left(\begin{array}{cc}
2 & 0 \\
2 & -4
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right)=\left(\begin{array}{cc}
5 & -4 \\
4 & 5
\end{array}\right) .
$$

d) C scales by $|\lambda|=\sqrt{5^{2}+4^{2}}=\sqrt{41}$.

Problem 10.

Let L be a line through the origin in \mathbf{R}^{2}. The reflection over L is the linear transformation $\mathrm{ref}_{L}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
\operatorname{ref}_{L}(x)=x-2 x_{L^{\perp}}=2 \operatorname{proj}_{L}(x)-x
$$

a) [3 points] Draw (and label) $\operatorname{ref}_{L}(u), \operatorname{ref}_{L}(v)$, and $\operatorname{ref}_{L}(w)$ in the picture below. [Hint: think geometrically]

In what follows, L does not necessarily refer to the line pictured above.
b) [2 points] If A is the matrix for ref_{L}, what is A^{2} ?
c) [3 points] What are the eigenvalues and eigenspaces of A ?
d) [2 points] Is A diagonalizable? If so, what diagonal matrix is it similar to?

Solution.

b) Reflecting over L twice brings you back to where you started. Hence $\operatorname{ref}_{L} \circ \operatorname{ref}_{L}$ is the identity transformation, so $A^{2}=I$.

Alternatively, since $\operatorname{ref}_{L}(x)=2 \operatorname{proj}_{L}(x)-x$, the matrix for ref_{L} is $2 B-I$, where B is the matrix for proj_{L}. Hence

$$
A^{2}=(2 B-I)^{2}=4 B^{2}-4 B+I=4 B-4 B+I=I
$$

c) Anything in L is fixed by ref_{L}, so 1 is an eigenvalue, and L is the 1-eigenspace. If x is in L^{\perp} then $\operatorname{ref}_{L}(x)=-x$, so -1 is an eigenvalue, and L^{\perp} is the (-1)-eigenspace. There cannot be any more eigenvalues or eigenvectors.
d) Yes: it is similar to the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
[Scratch work]
[Scratch work]

