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Underlying idea

Random recursive trees/
Kingman’s coalescent (Union-Find tree) duality.



Recursive trees: Standard construction

Tn is a rooted labelled tree on V (Tn) = {0, . . . , n − 1}.

Given Tn, construct Tn+1:

. Add a vertex labelled n,

. Select j ∈ V (Tn)
uniformly at random,

. Add the edge n→ j .

0

1

Facts. - Vertex labels are increasing along root-to-leaf paths.
Factsj. - There are (n − 1)! possible outcomes for Tn.
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Degree and depth

For i ∈ V (Tn), let

degn(i) = #{j > i : j → i in Tn},
htn(i) = dist(0, i)

0

i



Depth of final vertex

Theorem. (Devroye, 1988, Mahmoud 1991) As n→∞,

htn(n − 1)− ln n√
ln n

L−→ N(0, 1).

Proof’s idea: Theory of records

v0 = n − 1, vi+1 = bviUic,
htn(n − 1) = min{i : vi = 0}

L
=

n−1∑

k=1

Ber(1/k)

The Bernoulli variables are independent.

.
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Depth of a uniformly chosen vertex

Theorem. (Devroye, 1988, Mahmoud 1991) As n→∞,

htn(n − 1)− ln n√
ln n

L−→ N(0, 1).

Corollary. Choose uniformly a vertex u ∈ Tn. As n→∞,

htn(u)− ln n√
ln n

L−→ N(0, 1)



What can we say about high-degree vertices?

Theorem (Devroye, Lu 1995) Let ∆n = max{degn(i) : i ∈ V (Tn)}.
As n→∞, a.s.

∆n

log2 n
→ 1.
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Asymptotic High-degree distribution

X
(n)
d = #{i ∈ [n] : degn(i) = blog2 nc+ d}

Theorem (Addario-Berry,E. 2015+) Let n = 2k . Jointly for all d ∈ Z, as
k →∞

X
(n)
d

L−→Wd ;

where the Wd are independent Poisson r.v.’s with mean 2−(d+1).

X−3 X−2 X−1 X0 X1

· · · · · ·



A marked point process on Z× R

Let 2α = log2 e, then 2α ln n = log2 n.

DH(n) :

=

(
degn(v)− blog2 nc, htn(v)−(1−α) lnn√

(1−α−α2/2) lnn

)

−2 −1 0 1 2

· · · · · ·



A marked point process on Z× R

Theorem (E. 2015+) Let n = 2k . There is an explicit marked point
process MP, such that in the space of marked point processes on Z×R,
as k →∞

DH(n) L−→MP;

the marks are distributed as independent standard gaussian variables.

DH(n) :

=

(
degn(v)− blog2 nc, htn(v)−(1−α) lnn√

(1−α−α2/2) lnn

)

−2 −1 0 1 2
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Conditional depth of a high-degree vertex

Proposition (E. 2015+) Choose uniformly a vertex u ∈ V (Tn).
Fix m ∈ Z, conditional on degn u = blog2 nc+ m, as n→∞

htn(u)− (1− α) ln n√
(1− α + α2/2) ln n

L−→ N(0, 1);

where 2α = log2 e.



Kingman’s Coalescent

Fix n ∈ N, for each 1 ≤ t ≤ n construct a forest of rooted labelled trees
on V (Ft) = {1, . . . , n}.

Ft = {T (t)
1 , . . . ,T

(t)
n−t+1}

Given Ft , construct Ft+1:

. Uniformly choose two
trees in Ft ,

. Add an edge labelled t
between the roots:

directed to either tree
with equal probability.

All choices are independent.

F1
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Recursive trees: Via Kingman’s Coalescent

Lemma. There is a mapping φ such that φ(Fn)
L
= Tn;

furthermore, φ preserves the shape of Fn.

3 2

5

4

1

21 5

3 4

0φ

Proof’s idea.

- Vertex labels are exchangeable.

- Edge labels are decreasing along root-to-leaf paths.

- There are n!(n − 1)! possible outcomes for Fn.



Selection set S(n)

S = S(n) = {t ≤ n − 1 : Tree containing 1 merges at time t}

A favourable merge for 1 is when its tree’s root increases its degree.

At step t ∈ S, two trees are selected:

- One tree’s root increases its
degree and

- vertices in the other tree
increase their depth by 1.

- Vertex 1 starts as root.

1
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Degree and depth of vertex 1 in Fn

S = S(n) = {t ≤ n − 1 : Tree containing 1 merges at time t}
A favourable merge for 1 is when its tree’s root increases its degree.

Proposition.

Depth = Total # unfavourable merges.

htFn(1)
L
= Bin(|S|, 1/2).

Degree = First streak favourable merges.

degFn
(1)

L
= min{Geo(1/2), |S|}.

1



Asymptotic normality of |S(n)| and htFn
(1)

Theorem.
|S(n)| − 2 ln n√

2 ln n

L−→ N(0, 1).

htFn(1)− ln n√
ln n

L−→ N(0, 1).

Proof. Lindeberg condititions for CLT are satisfied:

|S(n)| =
n∑

k=2

Ber(2/k) htFn(1) =
n∑

k=2

Ber(1/k).
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A heuristic: Normal approximation of |S| and a Binomial r.v.

htFn(1)
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≈ |S|
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2

√
|S|

≈ 2 ln n + Sn
√

2 ln n
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+
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2

√
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= ln n +
Sn + B2 ln n√

2

√
ln n.

Bm
L−→ N1

L
= N(0, 1)

Sn
L−→ N2

L
= N(0, 1)

N1 + N2√
2

L
= N(0, 1).



Conditional asymptotic normality of htFn
(1)

Proposition. Fix m ∈ Z, conditional on degFn
(1) = blog2 nc+ m,

htFn(1)− (1− α) ln n√
(1− α + α2/2) ln n

L−→ N(0, 1)

where 2α = log2 e.

Proof’s sketch: Given that degFn
(1) = β ln n, β < 2, then

|S| − degFn
(1) = (2− β) ln n + Sn

√
2 ln n Sn

L−→ N(0, 1).

Previous heuristic holds, now for Bin(|S|− degFn
(1), 1/2).
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Extending the study to many vertices

DH(n) :

=

(
degn(v)− blog2 nc, htn(v)−(1−α) lnn√

(1−α−α2/2) lnn

)

−2 −1 0 1 2

· · · · · ·

Tools.

- Method of moments.

- Exchangeability of vertices in Fn,

- weak correlation between selection sets of distinct vertices.



Thanks!
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