High degree vertices in random recursive trees

Laura Eslava joint work with Louigi Addario-Berry

McGill University

Random Structures and Algorithms, 2015

July 31st, 2015

Recursive trees: Standard construction

T_{n} is a rooted labelled tree on $[n]=\{1,2, \ldots, n\}$.
Given T_{n-1}, construct T_{n} :
\triangleright Add a vertex n,
\triangleright Select $j \in[n-1]$ uniformly at random,
\triangleright Add the edge $n \rightarrow j$.

Recursive trees: Standard construction

T_{n} is a rooted labelled tree on $[n]=\{1,2, \ldots, n\}$.
Given T_{n-1}, construct T_{n} :
\triangleright Add a vertex n,
\triangleright Select $j \in[n-1]$ uniformly at random,
\triangleright Add the edge $n \rightarrow j$.

Recursive trees: Standard construction

T_{n} is a rooted labelled tree on $[n]=\{1,2, \ldots, n\}$. Given T_{n-1}, construct T_{n} :
\triangleright Add a vertex n,
\triangleright Select $j \in[n-1]$ uniformly at random,
\triangleright Add the edge $n \rightarrow j$.

Recursive trees: Standard construction

T_{n} is a rooted labelled tree on $[n]=\{1,2, \ldots, n\}$. Given T_{n-1}, construct T_{n} :
\triangleright Add a vertex n,
\triangleright Select $j \in[n-1]$ uniformly at random,
\triangleright Add the edge $n \rightarrow j$.

Recursive trees: Standard construction

T_{n} is a rooted labelled tree on $[n]=\{1,2, \ldots, n\}$. Given T_{n-1}, construct T_{n} :
\triangleright Add a vertex n,
\triangleright Select $j \in[n-1]$ uniformly at random,
\triangleright Add the edge $n \rightarrow j$.

Recursive trees: Standard construction

T_{n} is a rooted labelled tree on $[n]=\{1,2, \ldots, n\}$. Given T_{n-1}, construct T_{n} :
\triangleright Add a vertex n,
\triangleright Select $j \in[n-1]$ uniformly at random,
\triangleright Add the edge $n \rightarrow j$.

Recursive trees: Standard construction

T_{n} is a rooted labelled tree on $[n]=\{1,2, \ldots, n\}$. Given T_{n-1}, construct T_{n} :
\triangleright Add a vertex n,
\triangleright Select $j \in[n-1]$ uniformly at random,
\triangleright Add the edge $n \rightarrow j$.

Facts. - Labels are increasing along root-to-leaf paths.

- There are $n-1$! possible outcomes for T_{n}.

Degree distribution

For $i \in[n]$ and $d \in \mathbb{N} \cup\{0\}$, let

$$
\begin{aligned}
\operatorname{deg}_{n}(i) & =\#\left\{j>i: j \rightarrow i \text { in } T_{n}\right\} \\
Z_{d}^{(n)} & =\#\left\{i \in[n]: \operatorname{deg}_{n}(i)=d\right\} .
\end{aligned}
$$

What can be said about $\left\{Z_{d}^{(n)}\right\}_{d \geq 0}$?

Degree distribution

For $i \in[n]$ and $d \in \mathbb{N} \cup\{0\}$, let

$$
\begin{aligned}
\operatorname{deg}_{n}(i) & =\#\left\{j>i: j \rightarrow i \text { in } T_{n}\right\} \\
Z_{d}^{(n)} & =\#\left\{i \in[n]: \operatorname{deg}_{n}(i)=d\right\}
\end{aligned}
$$

What can be said about $\left\{Z_{d}^{(n)}\right\}_{d \geq 0}$?

Asymptotic degree distribution

Theorem (Na, Rapoport 1970) For all $d \geq 0$, as $n \rightarrow \infty$

$$
n^{-1} \mathbb{E} Z_{d}^{(n)} \rightarrow 2^{-(d+1)}
$$

Asymptotic degree distribution

Theorem (Na, Rapoport 1970) For all $d \geq 0$, as $n \rightarrow \infty$

$$
n^{-1} \mathbb{E} Z_{d}^{(n)} \rightarrow 2^{-(d+1)}
$$

Theorem (Janson 2005) Jointly for all $d \geq 0$, as $n \rightarrow \infty$

$$
n^{-1 / 2}\left(Z_{d}^{(n)}-2^{-(d+1)} n\right) \xrightarrow{\text { dist }} V_{d} ;
$$

where the V_{d} are jointly Gaussian r.v.'s with zero mean and explicit covariance.

Maximum degree: $\Delta_{n}=\max \left\{\operatorname{deg}_{n}(i): i \in[n]\right\}$

Theorem (Devroye, Lu 1995) As $n \rightarrow \infty$, a.s.

$$
\frac{\Delta_{n}}{\log _{2} n} \rightarrow 1
$$

Heuristic.
\triangleright Suppose $\mathbb{E} Z_{m}^{(n)} \approx n 2^{-(m+1)}$ for $m(n) \rightarrow \infty$.
Then $\mathbb{E} Z_{\left\lfloor\log _{2} n\right\rfloor} \approx 1$.

Maximum degree: $\Delta_{n}=\max \left\{\operatorname{deg}_{n}(i): i \in[n]\right\}$

Theorem (Devroye, Lu 1995) As $n \rightarrow \infty$, a.s.

$$
\frac{\Delta_{n}}{\log _{2} n} \rightarrow 1
$$

Heuristic.
\triangleright Suppose $\mathbb{E} Z_{m}^{(n)} \approx n 2^{-(m+1)}$ for $m(n) \rightarrow \infty$. Then $\mathbb{E} Z_{\left\lfloor\log _{2} n\right\rfloor} \approx 1$.

Some new questions

- Which vertex attains the maximum degree?
- How many do?

For $d \in \mathbb{Z}$, let

$$
X_{d}^{(n)}=Z_{\left\lfloor\log _{2} n\right\rfloor+d}^{(n)}=\#\left\{i \in[n]: \operatorname{deg}_{n}(i)=\left\lfloor\log _{2} n\right\rfloor+d\right\}
$$

Asymptotic High-degree distribution

Theorem (Addario-Berry,E. 2015 ${ }^{+}$) Let $n=2^{k}$. Jointly for all $d \in \mathbb{Z}$, as $k \rightarrow \infty$

$$
X_{d}^{(n)} \xrightarrow{\text { dist }} W_{d}
$$

where the W_{d} are independent Poisson r.v.'s with mean $2^{-(d+1)}$.

Furthermore: $\quad \sum_{j \geq d} X_{d}^{(n)} \xrightarrow{\text { dist }} \sum_{j \geq d} W_{j}$.

Detour Maximum degree distribution

Theorem (Addario-Berry, E. 2015 ${ }^{+}$) Let $n=2^{k}$. If $\lim \inf d(n)>-\infty$ and $\log _{2} n+d(n)<2 \ln n$, then

$$
\mathbb{P}\left(\Delta_{n} \geq \log _{2} n+d\right)=\left(1-e^{-2^{-d}}\right)(1+o(1))
$$

Remarks.

- 'Discrete' version of the Gumbel's distribution.
- Goh and Schmutz (2002) proved the case $d \in \mathbb{Z}$ fixed.

Heuristic.

$$
\begin{aligned}
& \triangleright\left\{\Delta_{n} \geq \log _{2} n+d\right\} \text { iff }\left\{\sum_{j \geq d} X_{d}^{(n)}>0\right\} \\
& \triangleright \mathbb{P}(\operatorname{Poi}(\lambda)>0)=1-e^{-\lambda} .
\end{aligned}
$$

The crutial task

Let

$$
X_{\geq d}^{(n)}=\#\left\{i \in[n]: \operatorname{deg}_{n}(i) \geq\left\lfloor\log _{2} n\right\rfloor+d\right\}
$$

Key Property. Let $n=2^{k}$. For any $d \in \mathbb{Z}$, as $k \rightarrow \infty$

$$
X_{\geq d}^{(n)} \xrightarrow{\text { dist }} \operatorname{Poi}\left(2^{-d}\right) .
$$

The crutial task

Let

$$
X_{\geq d}^{(n)}=\#\left\{i \in[n]: \operatorname{deg}_{n}(i) \geq\left\lfloor\log _{2} n\right\rfloor+d\right\}
$$

Key Property. Let $n=2^{k}$. For any $d \in \mathbb{Z}$, as $k \rightarrow \infty$

$$
X_{\geq d}^{(n)} \xrightarrow{\text { dist }} \operatorname{Poi}\left(2^{-d}\right) .
$$

Proof's technique: Method of moments.
First step:

$$
\begin{gathered}
\mathbb{E} X_{\geq d}^{(n)} \rightarrow 2^{-d} \\
\mathbb{E} X_{\geq d}^{(n)}=\sum_{i \in[n]} \mathbb{P}\left(\operatorname{deg}_{n}(i) \geq\left\lfloor\log _{2} n\right\rfloor+d\right)
\end{gathered}
$$

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, $\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, (1)
 select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of
 such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of
 such trees.

* All r.v.'s are independent.

A new approach: Coalescent

F_{1}, \ldots, F_{n} are labelled forests on n vertices, with directed edges.
$F_{t}=\left\{T_{1}^{(t)}, \ldots, T_{n-t+1}^{(t)}\right\}$, trees listed in \nearrow order of least element.
To construct F_{t}, given F_{t-1} :
\triangleright Select two trees with indices $\left\{a_{t}, b_{t}\right\}$ uniformly at random.
\triangleright According to a fair coin flip ξ_{t}, select the direction of the edge that will connect the root of such trees.

* All r.v.'s are independent.

Exchangeable construction

Fact.

\triangleright Vertex labels in $T_{1}^{(n)}$ are exchangeable.

Claim. $T_{1}^{(n)}$ has same degree distribution as a RRT tree.

Exchangeable construction

Fact.

\triangleright Vertex labels in $T_{1}^{(n)}$ are exchangeable.

Claim. $T_{1}^{(n)}$ has same degree distribution as a RRT tree.

Proof sketch.

- 'Edge labels' are decreasing along root-to-leaf paths.
- There are $n!(n-1)$! possible outcomes for $T_{1}^{(n)}$.

Degree of vertex 1 in $T_{1}^{(n)}:=\operatorname{deg}^{*}(1)$

$$
\text { Let } S=\left\{t \in[n-1]: 1 \in\left\{a_{t}, b_{t}\right\}\right\} .
$$

Claim.

$$
\mathbb{P}\left(\operatorname{deg}^{*}(1) \geq m\right)=2^{-m} \mathbb{P}(|S| \geq m)
$$

Degree of vertex 1 in $T_{1}^{(n)}:=\operatorname{deg}^{*}(1)$

$$
\text { Let } S=\left\{t \in[n-1]: 1 \in\left\{a_{t}, b_{t}\right\}\right\} .
$$

Claim.

$$
\mathbb{P}\left(\operatorname{deg}^{*}(1) \geq m\right)=2^{-m} \mathbb{P}(|S| \geq m)
$$

Proof.
Vertex 1 is in $T_{1}^{(t)}$ for all $t \in[n]$. Then, its degree increases

- only at steps $t \in S$,
- only if vertex 1 is a root in F_{t}.

Stick-breaking process: $S=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{|S|}\right\}$

Lemma. For any $m<2 \ln n$, as $n \rightarrow \infty$

$$
\mathbb{P}(|S| \geq m) \rightarrow 1
$$

Heuristic.

Let τ_{j} be the j-th time $1 \in\left\{a_{t}, b_{t}\right\}$ then $n-\tau_{j+1}$ is close to $B_{j}\left(n-\tau_{j}\right)$, where B_{j} are independent $\operatorname{Beta}(2,1)$ r.v.'s.

Note. $\log _{2} n<2 \ln n$.

Perks of the new contruction

Key Property. Let $n=2^{k}$. For any $d \in \mathbb{Z}$, as $k \rightarrow \infty$

$$
X_{\geq d}^{(n)} \xrightarrow{\text { dist }} \operatorname{Poi}\left(2^{-d}\right) .
$$

Perks of the new contruction

Key Property. Let $n=2^{k}$. For any $d \in \mathbb{Z}$, as $k \rightarrow \infty$

$$
X_{\geq d}^{(n)} \xrightarrow{\text { dist }} \operatorname{Poi}\left(2^{-d}\right) .
$$

Proof sketch.
\triangleright Alternative construction + Exchangeability

$$
\mathbb{E} X_{\geq d}^{(n)}=n \mathbb{P}\left(\operatorname{deg}^{*}(1) \geq\left\lfloor\log _{2} n\right\rfloor+d\right)
$$

Perks of the new contruction

Key Property. Let $n=2^{k}$. For any $d \in \mathbb{Z}$, as $k \rightarrow \infty$

$$
X_{\geq d}^{(n)} \xrightarrow{\text { dist }} \operatorname{Poi}\left(2^{-d}\right) .
$$

Proof sketch.

\triangleright Alternative construction + Exchangeability
\triangleright Decoupling randomness + 'Stick-breaking process'

$$
\begin{aligned}
\mathbb{E} X_{\geq d}^{(n)} & =n \mathbb{P}\left(\operatorname{deg}^{*}(1) \geq\left\lfloor\log _{2} n\right\rfloor+d\right) \\
& =n \cdot 2^{-\left(\left\lfloor\log _{2} n\right\rfloor+d\right)} \mathbb{P}\left(|S| \geq\left\lfloor\log _{2} n\right\rfloor+d\right) \\
& =2^{-d}(1+o(1))
\end{aligned}
$$

Perks of the new contruction

Key Property. Let $n=2^{k}$. For any $d \in \mathbb{Z}$, as $k \rightarrow \infty$

$$
X_{\geq d}^{(n)} \xrightarrow{\text { dist }} \operatorname{Poi}\left(2^{-d}\right) .
$$

Proof sketch.

\triangleright Alternative construction + Exchangeability
\triangleright Decoupling randomness + 'Stick-breaking process'

$$
\begin{aligned}
\mathbb{E} X_{\geq d}^{(n)} & =n \mathbb{P}\left(\operatorname{deg}^{*}(1) \geq\left\lfloor\log _{2} n\right\rfloor+d\right) \\
& =n \cdot 2^{-\left(\left\lfloor\log _{2} n\right\rfloor+d\right)} \mathbb{P}\left(|S| \geq\left\lfloor\log _{2} n\right\rfloor+d\right) \\
& =2^{-d}(1+o(1))
\end{aligned}
$$

Apply analogous arguments for higher moments of $X_{\geq d}^{(n)}$.

Thank you!

Image from scalefreenetworks, Flickr

