MATH 1553 MIDTERM EXAMINATION 3

Name	Section	
------	---------	--

Please **read all instructions** carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, calculator,...) allowed.
- You may use the chart below to find unit vector coordinates.
- Please show your work unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Problem 1.

In this problem, if the statement is always true, circle T ; otherwise, circle F . Let <i>A</i> and <i>B</i> be $n \times n$ matrices with real entries.								
a)	Т	F	For $c \neq 0$, det(cA) = c det(A).					
b)	Т	F	If v is a complex eigenvector of A then so is \overline{v} .					
c)	Т	F	If B has real eigenvalues whose geometric multiplicity adds to n , then B is diagonalizable.					
d)	Т	F	If A is not diagonalizable then A has a non-real eigenvalue.					
e)	Т	F	The zero vector is an eigenvector of <i>A</i> with eigenvalue 0.					

Solution.

- a) False: The constant factors out with an *n*-th power: $det(cA) = c^n det(A)$.
- b) True. Complex eigenvectors comes in conjugate pairs.
- c) True.

d) False: For example $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable and has no non-real eigenvalue.

e) False. Eigenvectors by definition must be non-zero vectors.

Problem 2.

Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- **a)** [4 points] Find the real eigenvalues of *A*
- **b)** [3 points] For each real eigenvalue of *A*, find a basis for the corresponding eigenspace.
- c) [3 points] Is A diagonalizable? Why or why not?

Solution.

a) We compute the characteristic polynomial by expanding along the last row:

$$f(\lambda) = \det \begin{pmatrix} 1-\lambda & -1 & 0 & 0\\ 1 & 1-\lambda & 0 & 0\\ 0 & 0 & 2-\lambda & 1\\ 0 & 0 & 0 & 2-\lambda \end{pmatrix}$$
$$= (2-\lambda)\det \begin{pmatrix} 1-\lambda & -1 & 0\\ 1 & 1-\lambda & 0\\ 0 & 0 & 2-\lambda \end{pmatrix}$$
$$= (2-\lambda)^2 ((1-\lambda)^2 + 1)$$
$$= (2-\lambda)(\lambda^2 - 2\lambda + 2)$$

The roots are 2 (with multiplicity 2) and $\lambda = 1 \pm i$ (with multiplicity 1). So this matrix has only one real eigenvalue: 2.

b) We compute the 2-eigenspace by solving (A - 2I)x = 0:

$$A - 2I = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The parametric vector form of the general solution is $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, so a basis for

the 2-eigenspace is $\left\{ \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \right\}$.

Problem 3.

In this problem, briefly explain your answers.

- a) [2 points] If A and B are similar and det(B) = 3, compute det(A)
- **b)** [3 points] Suppose v and w are eigenvectors of A both with eigenvalue 2. Is 3v + 2w an eigenvector of A? Why or why not?
- c) [3 points] Find a 2 × 2 rotation-scaling matrix *C* that rotates by 45° and scales by $\sqrt{2}$.
- **d)** [2 points] Suppose *A* is 4 × 4 matrix with a 2-eigenspace of dimension 3 and Nul(*B*) of dimension 1. Find a diagonal matrix that is similar to *A*.

Solution.

a) This means there is invertible *P* such that $A = PBP^{-1}$, then

$$det(A) = det(P) det(B) det(P^{-1}) = (det(P) det(P^{-1})) det(B) = det(B).$$

b) We can simply compute A(3v + 2w) = 3Av + 2Aw = 6v + 4w = 2(3v + 2w). Thus, 3v + 2w is an eigenvector with eigenvalue 2.

c) Using the chart on the front of the exam: $Ae_1 = \begin{pmatrix} \cos(\pi/4) \\ \sin(\pi/4) \end{pmatrix}$ and $Ae_2 = \begin{pmatrix} \cos(3\pi/4) \\ \sin(3\pi/4) \end{pmatrix}$. Therefore, the matrix is $\begin{pmatrix} \cos(3\pi/4) & \cos(3\pi/4) \\ \sin(\pi/4) & \sin(3\pi/4) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Alternatively, you can reference a theorem or slide shown in class.

d) First, since Nul(*A*) has dimension 1, then the 0-eigenspace of *B* has dimension 1. Thus, the geometric multiplicities of 0 and 2 add up to 4; therefore, if a diagonal matrix is similar to *A*, then there are 3 diagonal entries equal to 2 and the rest are all zeros.

Eg. A is similar to
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Problem 4.

Let
$$A = \begin{pmatrix} .8 & .4 \\ .2 & .6 \end{pmatrix}$$

a) [5 points] Diagonalize the matrix $A = PDP^{-1}$ (Obtain matrices *P* and *D*)
b) [2 points] Compute $A^3 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
c) [2 points] Give a formula for $A^n \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
d) [1 points] Give a formula for D^n .

Solution.

a) First (2 points): Computing the characteristic polynomial we have

$$\det \begin{pmatrix} .8 - \lambda & .4 \\ .2 & .6 - \lambda \end{pmatrix} = (\lambda - .8)(\lambda - .6) - .08 = \lambda^2 - 1.4\lambda + .48 - 0.8$$

Using the quadratic formula to find the eigenvalues we obtain

$$\lambda = \frac{1.4 \pm \sqrt{1.4^2 - 4(.4)}}{2} = \frac{1.4 \pm .6}{2} = \begin{cases} 1\\ .4 \end{cases}$$

Second (2 points): Find eigenvectors for both eigenvalues. For $\lambda = 1$:

$$A - I = \begin{pmatrix} -.2 & .4 \\ \star & \star \end{pmatrix} \Longrightarrow \begin{pmatrix} .4 \\ .2 \end{pmatrix} \text{ is an eigenvector}$$

For $\lambda = .4$:

$$A - .4I = \begin{pmatrix} .4 & .4 \\ \star & \star \end{pmatrix} \Longrightarrow \begin{pmatrix} .4 \\ -.4 \end{pmatrix} \text{ is an eigenvector}$$

Third (1 point): Write down the decomposition $A = PDP^{-1}$ where

$$P = \begin{pmatrix} .4 & .4 \\ .2 & -.4 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 \\ 0 & .4 \end{pmatrix}$$

b) We can see that $.4 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} .4 \\ -.4 \end{pmatrix}$ is a multiple of the eigenvector we found for the eigenvalue .4. So that $A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = .4 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Applying this equality three times we get $A^3 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = (.4)^3 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

- **c)** In general, for $A^n \begin{pmatrix} 1 \\ -1 \end{pmatrix} = (.4)^n \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- **d)** Since $D = \begin{pmatrix} 1 & 0 \\ 0 & .4 \end{pmatrix}$, we have that $D^n = \begin{pmatrix} 1 & 0 \\ 0 & .4^n \end{pmatrix}$.

Problem 5.

Consider the scaling-rotation matrix $C = \begin{pmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix}$ and $A = \begin{pmatrix} \frac{-1+\sqrt{3}}{2} & \sqrt{3} \\ \frac{\sqrt{3}}{2} & \frac{-1-\sqrt{3}}{2} \end{pmatrix}$. For the following problems, you can use that

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{-1}{2} & 1 \end{pmatrix}$$

- a) [1 point] Are A and C similar? Why or why not?
- **b)** [3 points] Find a complex eigenvalue of *A* with its eigenvector.
- c) [2 points] Write down the formula for the matrix of a rotation by angle θ composed with scaling by *c*. (No justification needed).
- d) [2 points] By what factor does C scale?
- e) [2 points] By what angle does *C* rotate?

Solution.

- **a)** Yes. Because $\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{2} & 0 \\ \frac{-1}{2} & 1 \end{pmatrix}$ are inverse of each other.
- **b)** Using the formula from class we have that $A = PCP^{-1}$ where

$$P = \begin{pmatrix} \operatorname{Re} \nu & \operatorname{Im} \nu \end{pmatrix} \qquad C = \begin{pmatrix} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix}.$$

For some eigenvector v with eigenvalue λ . So one eigenvector is $\begin{pmatrix} 2\\ 1+i \end{pmatrix}$ with eigenvalue $\frac{-1-\sqrt{3}i}{2}$.

- **c)** The matrix is $c \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$.
- **d)** The matrix *C* has already the form above with $\theta = 2\pi/3$ and c = 1, so scaling is by 1.
- e) Alternatively, if we use the decomposition of *A*, we need to find the argument of $\overline{\lambda} = \frac{-1}{2} + \frac{\sqrt{3}i}{2}$. We draw a picture:

$$\sqrt{3} \begin{array}{|c|} & \theta = \frac{\pi}{3} \text{ (trig identity)} \\ & \theta = \frac{\pi}{3} \text{ (trig identity)} \\ & \text{argument of } \overline{\lambda} = \pi - \theta = \frac{2\pi}{3} \end{array}$$

The matrix *C* rotates by $2\pi/3$.

Scoring Table

Please do not write on this area.

1	2	3	4	5	Total

[Scratch work]