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Recursive trees: Standard construction

Tn is a rooted labelled tree on [n] = {1, 2, . . . , n}.
Given Tn−1, construct Tn:

. Add a vertex n,

. Select j ∈ [n − 1]
uniformly at random,

. Add the edge n→ j .
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Facts. - Labels are increasing along root-to-leaf paths.
Factsj. - There are n − 1! possible outcomes for Tn.
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Degree distribution

For i ∈ [n] and d ∈ N ∪ {0}, let

degn(i) = #{j > i : j → i in Tn},
Z

(n)
d = #{i ∈ [n] : degn(i) = d}.

What can be said about {Z (n)
d }d≥0?

n

j

Z0 Z1 Zd−1 Zd Zd+1

· · · · · ·
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Asymptotic degree distribution

Theorem (Na, Rapoport 1970) For all d ≥ 0, as n→∞

n−1EZ (n)
d → 2−(d+1).

Theorem (Janson 2005) Jointly for all d ≥ 0, as n→∞

n−1/2(Z
(n)
d − 2−(d+1)n)

dist−→ Vd ;

where the Vd are jointly Gaussian r.v.’s with zero mean and
explicit covariance.
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Maximum degree: ∆n = max{degn(i) : i ∈ [n]}

Theorem (Devroye, Lu 1995) As n→∞, a.s.

∆n

log2 n
→ 1.

Heuristic.

. Suppose EZ (n)
m ≈ n2−(m+1) for m(n)→∞.

Then EZblog2 nc ≈ 1.

? ? ? ? ?
Zblog2 nc−2 Zblog2 nc−1 Zblog2 nc Zblog2 nc+1 Zblog2 nc+2

· · · · · ·
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Some new questions

- Which vertex attains the maximum degree?

- How many do?

? ? ? ? ?
Zblog2 nc−2 Zblog2 nc−1 Zblog2 nc Zblog2 nc+1 Zblog2 nc+2

· · · · · ·

For d ∈ Z, let

X
(n)
d = Z

(n)
blog2 nc+d = #{i ∈ [n] : degn(i) = blog2 nc+ d}



Asymptotic High-degree distribution

Theorem (Addario-Berry,E. 2015+) Let n = 2k . Jointly for all
d ∈ Z, as k →∞

X
(n)
d

dist−→Wd ;

where the Wd are independent Poisson r.v.’s with mean 2−(d+1).

X−3 X−2 X−1 X0 X1

· · · · · ·

Furthermore:
∑

j≥d X
(n)
d

dist−→∑
j≥d Wj .



Detour Maximum degree distribution

Theorem (Addario-Berry,E. 2015+) Let n = 2k . If
lim inf d(n) > −∞ and log2 n + d(n) < 2 ln n, then

P(∆n ≥ log2 n + d) = (1− e−2
−d

)(1 + o(1)).

Remarks.

- ‘Discrete’ version of the Gumbel’s distribution.

- Goh and Schmutz (2002) proved the case d ∈ Z fixed.

Heuristic.

. {∆n ≥ log2 n + d} iff {∑j≥d X
(n)
d > 0}

. P(Poi(λ) > 0) = 1− e−λ.



The crutial task

Let
X≥d

(n) = #{i ∈ [n] : degn(i) ≥ blog2 nc+ d}

Key Property. Let n = 2k . For any d ∈ Z, as k →∞

X
(n)
≥d

dist−→ Poi(2−d).

Proof’s technique: Method of moments.
First step:

EX (n)
≥d → 2−d .

EX (n)
≥d =

∑

i∈[n]
P(degn(i) ≥ blog2 nc+ d)



The crutial task

Let
X≥d

(n) = #{i ∈ [n] : degn(i) ≥ blog2 nc+ d}

Key Property. Let n = 2k . For any d ∈ Z, as k →∞

X
(n)
≥d

dist−→ Poi(2−d).

Proof’s technique: Method of moments.
First step:

EX (n)
≥d → 2−d .

EX (n)
≥d =

∑

i∈[n]
P(degn(i) ≥ blog2 nc+ d)



A new approach: Coalescent

F1, . . . ,Fn are labelled forests on n vertices, with directed edges.

Ft = {T (t)
1 , . . . ,T

(t)
n−t+1}, trees listed in ↗ order of least element.

To construct Ft , given Ft−1:

. Select two trees with indices

{at , bt} uniformly at random.

. According to a fair coin flip ξt ,

select the direction of the edge

that will connect the root of

such trees.

∗ All r.v.’s are independent.
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Exchangeable construction

Fact.

. Vertex labels in T
(n)
1 are exchangeable.

Claim. T
(n)
1 has same degree distribution as a RRT tree.

Proof sketch.

- ‘Edge labels’ are decreasing along root-to-leaf paths.

- There are n!(n − 1)! possible outcomes for T
(n)
1 .
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Degree of vertex 1 in T
(n)
1 := deg∗(1)

Let S = {t ∈ [n − 1] : 1 ∈ {at , bt}}.

Claim.
P(deg∗(1) ≥ m) = 2−mP(|S | ≥ m).

Proof.

Vertex 1 is in T
(t)
1 for all t ∈ [n]. Then, its degree increases

- only at steps t ∈ S ,

- only if vertex 1 is a root in Ft . �
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Stick-breaking process: S = {τ1, τ2, . . . , τ|S |}

Lemma. For any m < 2 ln n, as n→∞

P(|S | ≥ m)→ 1.

Heuristic.
Let τj be the j-th time 1 ∈ {at , bt} then n − τj+1 is close to
Bj(n − τj), where Bj are independent Beta(2, 1) r.v.’s.

︷ ︸︸ ︷
AAAAAAAAAAAA

︷ ︸︸ ︷
AAAAAAAAAAAA

τj n

τj+1 n− τj+1

AAAAAAAAAAAAAAAAAAAA︸ ︷︷ ︸
n− τj

0 1

Bj

�

Note. log2 n < 2 ln n.



Perks of the new contruction

Key Property. Let n = 2k . For any d ∈ Z, as k →∞

X
(n)
≥d

dist−→ Poi(2−d).

Proof sketch.

. Alternative construction + Exchangeability

. Decoupling randomness + ‘Stick-breaking process’

EX≥d (n) = nP(deg∗(1) ≥ blog2 nc+ d),

= n · 2−(blog2 nc+d)P(|S | ≥ blog2 nc+ d),

= 2−d(1 + o(1)).

Apply analogous arguments for higher moments of X
(n)
≥d . �
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Thank you!
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