Properties for extreme-valued degrees in recursive trees

Laura Eslava PhD Oral Defence

McGill University

April 13th, 2017

Motivation: Hubs in random networks

Contents

1. Recursive trees overview

- Tree growth processes
- Classical results

2. My dissertation

- Kingman's coalescent key point
- Summary of results
- 3. Further directions

Tree growth processes

Notation for trees: T

- ▶ Root / Leaves
- ▷ Children / Degree deg_T(·)
- ▷ Depth ht₇(·) / Height
- ▷ Edges directed towards root.
- ▷ Vertices are labeled with $[n] = \{1, ..., n\}.$

Tree growth processes

Construct a tree growth process $(T_n, n \in \mathbb{N})$:

 \triangleright T_1 is a single-vertex tree.

▷ For
$$n > 1$$
, build T_n from T_{n-1} adding:

$$\begin{cases} \text{vertex } n \\ \text{edge } n \rightarrow j \end{cases}$$

$$\mathbb{P}(\boldsymbol{n} \to \boldsymbol{j}) = \frac{\beta \deg_{T_{n-1}}(\boldsymbol{j}) + 1}{(\beta + 1)(n-2) + 1}$$

When $\beta > 0$: *The rich gets richer*.

Recursive Trees and Linear Pref. Attachment Trees

At any step new vertex n attaches to j

$$\mathbb{P}(n \to j) = \frac{1}{n-1}$$

New edge-connection uniform and independent of the past.

$$\mathbb{P}(n \to j) = \frac{\deg_{T_{n-1}}(j) + 1}{2n - 1}$$

Visually: Construct a plane-oriented recursive tree, then forget about embedding.

Simulations

Geometric vs. Power law

▷ [Janson 05] Empirical probability: Given a tree T on n vertices. Select a uniformly random vertex u.

$$\mathbb{P}(\deg_{T}(u) = k - 1) \approx \begin{cases} 2^{-k} \\ ck^{-3} \end{cases}$$

T recursive tree T linear pref. attachment tree

Maximum degree

$$\Delta_n = \max\{ \deg_{\mathcal{T}_n}(i) : i \in [n] \}$$

[Devroye, Lu 1995] If T_n is a recursive tree. As $n \to \infty$, a.s.

$$\frac{\Delta_n}{\log n} \to 1.$$

[Mori 2005] If T_n is a linear pref. attachment tree, there is Δ r.v. such that, as $n \to \infty$, a.s.

$$\frac{\Delta_n}{\sqrt{n}}\to\Delta.$$

Maximum degree

$$\Delta_n = \max\{ \deg_{T_n}(i) : i \in [n] \}$$

[Devroye, Lu 1995] If T_n is a recursive tree. As $n \to \infty$, a.s.

$$\frac{\Delta_n}{\log n} \to 1.$$

[Goh, Schmutz 2002] If T_n is a recursive tree, $n = 2^k$. For $i \in \mathbb{N}$ fixed

$$\mathbb{P}(\Delta_n - \log n < i) = \exp\{-2^{-i}\} + o(1).$$

Insertion depth

[Devroye, 1988, Mahmoud 1991] If T_n is a recursive tree. As $n \to \infty$,

$$\frac{\operatorname{ht}_{\mathcal{T}_n}(n)-\ln n}{\sqrt{\ln n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

[Mahmoud 1992] If T_n is a linear pref. attachment tree. As $n \to \infty$,

$$\frac{\operatorname{ht}_{\mathcal{T}_n}(n)-(1/2)\ln n}{\sqrt{(1/2)\ln n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

Extreme-valued degrees in recursive trees

Kingman's Coalescent

Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. Given F_t , construct F_{t+1} :

- \triangleright Uniformly choose two trees in F_t ,
- Add an edge between the roots: directed to either tree with equal probability.

All choices are independent.

Lemma. There is a mapping ϕ such that

$$\phi(F_n) \stackrel{\mathcal{L}}{=} T_n;$$

furthermore, ϕ preserves the shape of F_n .

Degree and depth of vertex 1 in F_n

 $S = S^{(n)} = \{t \le n-1 : \text{Tree containing } 1 \text{ merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

Proposition.

Depth = Total # unfavourable merges.

 $\operatorname{ht}_{F_n}(1) \stackrel{\mathcal{L}}{=} \operatorname{Bin}(|\mathcal{S}|, 1/2).$

Degree = First streak favourable merges.

 $\deg_{F_n}(1) \stackrel{\mathcal{L}}{=} \min\{Geo(1/2), |\mathcal{S}|\}.$

My research main focus: A marked point process

• =
$$\left(\deg(v) - \lfloor \log n \rfloor, \frac{\operatorname{ht}(v) - (1 - \alpha) \ln n}{\sqrt{(1 - \alpha/2) \ln n}} \right)$$

• $\left| \underbrace{\operatorname{\bullet \bullet}}_{(-3, \cdot)} \right| \left| \underbrace{\operatorname{\bullet \bullet}}_{(-2, \cdot)} \right| \left| \underbrace{\operatorname{\bullet \bullet}}_{(-1, \cdot)} \right| \left| \underbrace{\operatorname{\bullet \bullet}}_{(0, \cdot)} \right| \left| \underbrace{(1, \cdot)}_{(1, \cdot)} \right|$

Natural

. .

- # vertices with same degree k have $Poisson(2^{-k-1})$ distribution
- Depths have Gaussian fluctuations
- ▷ Good news
 - '# vertices'/depths become independent variables
- ▷ Surprising
 - Process of vertex-overtakes to become max-degree

Comparing to Linear Pref. Attachement

[Mori2005, Pekös, Röllin, Ross 2016] If T_n is a linear perf. attachment tree. As $n \to \infty$,

$$\left(\frac{\deg_{\mathcal{T}_n}(i)}{\sqrt{n}}, \ i \geq 1\right) \xrightarrow{\mathcal{L}} (B_i, i \geq 1),$$

where for all $k \ge 2$,

$$\sum_{i=1}^{k} B_i \stackrel{\mathcal{L}}{=} \left(\sum_{i=1}^{k} E_i\right)^{1/2}$$

 $E_i \stackrel{\mathcal{L}}{=} \operatorname{Exp}(1)$ are iid., and

$$\frac{B_k}{\sum_{i=1}^k B_i} \stackrel{\mathcal{L}}{=} \text{Beta}(2, 3\text{k}-4)$$

Summary of results

Poisson Point Process for near-maximum degree vertices Number and their depth

- Conditional depth of high-degree vertices
- ▷ Tighten tails for maximum degree distribution (~Gumbel)
- ▷ CLT's -rates of converge $(1 < c < \log e)$

 $X_c = \{v \in [n], \deg_{T_n}(v) \ge c \ln n\}$

Summary of results

Poisson Point Process for near-maximum degree vertices Number and their depth

- Conditional depth of high-degree vertices
- ▷ Tighten tails for maximum degree distribution (~Gumbel)
- ▷ CLT's -rates of converge $(1 < c < \log e)$

 $X_c = \{v \in [n], \deg_{T_n}(v) \ge c \ln n\}$

- High degrees of random recursive trees (joint with Louigi Addario-Berry). RSA $2017^{\rm +}$
- Depth of vertices with high degree in random recursive trees.
- Extremal values in recursive trees via a new tree growth process.

Summary

▷ Uniform vs. preferential attachtment

- Depth: Both logarithmic
- Degrees: Geometric / Power laws
- Max-deg vertex: Ever-changing / 'Fixed'
- > Advantages of coalescent
 - Exchangeability
 - Decouple randomness
 - Depth/degree relation
- ▷ Further research
 - Depth of max-deg for branching processes
 - Novel dynamics for tree growth process

Thanks!

Image from scalefreenetworks, Flickr