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Recursive trees: Standard construction

T, is a rooted labelled tree on [n] = {1,2,...,n}.
Given T,_1, construct T,:

> Add a vertex n, 1
> Select j € [n—1]
uniformly at random,

> Add the edge n — J.
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Recursive trees: Standard construction

T, is a rooted labelled tree on [n] = {1,2,...,n}.
Given T,_1, construct T,:

> Add a vertex n, 1
> Select j € [n—1]
uniformly at random,

> Add the edge n — j.

Facts. - Labels are increasing along root-to-leaf paths.
- There are n — 1! possible outcomes for T,,.



Degree distribution

For i € [n] and d € NU {0}, let

deg,(i)=#{j>i: j—iin T,},
ZU = (i € [n] : deg, (i) = d}.

What can be said about {Z(S")}dzo?
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Asymptotic degree distribution

Theorem (Na, Rapoport 1970) For all d >0, as n — oo
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Theorem (Na, Rapoport 1970) For all d >0, as n — oo
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Theorem (Janson 2005) Jointly for all d > 0, as n — oo
n_l/z(Z(sn) - 2_(d+1)n) dist, Vy;

where the V/; are jointly Gaussian r.v.'s with zero mean and
explicit covariance.



Maximum degree: A, = max{deg,(i): i € [n]}

Theorem (Devroye, Lu 1995) As n — oo, a.s.
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Heuristic.

> Suppose EZ\™ ~ n2=(m+1) for m(n) — oc.
Then EZ|10g, 5 ~ 1.



Maximum degree: A, = max{deg,(i): i € [n]}

Theorem (Devroye, Lu 1995) As n — oo, a.s.
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Heuristic.

> Suppose EZS ~ n2=(m+1) for m(n) — oc.
Then EZ|\q, 5| =~ 1.
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Some new questions

Which vertex attains the maximum degree?

How many do?
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For d € Z, let

XS") = ZL(|,C7>)gz nj+a = #{i € [n] : deg,(i) = [logy n] + d}



Asymptotic High-degree distribution

Theorem (Addario-Berry,E. 2015%) Let n = 2k, Jointly for all

deZ,as k— o0 _
X Ly

where the are independent Poisson r.v.’s with mean 27 (d+1),
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Detour

Theorem (Addario-Berry,E. 2015%) Let n = 2k. If
liminf d(n) > —oo and log, n+ d(n) < 2Inn, then

P(A, > logyn+d) = (1 —e 2 “)(1+ o(1)).

Remarks.

- 'Discrete’ version of the Gumbel's distribution.

- proved the case d € Z fixed.
Heuristic.

> {An > logy n+ d} iff {34 X5 > 0}

> P(Poi(\) > 0)=1—e™.



The crutial task

Let
X" = #{i € [n] : deg,,(i) > |log, n| + d}

Key Property. Let n = 2. For any d € Z, as k — oo

x{) 4% poi(279),



The crutial task

Let
X" = #{i € [n] : deg,,(i) > |log, n| + d}

Key Property. Let n = 2. For any d € Z, as k — oo

x{) 4% poi(279),

Proof’s technique: Method of moments.
First step:
EX!) — 279,

EX{) = " P(deg,(i) > [log, | + d)



A new approach: Coalescent

Fi,..., F, are labelled forests on n vertices, with directed edges.
Fr={ }, trees listed in * order of least element.

To construct F;, given Fi_1:

> Select two trees with
uniformly at random.
> According to a , 6 3
select the direction of the edge
that will connect the root of
such trees.

* All r.v.'s are independent.
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A new approach: Coalescent

Fi,..., F, are labelled forests on n vertices, with directed edges.
Fr={ }, trees listed in * order of least element.

To construct F;, given Fi_1:

> Select two trees with 9
uniformly at random.

> According to a ,

select the direction of the edge 6 3
that will connect the root of
such trees. 4 I

* All r.v.'s are independent.



Exchangeable construction

Fact.

> Vertex labels in Tl(") are exchangeable.

Claim. Tl(") has same degree distribution as a RRT tree.



Exchangeable construction

Fact.

> Vertex labels in Tl(") are exchangeable.

Claim. Tl(") has same degree distribution as a RRT tree.

Proof sketch.

- 'Edge labels’ are along root-to-leaf paths.
- There are possible outcomes for Tl(").
2 1
e
6 3 5 2 3 6



Degree of vertex 1 in T7.”:— deg*(1)

Let S={te[n—1]: 1€ {a b:}}.

Claim.
P(deg*(1) > m) = 2"P(|S| > m).



Degree of vertex 1 deg™(1)

Let S={te[n—1]: 1€ {as, b:}}.

Claim.
P(deg™(1) > m) = 2-"B(|S| > m).

Proof.
Vertex 1 is in Tl(t) for all t € [n]. Then, its degree increases

- only at steps t € S,

- only if vertex 1 is a root in F;.



Stick-breaking process:

Lemma. Forany m<2Inn,as n— oo
P(|S| > m) — 1.

Heuristic.

Let 7; be the j-th time 1 € {a;, bt} then n — 7,1 is close to

B;j(n — 7j), where B; are independent Beta(2,1) r.v.'s.
n—Tji1 B;
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Note. log, n < 2Inn.



Perks of the new contruction

Key Property. Let n= 2. Forany d € Z, as k — oo

X 4% poi(2-9),



Perks of the new contruction
Key Property. Let n= 2. Forany d € Z, as k — oo
X 4% poi(2-9),

Proof sketch.

> Alternative construction 4+ Exchangeability

EX>4(" = nP(deg*(1) > |log, n| + d),



Perks of the new contruction

Key Property. Let n= 2. Forany d € Z, as k — oo
X 4% poi(2-9),

Proof sketch.
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> Decoupling randomness + ‘Stick-breaking process’
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Perks of the new contruction

Key Property. Let n= 2. Forany d € Z, as k — oo
X 4% poi(2-9),

Proof sketch.

> Alternative construction 4+ Exchangeability

> Decoupling randomness + ‘Stick-breaking process’

EX>4(" = nP(deg*(1) > |log, n| + d),
= n -2~ (lee2nl+)p(|§| > |log, n] + d),
=279(1+ o(1)).

Apply analogous arguments for higher moments of Xﬁ").



Thank you!
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