MATH 1553
 MIDTERM EXAMINATION 3

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text,calculator,...) allowed.
- You may use the chart below to find unit vector coordinates.
- Please show your work unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

In this problem, if the statement is always true, circle \mathbf{T}; otherwise, circle \mathbf{F}. Let A and B be $n \times n$ matrices with real entries.
a) $\quad \mathbf{T} \quad$ For $c \neq 0, \operatorname{det}(c A)=c \operatorname{det}(A)$.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If v is a complex eigenvector of A then so is \bar{v}.
c) $\mathbf{T} \quad \mathbf{F} \quad$ If B has real eigenvalues whose geometric multiplicity adds to n, then B is diagonalizable.
d) $\mathbf{T} \quad \mathbf{F} \quad$ If A is not diagonalizable then A has a non-real eigenvalue.
e) $\quad \mathbf{T} \quad \mathbf{F} \quad$ The zero vector is an eigenvector of A with eigenvalue 0.

Solution.

a) False: The constant factors out with an n-th power: $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$.
b) True. Complex eigenvectors comes in conjugate pairs.
c) True.
d) False: For example $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable and has no non-real eigenvalue.
e) False. Eigenvectors by definition must be non-zero vectors.

Problem 2.

Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

a) [4 points] Find the real eigenvalues of A
b) [3 points] For each real eigenvalue of A, find a basis for the corresponding eigenspace.
c) [3 points] Is A diagonalizable? Why or why not?

Solution.

a) We compute the characteristic polynomial by expanding along the last row:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{cccc}
1-\lambda & -1 & 0 & 0 \\
1 & 1-\lambda & 0 & 0 \\
0 & 0 & 2-\lambda & 1 \\
0 & 0 & 0 & 2-\lambda
\end{array}\right) \\
& =(2-\lambda) \operatorname{det}\left(\begin{array}{ccc}
1-\lambda & -1 & 0 \\
1 & 1-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right) \\
& =(2-\lambda)^{2}\left((1-\lambda)^{2}+1\right) \\
& =(2-\lambda)\left(\lambda^{2}-2 \lambda+2\right)
\end{aligned}
$$

The roots are 2 (with multiplicity 2) and $\lambda=1 \pm i$ (with multiplicity 1). So this matrix has only one real eigenvalue: 2.
b) We compute the 2-eigenspace by solving $(A-2 I) x=0$:

$$
A-2 I=\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\operatorname{rref}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The parametric vector form of the general solution is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=x_{3}\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$, so a basis for the 2-eigenspace is $\left\{\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$.

Problem 3.

In this problem, briefly explain your answers.
a) [2 points] If A and B are similar and $\operatorname{det}(B)=3$, compute $\operatorname{det}(A)$
b) [3 points] Suppose v and w are eigenvectors of A both with eigenvalue 2. Is $3 v+2 w$ an eigenvector of A ? Why or why not?
c) [3 points] Find a 2×2 rotation-scaling matrix C that rotates by 45° and scales by $\sqrt{2}$.
d) [2 points] Suppose A is 4×4 matrix with a 2 -eigenspace of dimension 3 and $\operatorname{Nul}(B)$ of dimension 1. Find a diagonal matrix that is similar to A.

Solution.

a) This means there is invertible P such that $A=P B P^{-1}$, then

$$
\operatorname{det}(A)=\operatorname{det}(P) \operatorname{det}(B) \operatorname{det}\left(P^{-1}\right)=\left(\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right)\right) \operatorname{det}(B)=\operatorname{det}(B)
$$

b) We can simply compute $A(3 v+2 w)=3 A v+2 A w=6 v+4 w=2(3 v+2 w)$. Thus, $3 v+2 w$ is an eigenvector with eigenvalue 2 .
c) Using the chart on the front of the exam: $A e_{1}=\binom{\cos (\pi / 4)}{\sin (\pi / 4)}$ and $A e_{2}=\binom{\cos (3 \pi / 4)}{\sin (3 \pi / 4)}$. Therefore, the matrix is $\left(\begin{array}{cc}\cos (3 \pi / 4) & \cos (3 \pi / 4) \\ \sin (\pi / 4) & \sin (3 \pi / 4)\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$. Alternatively, you can reference a theorem or slide shown in class.
d) First, since $\operatorname{Nul}(A)$ has dimension 1 , then the 0 -eigenspace of B has dimension 1 . Thus, the geometric multiplicities of 0 and 2 add up to 4 ; therefore, if a diagonal matrix is similar to A, then there are 3 diagonal entries equal to 2 and the rest are all zeros.

Eg. A is similar to $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$.

Problem 4.

Let $A=\left(\begin{array}{ll}.8 & .4 \\ .2 & .6\end{array}\right)$
a) [5 points] Diagonalize the matrix $A=P D P^{-1}$ (Obtain matrices P and $\left.D\right)$
b) $[2$ points $]$ Compute $A^{3}\binom{1}{-1}$
c) $[2$ points $]$ Give a formula for $A^{n}\binom{1}{-1}$
d) [1 points] Give a formula for D^{n}.

Solution.

a) First (2 points): Computing the characteristic polynomial we have

$$
\operatorname{det}\left(\begin{array}{cc}
.8-\lambda & .4 \\
.2 & .6-\lambda
\end{array}\right)=(\lambda-.8)(\lambda-.6)-.08=\lambda^{2}-1.4 \lambda+.48-0.8
$$

Using the quadratic formula to find the eigenvalues we obtain

$$
\lambda=\frac{1.4 \pm \sqrt{1.4^{2}-4(.4)}}{2}=\frac{1.4 \pm .6}{2}=\left\{\begin{array}{l}
1 \\
.4
\end{array}\right.
$$

Second (2 points): Find eigenvectors for both eigenvalues. For $\lambda=1$:

$$
A-I=\left(\begin{array}{cc}
-.2 & .4 \\
\star & \star
\end{array}\right) \Longrightarrow\binom{.4}{.2} \text { is an eigenvector }
$$

For $\lambda=.4$:

$$
A-.4 I=\left(\begin{array}{cc}
.4 & .4 \\
\star & \star
\end{array}\right) \Longrightarrow\binom{.4}{-.4} \text { is an eigenvector }
$$

Third (1 point): Write down the decomposition $A=P D P^{-1}$ where

$$
P=\left(\begin{array}{cc}
.4 & .4 \\
.2 & -.4
\end{array}\right) \quad D=\left(\begin{array}{cc}
1 & 0 \\
0 & .4
\end{array}\right)
$$

b) We can see that $.4\binom{1}{-1}=\binom{.4}{-.4}$ is a multiple of the eigenvector we found for the eigenvalue .4. So that $A\binom{1}{-1}=.4\binom{1}{-1}$. Applying this equality three times we get $A^{3}\binom{1}{-1}=(.4)^{3}\binom{1}{-1}$.
c) In general, for $A^{n}\binom{1}{-1}=(.4)^{n}\binom{1}{-1}$
d) Since $D=\left(\begin{array}{cc}1 & 0 \\ 0 & .4\end{array}\right)$, we have that $D^{n}=\left(\begin{array}{cc}1 & 0 \\ 0 & .4^{n}\end{array}\right)$.

Problem 5.

Consider the scaling-rotation matrix $C=\left(\begin{array}{cc}\frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2}\end{array}\right)$ and $A=\left(\begin{array}{cc}\frac{-1+\sqrt{3}}{2} & \sqrt{3} \\ \frac{\sqrt{3}}{2} & \frac{-1-\sqrt{3}}{2}\end{array}\right)$.
For the following problems, you can use that

$$
A=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{-1}{2} & \frac{-\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{-1}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{-1}{2} & 1
\end{array}\right)
$$

a) [1 point] Are A and C similar? Why or why not?
b) [3 points] Find a complex eigenvalue of A with its eigenvector.
c) [2 points] Write down the formula for the matrix of a rotation by angle θ composed with scaling by c. (No justification needed).
d) [2 points] By what factor does C scale?
e) [2 points] By what angle does C rotate?

Solution.

a) Yes. Because $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{cc}\frac{1}{2} & 0 \\ \frac{-1}{2} & 1\end{array}\right)$ are inverse of each other.
b) Using the formula from class we have that $A=P C P^{-1}$ where

$$
P=\left(\begin{array}{ll}
\operatorname{Re} v & \operatorname{Im} v
\end{array}\right) \quad C=\left(\begin{array}{cc}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right) .
$$

For some eigenvector v with eigenvalue λ. So one eigenvector is $\binom{2}{1+i}$ with eigenvalue $\frac{-1-\sqrt{3} i}{2}$.
c) The matrix is $c\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$.
d) The matrix C has already the form above with $\theta=2 \pi / 3$ and $c=1$, so scaling is by 1.
e) Alternatively, if we use the decomposition of A, we need to find the argument of $\bar{\lambda}=\frac{-1}{2}+\frac{\sqrt{3} i}{2}$. We draw a picture:

$$
\begin{aligned}
& \theta=\frac{\pi}{3} \text { (trig identity) } \\
& \text { argument of } \bar{\lambda}=\pi-\theta=\frac{2 \pi}{3}
\end{aligned}
$$

The matrix C rotates by $2 \pi / 3$.

Scoring Table

Please do not write on this area.

1	2	3	4	5	Total

[Scratch work]

