High degree vertices in random recursive trees

Laura Eslava joint work with Louigi Addario-Berry

McGill University

Random Structures and Algorithms, 2015 July 31st, 2015

- ▷ Add a vertex n,
- ▷ Select $j \in [n-1]$ uniformly at random,
- ▷ Add the edge $n \rightarrow j$.

- ▷ Add a vertex n,
- ▷ Select $j \in [n-1]$ uniformly at random,
- ▷ Add the edge $n \rightarrow j$.

- ▷ Add a vertex n,
- ▷ Select $j \in [n-1]$ uniformly at random,
- ▷ Add the edge $n \rightarrow j$.

- ▶ Add a vertex *n*,
- ▷ Select $j \in [n-1]$ uniformly at random,
- ▷ Add the edge $n \rightarrow j$.

- ▶ Add a vertex *n*,
- ▷ Select $j \in [n-1]$ uniformly at random,
- ▷ Add the edge $n \rightarrow j$.

- ▷ Add a vertex n,
- ▷ Select $j \in [n-1]$ uniformly at random,
- ▷ Add the edge $n \rightarrow j$.

- ▶ Add a vertex *n*,
- ▷ Select $j \in [n-1]$ uniformly at random,
- ▷ Add the edge $n \rightarrow j$.

- Facts. Labels are increasing along root-to-leaf paths.
 - There are n 1! possible outcomes for T_n .

Degree distribution

For $i \in [n]$ and $d \in \mathbb{N} \cup \{0\}$, let

$$\deg_n(i) = \#\{j > i : j \to i \text{ in } T_n\},\\ Z_d^{(n)} = \#\{i \in [n] : \deg_n(i) = d\}.$$

What can be said about $\{Z_d^{(n)}\}_{d\geq 0}$?

Degree distribution

For $i \in [n]$ and $d \in \mathbb{N} \cup \{0\}$, let

$$\deg_n(i) = \#\{j > i : j \to i \text{ in } T_n\},\\ Z_d^{(n)} = \#\{i \in [n] : \deg_n(i) = d\}.$$

What can be said about $\{Z_d^{(n)}\}_{d\geq 0}$?

Asymptotic degree distribution

Theorem (Na, Rapoport 1970) For all $d \ge 0$, as $n \to \infty$

$$n^{-1}\mathbb{E}Z_d^{(n)} \to 2^{-(d+1)}.$$

Theorem (Na, Rapoport 1970) For all $d \ge 0$, as $n \to \infty$

$$n^{-1}\mathbb{E}Z_d^{(n)} \to 2^{-(d+1)}$$

Theorem (Janson 2005) Jointly for all $d \ge 0$, as $n \to \infty$

$$n^{-1/2}(Z_d^{(n)}-2^{-(d+1)}n)\stackrel{\mathrm{dist}}{\longrightarrow} V_d;$$

where the V_d are jointly Gaussian r.v.'s with zero mean and explicit covariance.

Maximum degree: $\Delta_n = \max\{\deg_n(i) : i \in [n]\}$

Theorem (Devroye, Lu 1995) As $n \to \infty$, a.s.

$$\frac{\Delta_n}{\log_2 n} \to 1.$$

Heuristic.

▷ Suppose
$$\mathbb{E}Z_m^{(n)} \approx n2^{-(m+1)}$$
 for $m(n) \to \infty$.
Then $\mathbb{E}Z_{\lfloor \log_2 n \rfloor} \approx 1$.

Maximum degree: $\Delta_n = \max\{\deg_n(i) : i \in [n]\}$

Theorem (Devroye, Lu 1995) As $n \to \infty$, a.s.

$$\frac{\Delta_n}{\log_2 n} \to 1.$$

Heuristic.

▷ Suppose
$$\mathbb{E}Z_m^{(n)} \approx n2^{-(m+1)}$$
 for $m(n) \to \infty$.
Then $\mathbb{E}Z_{\lfloor \log_2 n \rfloor} \approx 1$.

$$\cdots \qquad \underbrace{\begin{array}{c} & & \\$$

Some new questions

- Which vertex attains the maximum degree?
- How many do?

$$\cdots \qquad \underbrace{\underset{Z_{\lfloor \log_2 n \rfloor - 2}}{?}}_{Z_{\lfloor \log_2 n \rfloor - 1}} \qquad \underbrace{\underset{Z_{\lfloor \log_2 n \rfloor}}{?}}_{Z_{\lfloor \log_2 n \rfloor}} \qquad \underbrace{\underset{Z_{\lfloor \log_2 n \rfloor + 1}}{?}}_{Z_{\lfloor \log_2 n \rfloor + 1}} \qquad \underbrace{\underset{Z_{\lfloor \log_2 n \rfloor + 2}}{?}}_{Z_{\lfloor \log_2 n \rfloor + 2}} \qquad \cdots$$

For $d \in \mathbb{Z}$, let

$$X_d^{(n)} = Z_{\lfloor \log_2 n \rfloor + d}^{(n)} = \#\{i \in [n] : \deg_n(i) = \lfloor \log_2 n \rfloor + d\}$$

Asymptotic High-degree distribution

Theorem (Addario-Berry, E. 2015⁺) Let $n = 2^k$. Jointly for all $d \in \mathbb{Z}$, as $k \to \infty$

 $X_d^{(n)} \stackrel{\text{dist}}{\longrightarrow} W_d;$

where the W_d are independent Poisson r.v.'s with mean $2^{-(d+1)}$.

Furthermore:
$$\sum_{j\geq d} X_d^{(n)} \xrightarrow{\text{dist}} \sum_{j\geq d} W_j.$$

Detour Maximum degree distribution

Theorem (Addario-Berry, E. 2015⁺) Let $n = 2^k$. If lim inf $d(n) > -\infty$ and $\log_2 n + d(n) < 2 \ln n$, then

$$\mathbb{P}(\Delta_n \ge \log_2 n + d) = (1 - e^{-2^{-d}})(1 + o(1)).$$

Remarks.

- 'Discrete' version of the Gumbel's distribution.
- Goh and Schmutz (2002) proved the case $d \in \mathbb{Z}$ fixed.

Heuristic.

$$\triangleright \ \{\Delta_n \ge \log_2 n + d\} \text{ iff } \{\sum_{j \ge d} X_d^{(n)} > 0\}$$
$$\triangleright \ \mathbb{P}(\operatorname{Poi}(\lambda) > 0) = 1 - e^{-\lambda}.$$

The crutial task

Let

$$X_{\geq d}^{(n)} = \#\{i \in [n] : \deg_n(i) \geq \lfloor \log_2 n \rfloor + d\}$$

Key Property. Let $n = 2^k$. For any $d \in \mathbb{Z}$, as $k \to \infty$

$$X^{(n)}_{\geq d} \stackrel{\text{dist}}{\longrightarrow} \operatorname{Poi}(2^{-d}).$$

The crutial task

Let

$$X_{\geq d}^{(n)} = \#\{i \in [n] : \deg_n(i) \geq \lfloor \log_2 n \rfloor + d\}$$

Key Property. Let $n = 2^k$. For any $d \in \mathbb{Z}$, as $k \to \infty$

$$X^{(n)}_{\geq d} \stackrel{\text{dist}}{\longrightarrow} \operatorname{Poi}(2^{-d}).$$

Proof's technique: Method of moments. First step:

$$\mathbb{E} X_{\geq d}^{(n)} \to 2^{-d}.$$

$$\mathbb{E} X^{(n)}_{\geq d} = \sum_{i \in [n]} \mathbb{P}(\deg_n(i) \geq \lfloor \log_2 n \rfloor + d)$$

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- According to a fair coin flip ξ_t, select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices {a_t, b_t} uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- According to a fair coin flip ξ_t, select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

- ▷ Select two trees with indices $\{a_t, b_t\}$ uniformly at random.
- ▷ According to a fair coin flip ξ_t , select the direction of the edge that will connect the root of such trees.
- * All r.v.'s are independent.

Exchangeable construction

Fact.

▷ Vertex labels in $T_1^{(n)}$ are exchangeable.

Claim. $T_1^{(n)}$ has same degree distribution as a RRT tree.

Exchangeable construction

Fact.

▷ Vertex labels in $T_1^{(n)}$ are exchangeable.

Claim. $T_1^{(n)}$ has same degree distribution as a RRT tree.

Proof sketch.

- 'Edge labels' are decreasing along root-to-leaf paths.
- There are n!(n-1)! possible outcomes for $T_1^{(n)}$.

Degree of vertex 1 in $T_1^{(n)} := \deg^*(1)$

Let
$$S = \{t \in [n-1] : 1 \in \{a_t, b_t\}\}.$$

Claim.

$$\mathbb{P}(\deg^*(1) \ge m) = 2^{-m}\mathbb{P}(|S| \ge m).$$

Degree of vertex 1 in $T_1^{(n)} := \deg^*(1)$

Let
$$S = \{t \in [n-1] : 1 \in \{a_t, b_t\}\}.$$

Claim.

$$\mathbb{P}(\mathsf{deg}^*(1) \geq m) = 2^{-m} \mathbb{P}(|S| \geq m).$$

Proof.

Vertex 1 is in $T_1^{(t)}$ for all $t \in [n]$. Then, its degree increases

- only at steps $t \in S$,
- only if vertex 1 is a root in F_t .

Stick-breaking process: $S = \{\tau_1, \tau_2, \dots, \tau_{|S|}\}$

Lemma. For any $m < 2 \ln n$, as $n \to \infty$

$$\mathbb{P}(|S| \geq m) \to 1.$$

Heuristic.

Let τ_j be the *j*-th time $1 \in \{a_t, b_t\}$ then $n - \tau_{j+1}$ is close to $B_j(n - \tau_j)$, where B_j are independent Beta(2, 1) r.v.'s.

Note. $\log_2 n < 2 \ln n$.

Key Property. Let $n = 2^k$. For any $d \in \mathbb{Z}$, as $k \to \infty$

$$X^{(n)}_{\geq d} \stackrel{\text{dist}}{\longrightarrow} \operatorname{Poi}(2^{-d}).$$

Key Property. Let $n = 2^k$. For any $d \in \mathbb{Z}$, as $k \to \infty$ $X_{>d}^{(n)} \xrightarrow{\text{dist}} \text{Poi}(2^{-d}).$

Proof sketch.

Alternative construction + Exchangeability

$$\mathbb{E} X_{\geq d}^{(n)} = n \mathbb{P}(\deg^*(1) \geq \lfloor \log_2 n \rfloor + d),$$

Key Property. Let $n = 2^k$. For any $d \in \mathbb{Z}$, as $k \to \infty$

$$X^{(n)}_{\geq d} \stackrel{\text{dist}}{\longrightarrow} \operatorname{Poi}(2^{-d}).$$

Proof sketch.

- Alternative construction + Exchangeability
- Decoupling randomness + 'Stick-breaking process'

$$\begin{split} \mathbb{E} X_{\geq d}^{(n)} &= n \mathbb{P}(\deg^*(1) \geq \lfloor \log_2 n \rfloor + d), \\ &= n \cdot 2^{-(\lfloor \log_2 n \rfloor + d)} \mathbb{P}(|S| \geq \lfloor \log_2 n \rfloor + d), \\ &= 2^{-d} (1 + o(1)). \end{split}$$

Key Property. Let $n = 2^k$. For any $d \in \mathbb{Z}$, as $k \to \infty$

$$X^{(n)}_{\geq d} \stackrel{\text{dist}}{\longrightarrow} \operatorname{Poi}(2^{-d}).$$

Proof sketch.

- Alternative construction + Exchangeability
- Decoupling randomness + 'Stick-breaking process'

$$\begin{split} \mathbb{E} X_{\geq d}^{(n)} &= n \mathbb{P}(\deg^*(1) \geq \lfloor \log_2 n \rfloor + d), \\ &= n \cdot 2^{-(\lfloor \log_2 n \rfloor + d)} \mathbb{P}(|S| \geq \lfloor \log_2 n \rfloor + d), \\ &= 2^{-d} (1 + o(1)). \end{split}$$

Apply analogous arguments for higher moments of $X_{\geq d}^{(n)}$.

Thank you!

Image from scalefreenetworks, Flickr