MATH 1553
 MIDTERM EXAMINATION 2

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please read carefully all statements and show all your work.
- You may cite any theorem or slide covered in class or in the sections we covered in the text.
- Good luck!

Suppose that A is an $m \times n$ matrix. Let $T(x)=A x$ be the linear transformation associated to A. Circle true for all statements that are always true, and circle false for statements that are ever false.
a) $\mathbf{T} \quad \mathbf{F}$ If A has more columns than rows then T is not one-to-one.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If the columns of A are linearly independent then T is onto.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad$ The span of the columns of A equals the range of T.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad$ The dimension of $\operatorname{Col} A$ is at most m.
e) $\mathbf{T} \quad \mathbf{F} \quad$ The equation $\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n$ holds only when $m=n$.

Solution.

a) This is true. The RREF of A will necessarily have non-pivot columns.
b) False: let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ then $A x=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ has no solution.
c) This is true. Both subsets contain exactly all linear combinations of the columns of A.
d) This is true. This true since columns of A are vectors in \mathbf{R}^{m}.
e) False: This is the Rank theorem, there is no restriction on m.

Problem 2.

Determine which of the following matrices have an inverse and explain why. When the inverse exists, compute A^{-1} and solve $A x=\binom{2}{1}$.
a) $A=\left(\begin{array}{cc}0 & -2 \\ 1 / 2 & 0\end{array}\right)$
b) $A=\left(\begin{array}{cc}3 & 1 \\ -3 & -1\end{array}\right)$
c) Aside: Let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$, select one vector v_{3} from:

$$
\left\{\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
4 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)\right\}
$$

that makes $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly independent. Justify your choice.

Solution.

a) Since $A^{-1}=\left(\begin{array}{cc}0 & 2 \\ -1 / 2 & 0\end{array}\right)$, then $x=A^{-1}\binom{2}{1}=\binom{2}{-1}$.

Inverse Reason 1: Using the formula for the 2×2 case, if $A=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ then $A^{-1}=$ $\operatorname{det}(A)^{-1}\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)$. In this case $\operatorname{det}(A)=0 \cdot 0-(-1 / 2)(2)=1$.
Inverse Reason 2: Using the algorithm

$$
\left.\left.\begin{array}{c}
\left(\begin{array}{rr|rr}
0 & -2 & 1 & 0 \\
1 / 2 & 0 & 0 & 1
\end{array}\right) \\
R_{1} \leftrightarrow R_{2} \\
R_{1}=-2 R_{1} \\
\text {, } \begin{array}{r}
1 / 2 \\
0
\end{array} \\
0
\end{array} \right\rvert\, \begin{array}{rr|rr}
0 & 1 \\
0 & -2 & 1 & 0
\end{array}\right)
$$

Inverse Reason 3: If you were able to 'simply guess' A^{-1} then you must show your work verifying $A A^{-1}=I_{n}$.
b) This matrix has no inverse because its columns are multiple of each other.

Reason 2: In this case $\operatorname{det}(A)=3 \cdot(-1)-(-3)(1)=0$, so the inverse does not exist.
Reason 3: Using the algorithm we cannot get the identity matrix on the left.

$$
\left(\begin{array}{rr|rr}
3 & 1 & 1 & 0 \\
-3 & -1 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}=R_{2}+R_{1}}\left(\begin{array}{ll|ll}
3 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

c) All systems $\left(\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 2 \\ 1 & 0 & 1\end{array}\right) x=0,\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right) x=0$ and $\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right) x=0$ have exactly one solution, so each set of column vectors are independent. On the other hand, the following are linear dependencies

$$
\begin{aligned}
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
2\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

So either vector in $\left\{\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)\right\}$ makes the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly dependent.

Problem 3.

We have the following information about the linear transformations T and U :

$$
\begin{gathered}
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+x_{3} \\
x_{2} \\
x_{2}
\end{array}\right), \\
U\binom{1}{0}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right) \text { and } U\binom{0}{1}=\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right) .
\end{gathered}
$$

a) Give the standard matrix of T
b) Is T onto? Justify your answer.
c) Compute $U\binom{2}{-1}$ and justify your answer.
d) Which of the following is defined?

$$
T \circ U\left(e_{1}\right) \quad \text { or } \quad U \circ T\left(e_{1}\right)
$$

Solution.

a) Evaluate T on the unit vectors: $T\left(e_{1}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), T\left(e_{2}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), T\left(e_{3}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, then the standard matrix of T is $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$.
b) You can use any of the statements of the Onto Theorem to justify this. E.g. $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$ can be reduced to a matrix with one row of zeros, then it does not have a pivot in each row and so T is not onto.
c) Since $\binom{1}{2}=2 e_{1}-e_{2}$, then by the linearly of the transformation U we have

$$
U\binom{2}{-1}=2 U\left(e_{1}\right)-U\left(e_{2}\right)=2\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)-\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right)
$$

d) The composition that makes sense is $T \circ U$. Note that the codomain of U coincides with the domain of T (both \mathbf{R}^{3}).

Problem 4.

Consider the following matrix and its reduced row echelon form:

$$
A=\left(\begin{array}{rrrr}
-2 & 4 & 1 & -7 \\
1 & -2 & 1 & -1 \\
1 & -2 & 0 & 2
\end{array}\right) \text { man }\left(\begin{array}{cccc}
1 & -2 & 0 & 2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

a) Find a basis for $\operatorname{Col} A$.
b) What is $\operatorname{dim} \operatorname{Nul} A$?
c) Is $\left\{\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 0 \\ 0\end{array}\right)\right\}$ a basis for NulA? Justify your answer.

Solution.

a) A basis for $\operatorname{Col} A$ consists of the pivot colums of A :

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}
$$

b) The dimension of $\operatorname{Nul} A$ equals 2 , this is the number of free variables in the reduced row echelon form. Or alternatively, we can use the Rank theorem.
c) Both $\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 2 \\ 0 \\ 0\end{array}\right)$ are contained in NulA. However, they are multiple of each other; thus they cannot be a basis.

Problem 5.

Which of the following are subspaces of \mathbf{R}^{3} ? Justify why.
a) $V=\left\{\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid a b=0\right\}$
b) $\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right\}$
c) The solution set of $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right) x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
d) The range of $T(x)=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right) x$.
e) $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ -4\end{array}\right),\left(\begin{array}{c}0 \\ 14 \\ 0\end{array}\right)\right\}$

Solution.

a) This is not a subspace of \mathbf{R}^{3} : it is not closed under addition. For instance,

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { are in } V \text {, but }\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \text { is not. }
$$

b) This is a subspace of \mathbf{R}^{3} : The subset satisfies all the conditions of a subspace.
c) This is not a subspace of \mathbf{R}^{3} because it is not the solution set to the homogeneous equation $A x=0$.
d) This is a subspace of \mathbf{R}^{3} : the codomain of T is \mathbf{R}^{3} and the range is always a subspace.
e) This is a subspace of \mathbf{R}^{3} : the span of any collection of vectors in \mathbf{R}^{3} is always a subspace of \mathbf{R}^{3}.

Scoring Table

Please do not write on this area.

1	2	3	4	5	Total

[Scratch work]

