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Underlying idea

O/o

Random recursive trees/
Kingman's coalescent (Union-Find tree) duality.



Recursive trees: Standard construction

T, is a rooted labelled tree on V/(T,) ={0,...,n—1}.

Given T,, construct Tpy1:
> Add a vertex labelled n,

> Select j € V(T,)
uniformly at random, ©)

> Add the edge n — j.
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Recursive trees: Standard construction

T, is a rooted labelled tree on V/(T,) ={0,...,n—1}.

Given T,, construct Tpy1:
> Add a vertex labelled n,
> Select j € V(T,)
uniformly at random, (D @ ®
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Facts. - Vertex labels are increasing along root-to-leaf paths.
- There are (n — 1)! possible outcomes for T,.



Degree and depth

Forie V(T,), let

deg, (i) =#{j>1i:j—iin Ty},
ht (i) = dist(0, /)




Depth of final vertex

Theorem. (Devroye, 1988, Mahmoud 1991) As n — oo,

h —-1) -1
bta(n=1)=Inn £,y 1)
Inn

Proof’s idea: Theory of records

Vo =hn— l, Vig1 = LV,‘U,'J,

ht,(n — 1) = min{i : v; =0} @)

n—1
£ Ber(1/k) TR,
k=1 ' C

The Bernoulli variables are independent.



Depth of final vertex

Theorem. (Devroye, 1988, Mahmoud 1991) As n — oo,

ht,(n—1)—Inn

Inn

Proof’s idea: Theory of records

vo=n—1vi1 = |viU],

htp(n —1) = min{i : v; =0}

n—1
£ Ber(1/k)
k=1

The Bernoulli variables are independent.

— N(0,1).

N

Yo Vi - Vi, -

Y, i.i.d. Unif(0,

Y,
1)

vt



Depth of a uniformly chosen vertex

Theorem. (Devroye, 1988, Mahmoud 1991) As n — oo,

ht,(n—1) —1
bto(n=1)=Inn £, e 1y,
Inn

Corollary. Choose uniformly a vertex u € T,,. As n — oo,

ht,(u) —Inn N

T N(0,1)



What can we say about high-degree vertices?



What can we say about high-degree vertices?

Theorem (Devroye, Lu 1995) Let A, = max{deg,(i): i € V(T,)}.

As n — o0, a.s.
A,

log, n

— 1.



Asymptotic High-degree distribution

X§7 = #{i € [n] : deg, (i) = [log, n] + d}

Theorem (Addario-Berry,E. 2015%) Let n = 2. Jointly for all d € Z, as
k — oo
X £y .

where the W, are independent Poisson r.v.’s with mean 2 (4+1).

\);'-/ \;/ \X°/ \);/\X/



A marked point process on Z x R

Let 2ac = log, e, then 2acIn n = log, n.

= (degn() [logy n, \}/t%)
o N/ N/ N/ N/ N\ )
—9 -1 0 1 2




A marked point process on Z x R

Theorem (E. 2015") Let n = 2%, There is an explicit marked point
process MP, such that in the space of marked point processes on Z x R,

as k — oo
DU £y MP;

the marks are distributed as independent standard gaussian variables.

ht, (v)—(1—a)Inn

= (deg”( '> B Uog ﬁj V( 1 —a—a?/2) lnn)

e\ s A\ A



Conditional depth of a high-degree vertex

Proposition (E. 2015") Choose uniformly a vertex u € V/(T,).
Fix m € Z, conditional on deg,u = |log, n| + m, as n — oo

ht,(u) — (1 —a)lnn

L: .
V(@ —a+a2/2)Inn — N

where 2o = log; e.



Kingman's Coalescent

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees
on V(F)={1,...,n}.

Fo={TO, .. TO,

Given F;, construct Fyyg:
. F
> Uniformly choose two !

trees in Fy,

> Add an edge labelled t o © ® ® 6 o

between the roots:

directed to either tree
with equal probability.

All choices are independent.
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Recursive trees: Via Kingman's Coalescent

£

Th;

Lemma. There is a mapping ¢ such that ¢(F,)
furthermore, ¢ preserves the shape of F,,.

Proof’s idea.
- Vertex labels are exchangeable.
- Edge labels are decreasing along root-to-leaf paths.

- There are nl(n — 1)! possible outcomes for F,.



Selection set S()

S=38 = {t < n—1: Tree containing 1 merges at time t}

® @

At step t € S, two trees are selected: !

- One tree's root increases its
degree and

- vertices in the other tree
increase their depth by 1.

- Vertex 1 starts as root.
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Degree and depth of vertex 1 in F,

S=8M ={t <n—1: Tree containing 1 merges at time t}

A favourable merge for 1 is when its tree's root increases its degree.

Proposition.

Depth = Total # unfavourable merges.

htr, (1) £ Bin(|S],1/2).

Degree = First streak favourable merges.

degr (1) £ min{Geo(1/2),|S]}.



Asymptotic normality of |S("| and htg, (1)

Theorem. )
S| —=2Inn

— — N(0,1).

v2Inn (0.1)

htr, (1) —Inn ¢

— N(0,1).
Inn

Proof. Lindeberg condititions for CLT are satisfied:

IS = zn:Ber(2/k) htr,(1) = Y Ber(1/k).
k=2 k=2



Asymptotic normality of htg (1)

A heuristic: Normal approximation of |S| and a Binomial r.v.

bt (1) £ Bin(|S], 1/2)
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L
S| Bs
%|2| ‘2|V‘S|

Bm—>N1

>

N(0,1)



Asymptotic normality of htg (1)

A heuristic: Normal approximation of S| and a Binomial r.v.

htr, (1) £ Bin(|S],1/2)
L

2Inn+5,vV2Inn  Boinn
~ > + > 2Inn




Asymptotic normality of htg (1)

A heuristic: Normal approximation of |S| and a Binomial r.v.

htr, (1) = Bin(|8| 1/2)

B £ £
|S\ ot B, — N; = N(0,1)
S )
. Sy 55 Ny £ N(0,1)
2Inn—|—5n\/2lnn+82|n,, 5 I(I N2_ ’
~ nn
ﬁéN(Ql).

Sn"’BZInn \/i
=Ilnn+ —+VInn.
V2



Conditional asymptotic normality of htg (1)

Proposition. Fix m € Z, conditional on degg (1) = |log, n] + m,

htr, (1) = (1 —a)inn .
VI —a+a2/2)inn — NOD)

where 2 = log, e.



Conditional asymptotic normality of htg (1)

Proposition. Fix m € Z, conditional on degg (1) = |log, n] + m,

htr, (1) = (1 —a)inn .
VI —a+a2/2)Inn — NOD)

where 2 = log, e.

Proof’s sketch: Given that degg (1) = Blnn, 3 <2, then

S| —degr (1) = (2= B)Inn+S,v2Inn S, 5 N(0,1).

Previous heuristic holds, now for Bin(|S|—degg (1),1/2).



Extending the study to many vertices

o o (1) _ . ht,, (v)—(1—a)Inn
»@m>mwﬁiﬁﬁ

Tools.
- Method of moments.
- Exchangeability of vertices in F,,
- weak correlation between selection sets of distinct vertices.
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