MATH 1553
 PRACTICE FINAL EXAMINATION

| Name | Section | |
| :--- | :--- | :--- | :--- |

1	2	3	4	5	6	7	8	9	10	Total

Please read all instructions carefully before beginning.

- The final exam is cumulative, covering all sections and topics on the master calendar.
- Each problem is worth 10 points. The maximum score on this exam is 100 points.
- You have 170 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work, unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Check your answers if you have time left! Most linear algebra computations can be easily verified for correctness.
- Good luck!

This is a practice exam. It is roughly similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems.

Problem 1.

In this problem, you need not explain your answers.
a) The matrix $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ is in reduced row echelon form:

1. True 2. False
b) How many solutions does the linear system corresponding to the augmented matrix $\left(\begin{array}{lll|l}0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$ have?
2. Zero.
3. One.
4. Infinity.
5. Not enough information to determine.
c) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Which of the following are equivalent to the statement that T is one-to-one? (Circle all that apply.)
6. A has a pivot in each row.
7. The columns of A are linearly independent.
8. For all vectors v, w in \mathbf{R}^{n}, if $T(v)=T(w)$ then $v=w$.
9. A has n columns.
10. $\operatorname{Nul} A=\{0\}$.
d) Every square matrix has a (real or) complex eigenvalue.

> 1. True 2. False
e) Let A be an $n \times n$ matrix, and let $T(x)=A x$ be the associated matrix transformation. Which of the following are equivalent to the statement that A is not invertible? (Circle all that apply.)

1. There exists an $n \times n$ matrix B such that $A B=0$.
2. $\operatorname{rank} A=0$.
3. $\operatorname{det}(A)=0$.
4. $\operatorname{Nul} A=\{0\}$.
5. There exist $v \neq w$ in \mathbf{R}^{n} such that $T(v)=T(w)$.

Problem 2.

In this problem, you need not explain your answers.
a) Let A be an $m \times n$ matrix, and let b be a vector in \mathbf{R}^{m}. Which of the following are equivalent to the statement that $A x=b$ is consistent? (Circle all that apply.)

1. b is in $\operatorname{Nul} A$.
2. b is in $\operatorname{Col} A$.
3. A has a pivot in every row.
4. The augmented matrix $(A \mid b)$ has no pivot in the last column.
b) Let $A=\left(\begin{array}{lll}1 & a & 0 \\ 0 & b & 0 \\ 0 & 0 & 2\end{array}\right)$. For what values of a and b is A diagonalizable? (Circle all that apply.)
5. $a=1, b=1$
6. $a=2, b=1$
7. $a=1, b=2$
8. $a=0, b=1$
c) Let W be the subset of \mathbf{R}^{2} consisting of the x-axis and the y-axis. Which of the following are true? (Circle all that apply.)
9. W contains the zero vector.
10. If v is in W, then all scalar multiples of v are in W.
11. If v and w are in W, then $v+w$ is in W.
12. W is a subspace of \mathbf{R}^{2}.
d) Every subspace of \mathbf{R}^{n} admits an orthogonal basis:
13. True 2. False
e) Let x and y be nonzero orthogonal vectors in \mathbf{R}^{n}. Which of the following are true? (Circle all that apply.)
14. $x \cdot y=0$
15. $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$
16. $\operatorname{proj}_{\operatorname{Span}\{x\}}(y)=0$
17. $\operatorname{proj}_{\operatorname{span}\{y\}(x)=0}$

Problem 3.

Short answer questions: you need not explain your answers.
a) Let A be an $n \times n$ matrix. Write the definition of an eigenvector and an eigenvalue of A.
b) Suppose u and v are orthogonal unit vectors, and let $x=2 u+v$. Find $\|x\|$.
c) Give an example of a 2×2 matrix that has no (real) eigenvectors.
d) Let W be the span of $(1,1,1,1)$ in \mathbf{R}^{4}. Find a matrix whose null space is W^{\perp}.
e) Write a 3×3 matrix A with two (non-real) complex eigenvalues, whose eigenspace corresponding to $\lambda=7$ is the x-axis.

Problem 4.

Let

$$
A=\left(\begin{array}{rrr}
-5 & 1 & -1 \\
-6 & 5 & 3 \\
0 & 1 & 1
\end{array}\right)
$$

a) Compute A^{-1} and $\operatorname{det}(A)$.
b) Solve for x in terms of the variables b_{1}, b_{2}, b_{3} :

$$
A x=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Problem 5.

Consider the matrix

$$
A=\left(\begin{array}{lll}
2 & 5 & 0 \\
0 & 1 & 4 \\
1 & 0 & 5
\end{array}\right)
$$

a) [4 points] Find an orthogonal basis for $\operatorname{Col} A$.
b) [2 points] Find a different orthogonal basis for $\operatorname{Col} A$. (Reordering and scaling your basis in (a) does not count.)
c) [4 points] Let W be the subspace spanned by $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}5 \\ 1 \\ 0\end{array}\right)$. Find the matrix P so that $P x=\operatorname{proj}_{W}(x)$ for all x in \mathbf{R}^{3}.

Problem 6.

Suppose that your roomate Jamie is currently taking Math 1551. Jamie scored 72% on the first exam, 81% on the second exam, and 84% on the third exam. Not having taken linear algebra yet, Jamie does not know what kind of score to expect on the final exam. Luckily, you can help out.
a) [4 points] The general equation of a line in \mathbf{R}^{2} is $y=C+D x$. Write down the system of linear equations in C and D that would be satisfied by a line passing through the points $(1,72),(2,81)$, and $(3,84)$, and then write down the corresponding matrix equation.
b) [4 points] Solve the corresponding least squares problem for C and D, and use this to write down and draw the the best fit line below.

c) [2 points] What score does this line predict for the fourth (final) exam?

Problem 7.

Consider the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
2 \\
0 \\
-2 \\
0
\end{array}\right) \quad v_{4}=\left(\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right)
$$

and the subspace $W=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
a) [2 points] Find a linear dependence relation among $v_{1}, v_{2}, v_{3}, v_{4}$.
b) [3 points] What is the dimension of W ?
c) [3 points] Which subsets of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ form a basis for W ?
d) [2 points] Choose a basis \mathcal{B} for W from (c), and find the \mathcal{B}-coordinates of the vector $w=(0,0,4,0)$.
[Hint: it is helpful, but not necessary, to use the fact that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is orthogonal.]

Problem 8.

Let

$$
A=\left(\begin{array}{rrrr}
1 & 3 & 1 & 1 \\
-1 & -3 & -4 & 2 \\
5 & 15 & 1 & 9
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
2 \\
1 \\
14
\end{array}\right)
$$

a) [3 points] Find the parametric vector form of the solution set of $A x=b$.
b) [2 points] Find a basis for $\operatorname{Nul} A$.
c) [2 points] What are $\operatorname{dim}(\operatorname{Nul} A)$ and $\operatorname{dim}\left((\operatorname{Nul} A)^{\perp}\right)$?
d) [3 points] Find a basis for $(\operatorname{Nul} A)^{\perp}$.

Problem 9.

Consider the matrix

$$
A=\left(\begin{array}{rr}
3 & 2 \\
-10 & 7
\end{array}\right) .
$$

a) [2 points] Compute the characteristic polynomial of A.
b) [2 points] The complex number $\lambda=5-4 i$ is an eigenvalue of A. What is the other eigenvalue? Produce eigenvectors for both eigenvalues.
c) [3 points] Find an invertible matrix P and a rotation-scaling matrix C such that

$$
A=P C P^{-1} .
$$

d) [1 point] By what factor does C scale?
e) [2 points] What ray does C rotate the positive x-axis onto? Draw it below.

Problem 10.

Let L be a line through the origin in \mathbf{R}^{2}. The reflection over L is the linear transformation $\mathrm{ref}_{L}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
\operatorname{ref}_{L}(x)=x-2 x_{L^{\perp}}=2 \operatorname{proj}_{L}(x)-x
$$

a) [3 points] Draw (and label) $\operatorname{ref}_{L}(u), \operatorname{ref}_{L}(v)$, and $\operatorname{ref}_{L}(w)$ in the picture below. [Hint: think geometrically]

In what follows, L does not necessarily refer to the line pictured above.
b) [2 points] If A is the matrix for ref_{L}, what is A^{2} ?
c) [3 points] What are the eigenvalues and eigenspaces of A ?
d) [2 points] Is A diagonalizable? If so, what diagonal matrix is it similar to?
[Scratch work]
[Scratch work]

