MATH 1553
 MIDTERM EXAMINATION 1

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, calculators, etc.) allowed.
- Read carefully every problem before working on the answers.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Problem 1.

Circle \mathbf{T} if the statement is always true and circle \mathbf{F} if the statement is ever false. Do not assume any information that is not stated.
a) $\quad \mathbf{T} \quad \mathbf{F} \quad[2 \mathrm{pts}]$ Two vectors v_{1}, v_{2} in \mathbf{R}^{3} always span a plane.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad[2 \mathrm{pts}]$ Let A be an $m \times n$ matrix and b is a vector in \mathbf{R}^{m}. The equation $A x=b$ is homogeneous if the zero vector is a solution.
c) $\quad \mathbf{T} \quad[2 \mathrm{pts}]$ The solution set of $A x=b$ is parallel to the solution set of $A x=0$.
d) $\mathbf{T} \quad \mathbf{F}$ [2pts] The following augment matrix corresponds to a system with a unique solution:

$$
\left(\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -3
\end{array}\right)
$$

e) [2pts] (Unrelated) Provide an example of a matrix in row echelon form that is not in reduced row echelon form. Explain which condition of reduced echelon forms is missing.

Solution.

a) False: For example, $v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ span only a line.
b) True: If the zero vector is a solution, that is the vector $x=(0, \ldots, 0) \in \mathbf{R}^{m}$, then the prodcut $A x$ results in the zero vector as well.
c) False. It may be that the equation $A x=b$ is inconsistent, so that the solution set is empty.
d) False: The augmented matrix has a non-pivot column, therefore there are infinitely many solutions.
e) For example, the matrix $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$ is in row echelon from. However the second column has a pivot but it has more that one non-zero entry. Also, the pivot in the last column is not equal to 1 .

Problem 2.

Consider the following system of equations:

$$
\begin{array}{r}
-2 x_{1}+2 x_{2}+4 x_{3}=6 \\
-2 x_{2}+x_{3}=2 \\
3 x_{1}-x_{2}+2 x_{3}=7
\end{array}
$$

a) [1pts] Write the above system as an augmented matrix.
b) [2pts] Write the above system as a vector equation.
c) [2pts] Write the above system as a matrix equation.
d) [5pts] Is the system consistent? Justify your answer.

Solution.

a)

$$
\left(\begin{array}{rrr|r}
-2 & 2 & 4 & 6 \\
0 & -2 & 1 & 2 \\
3 & -1 & 2 & 7
\end{array}\right)
$$

b)

$$
x_{1}\left(\begin{array}{c}
-2 \\
0 \\
3
\end{array}\right)+x_{2}\left(\begin{array}{c}
2 \\
-2 \\
-1
\end{array}\right)+x_{3}\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
6 \\
2 \\
7
\end{array}\right)
$$

c)

$$
\left(\begin{array}{ccc}
-2 & 2 & 4 \\
0 & -2 & 1 \\
3 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
2 \\
7
\end{array}\right)
$$

d) Yes, it is consistent. By row reduction we can find that

$$
\left(\begin{array}{ccc}
-2 & 2 & 4 \\
0 & -2 & 1 \\
3 & -1 & 2
\end{array}\right) \text { man }\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & -2 & 1 \\
3 & -1 & 2
\end{array}\right) \underset{\sim n \rightarrow(}{ }\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & -2 & 1 \\
0 & 2 & 8
\end{array}\right) \operatorname{manh}\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & -2 & 1 \\
0 & 0 & 9
\end{array}\right)
$$

(For this question, there is no need to row reduce further).

Once the matrix is reduced to an echelon form we can verify that there is a pivot in each row. Therefore, the system $A x=b$ is consistent for any b.

Problem 3.

Consider the matrix equation $A x=0$, where

$$
A=\left(\begin{array}{cccc}
2 & 4 & -2 & 0 \\
-2 & -4 & 0 & 2 \\
1 & 2 & 2 & -3
\end{array}\right) .
$$

a) [7pts] Give the parametrized vector solution of the equation above. How many free variables there are?
b) [3pts] What best describes the geometry of the solutions to $A x=0$ above? Select all that apply.
(1) Solution set is a line.
(2) Solution set is a plane.
(3) Solution set does not pass through the origin.

Solution.

a) First we row reduced the matrix A
$\left(\begin{array}{cccc}2 & 4 & -2 & 0 \\ -2 & -4 & 0 & 2 \\ 1 & 2 & 2 & -3\end{array}\right) \sim \operatorname{man}\left(\begin{array}{cccc}2 & 4 & -2 & 0 \\ 0 & 0 & -2 & 2 \\ 1 & 2 & 2 & -3\end{array}\right)$ man $\left(\begin{array}{cccc}1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 2 & 2 & -3\end{array}\right)$

$$
\text { man }\left(\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 3 & -3
\end{array}\right) \text { mant }\left(\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow[\sim m a r]{ }\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Now, the second and fourth columns in the matrix have no pivot. Therefore, the system corresponding to $A x=0$ has 2 free variables; namely, x_{2} and x_{4}.

The system is equivalent to

$$
\begin{aligned}
& \\
& x_{1}+2 x_{2}-x_{4}=0 \\
&+ \text { or } \\
&+x_{3}+x_{4}=0
\end{aligned} \quad \begin{aligned}
& x_{1}=-2 x_{2}+x_{4} \\
& x_{2}=+x_{2} \\
& x_{3}=+ \\
& x_{4}=+x_{4}
\end{aligned}
$$

and in parametric vector form:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)
$$

b) The solution set can be written using two free variables, therefore it is a plane.

It passes through the origin because $A\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$, so the zero vector is a solution (or simply, because the system is homogeneous).

Problem 4.

A company manufactures frisbees and boomerangs. For each frisbee, the company spends $\$.25$ on materials, $\$.25$ on labor and $\$.10$ on overhead. For each boomerang, the company spends $\$.25$ on materials, $\$.50$ on labor and $\$.20$ on overhead. Finally, the company has a total budget of $\$ 1000$ on materials, $\$ 1400$ on labor and $\$ 560$ on overhead.
a) [3pts] If the company produces x_{1} frisbees and x_{2} boomerangs, describe the various costs the company has.
b) [5pts] Is there a combination of production that will require exactly all the budget? If yes, give all possible values of x_{1}, x_{2}.
c) [2pts] Describe a vector equation that models the question in b)

Solution.

a) The costs per unit frisbee and boomerang are represented by $\left(\begin{array}{l}.25 \\ .25 \\ .10\end{array}\right)$ and $\left(\begin{array}{l}.25 \\ .50 \\ .20\end{array}\right)$, respectively. The different costs of the company are described as the following linear combination:

$$
x_{1}\left(\begin{array}{l}
.25 \\
.25 \\
.10
\end{array}\right)+x_{2}\left(\begin{array}{l}
.25 \\
.50 \\
.20
\end{array}\right) \in \mathbf{R}^{3}
$$

b) We work with the augmented matrix corresponding to the vector equation below.

$$
\begin{aligned}
& \left(\begin{array}{rr|r}
.25 & .25 & 1000 \\
.25 & .50 & 1400 \\
.10 & .20 & 560
\end{array}\right) \text { mant }\left(\begin{array}{ll|l}
1 & 1 & 4000 \\
1 & 2 & 5600 \\
1 & 2 & 5600
\end{array}\right) \text { mant }\left(\begin{array}{ll|r}
1 & 1 & 4000 \\
1 & 2 & 5600 \\
0 & 0 & 0
\end{array}\right) \\
& \text { man } \rightarrow\left(\begin{array}{rr|r}
1 & 1 & 4000 \\
0 & 1 & 1600 \\
0 & 0 & 0
\end{array}\right) \text { man } \rightarrow\left(\begin{array}{rr|r}
1 & 0 & 2400 \\
0 & 1 & 1600 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The solution is $x_{1}=2400, x_{2}=1600$; that is, the budget will be used entirely by producing 2400 frisbees and 1600 boomerangs.
c) The vector equation is given by $x_{1}\left(\begin{array}{l}.25 \\ .25 \\ .10\end{array}\right)+x_{2}\left(\begin{array}{l}.25 \\ .50 \\ .20\end{array}\right)=\left(\begin{array}{c}1000 \\ 1400 \\ 560\end{array}\right)$

Problem 5.

Consider vectors $v_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right), v_{3}=\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)$.
a) $[4 \mathrm{pts}]$ Provide the definition of $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
b) $[2 \mathrm{pts}]$ Is vector $\left(\begin{array}{l}0 \\ 1 \\ 5\end{array}\right)$ in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$?
c) [4pts] (Unrelated) Write a system of linear equations whose solution set contains $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and is parallel to Span $\left\{\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)\right\}$.

Solution.

a) The Span of v_{1}, v_{2} and v_{3} is a set containing all linear combinations of these vectors. In a formula,

$$
\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3} \in \mathbf{R}^{3}: x_{1}, x_{2}, x_{3} \in \mathbf{R}\right\}
$$

b) For any coefficients x_{1}, x_{2}, x_{3}, the second entry of $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}$ is a zero; there-
fore, $\left(\begin{array}{l}0 \\ 1 \\ 5\end{array}\right)$ is not in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
Alternatively, the augmented matrix associated to $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=\left(\begin{array}{l}0 \\ 1 \\ 5\end{array}\right)$ is

$$
\left(\begin{array}{rrr|r}
-1 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 3 & 2 & 5
\end{array}\right) \text { man }\left(\begin{array}{rrr|r}
1 & 0 & -4 / 5 & -3 \\
0 & 1 & 6 / 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

that is, it is equivalent to an incosistent reduced row echelon form.
c) Suppose we have a system $A x=0$ whose solution set is $\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)\right\}$. Then the solutions satisfy

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)
$$

or equivalently,

$$
\begin{array}{r}
x_{1}=2 x_{3} \\
x_{2}=-3 x_{3} \\
x_{3}=x_{3}
\end{array}
$$

Translating back to an augmented matrix we obtain

$$
\left(\begin{array}{rrr|r}
1 & 0 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

therefore the homogeneous system with $A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right)$ is a system with solution set $\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)\right\}$.

Don't plug in the translation by $p=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ just yet. Instead, what we want to do is to define a system $A x=b$ such that vector $p=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is one of its solutions. We compute

$$
A p=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
4 \\
0
\end{array}\right)
$$

and set $b=\left(\begin{array}{c}-1 \\ 4 \\ 0\end{array}\right)$ Then, with the values above, the system $A x=b$ translates to

$$
\begin{array}{r}
x_{1}-2 x_{3}=-1 \\
x_{2}+3 x_{3}=4
\end{array}
$$

and its solution set passes through $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and is parallel to $\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ -3 \\ 0\end{array}\right)\right\}$.

