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Motivation: Hubs in random networks
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Tree growth processes
Image by Louigi A.-B.



Notation for trees: T

. Root / Leaves

. Children / Degree degT (·)

. Depth htT (·) / Height

. Edges directed towards root.

. Vertices are labeled with
[n] = {1, . . . , n}.
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Tree growth processes

Construct a tree growth process (Tn, n ∈ N):

. T1 is a single-vertex tree.

. For n > 1, build Tn from Tn−1 adding:

{
vertex n

edge n → j

P(n→ j) =
βdegTn−1

(j) + 1

(β + 1)(n − 2) + 1

When β > 0: The rich gets richer.



Recursive Trees and Linear Pref. Attachment Trees

At any step new vertex n attaches to j

P(n→ j) =
1

n − 1

New edge-connection uniform and
independent of the past.

P(n→ j) =
degTn−1

(j) + 1

2n − 1

Visually: Construct a plane-oriented
recursive tree, then forget about
embedding.
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Simulations

Recursive
tree

Linear Pref.
Attachment
tree



Geometric vs. Power law

. [Janson 05] Empirical probability: Given a tree T on n vertices.
Select a uniformly random vertex u.

P(degT (u) = k − 1) ≈
{

2−k T recursive tree

ck−3 T linear pref. attachment tree



Maximum degree

∆n = max{ degTn
(i) : i ∈ [n]}

[Devroye, Lu 1995] If Tn is a recursive tree. As n→∞, a.s.

∆n

log n
→ 1.

[Goh, Schmutz 2002] If Tn is a recursive tree, n = 2k . For i ∈ N fixed

P(∆n − log n < i) = exp{−2−i}+ o(1).

[Mori 2005] If Tn is a linear pref. attachment tree, there is ∆ r.v. such
that, as n→∞, a.s.

∆n√
n
→ ∆.
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Insertion depth

[Devroye, 1988, Mahmoud 1991] If Tn is a recursive tree. As n→∞,

htTn(n)− ln n√
ln n

L−→ N(0, 1).

[Mahmoud 1992] If Tn is a linear pref. attachment tree. As n→∞,

htTn(n)− (1/2) ln n√
(1/2) ln n

L−→ N(0, 1).



Extreme-valued degrees in recursive trees



Kingman’s Coalescent

Fix n ∈ N, for each 1 ≤ t ≤ n construct a forest of rooted labelled trees
on V (Ft) = {1, . . . , n}. Given Ft , construct Ft+1:

. Uniformly choose two trees in Ft ,

. Add an edge between the roots:

directed to either tree with equal
probability.

All choices are independent.

Lemma. There is a mapping φ such that

φ(Fn)
L
= Tn;

furthermore, φ preserves the shape of Fn.
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Degree and depth of vertex 1 in Fn

S = S(n) = {t ≤ n − 1 : Tree containing 1 merges at time t}
A favourable merge for 1 is when its tree’s root increases its degree.

Proposition.

Depth = Total # unfavourable merges.

htFn(1)
L
= Bin(|S|, 1/2).

Degree = First streak favourable merges.

degFn
(1)

L
= min{Geo(1/2), |S|}.

1



My research main focus: A marked point process

=

(
deg(v)− blog nc, ht(v)−(1−α) lnn√

(1−α/2) lnn

)

(−3, ·) (−2, ·) (−1, ·) (0, ·) (1, ·)
· · · · · ·

. Natural

- # vertices with same degree k have Poisson(2−k−1) distribution
- Depths have Gaussian fluctuations

. Good news

- ‘# vertices’/depths become independent variables

. Surprising

- Process of vertex-overtakes to become max-degree



Comparing to Linear Pref. Attachement

[Mori2005, Pekös, Röllin, Ross 2016] If Tn is a linear perf. attachment
tree. As n→∞,

(
degTn

(i)√
n

, i ≥ 1

)
L−→ (Bi , i ≥ 1) ,

where for all k ≥ 2,
k∑

i=1

Bi
L
=

(
k∑

i=1

Ei

)1/2

Ei
L
= Exp(1) are iid., and

Bk∑k
i=1 Bi

L
= Beta(2, 3k− 4)



Summary of results

. Poisson Point Process for near-maximum degree vertices

Number and their depth

. Conditional depth of high-degree vertices

. Tighten tails for maximum degree distribution (∼Gumbel)

. CLT’s -rates of converge (1 < c < log e)

Xc = {v ∈ [n], degTn
(v) ≥ c ln n}

- High degrees of random recursive trees (joint with Louigi Addario-Berry).
RSA 2017+

- Depth of vertices with high degree in random recursive trees.

- Extremal values in recursive trees via a new tree growth process.
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Summary

. Uniform vs. preferential attachtment

- Depth: Both logarithmic
- Degrees: Geometric / Power laws
- Max-deg vertex: Ever-changing / ‘Fixed’

. Advantages of coalescent

- Exchangeability
- Decouple randomness
- Depth/degree relation

. Further research

- Depth of max-deg for branching
processes

- Novel dynamics for tree growth process
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Thanks!
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