Properties for extreme-valued degrees in recursive trees

Laura Eslava
PhD Oral Defence

McGill University

April 13th, 2017

Motivation: Hubs in random networks

Contents

1. Recursive trees overview

- Tree growth processes
- Classical results

2. My dissertation

- Kingman's coalescent key point
- Summary of results

3. Further directions

Tree growth processes

Image by Louigi A.-B.

Notation for trees: T

\triangleright Root / Leaves
\triangleright Children / Degree $\operatorname{deg}_{T}(\cdot)$
\triangleright Depth ht $_{T}(\cdot) /$ Height
\triangleright Edges directed towards root.
\triangleright Vertices are labeled with $[n]=\{1, \ldots, n\}$.

Tree growth processes

Construct a tree growth process ($T_{n}, n \in \mathbb{N}$):
$\triangleright T_{1}$ is a single-vertex tree.
\triangleright For $n>1$, build T_{n} from T_{n-1} adding: $\left\{\begin{array}{l}\text { vertex } n \\ \text { edge } n \rightarrow j\end{array}\right.$

$$
\mathbb{P}(n \rightarrow j)=\frac{\beta \operatorname{deg}_{T_{n-1}}(j)+1}{(\beta+1)(n-2)+1}
$$

When $\beta>0$: The rich gets richer.

Recursive Trees and Linear Pref. Attachment Trees

At any step new vertex n attaches to j

$$
\mathbb{P}(n \rightarrow j)=\frac{1}{n-1}
$$

New edge-connection uniform and independent of the past.

$$
\mathbb{P}(n \rightarrow j)=\frac{\operatorname{deg}_{T_{n-1}}(j)+1}{2 n-1}
$$

Visually: Construct a plane-oriented recursive tree, then forget about embedding.

Simulations

Recursive tree

Linear Pref.
Attachment tree

Geometric vs. Power law

\triangleright [Janson 05] Empirical probability: Given a tree T on n vertices. Select a uniformly random vertex u.

$$
\mathbb{P}\left(\operatorname{deg}_{T}(u)=k-1\right) \approx \begin{cases}2^{-k} & T \text { recursive tree } \\ c k^{-3} & T \text { linear pref. attachment tree }\end{cases}
$$

Maximum degree

$$
\Delta_{n}=\max \left\{\operatorname{deg}_{T_{n}}(i): i \in[n]\right\}
$$

[Devroye, Lu 1995] If T_{n} is a recursive tree. As $n \rightarrow \infty$, a.s.

$$
\frac{\Delta_{n}}{\log n} \rightarrow 1
$$

[Mori 2005] If T_{n} is a linear pref. attachment tree, there is Δ r.v. such that, as $n \rightarrow \infty$, a.s.

$$
\frac{\Delta_{n}}{\sqrt{n}} \rightarrow \Delta .
$$

Maximum degree

$$
\Delta_{n}=\max \left\{\operatorname{deg}_{T_{n}}(i): i \in[n]\right\}
$$

[Devroye, Lu 1995] If T_{n} is a recursive tree. As $n \rightarrow \infty$, a.s.

$$
\frac{\Delta_{n}}{\log n} \rightarrow 1
$$

[Goh, Schmutz 2002] If T_{n} is a recursive tree, $n=2^{k}$. For $i \in \mathbb{N}$ fixed

$$
\mathbb{P}\left(\Delta_{n}-\log n<i\right)=\exp \left\{-2^{-i}\right\}+o(1) .
$$

Insertion depth

[Devroye, 1988, Mahmoud 1991] If T_{n} is a recursive tree. As $n \rightarrow \infty$,

$$
\frac{\mathrm{ht}_{T_{n}}(n)-\ln n}{\sqrt{\ln n}} \xrightarrow{\mathcal{L}} N(0,1) .
$$

[Mahmoud 1992] If T_{n} is a linear pref. attachment tree. As $n \rightarrow \infty$,

$$
\frac{\mathrm{ht}_{T_{n}}(n)-(1 / 2) \ln n}{\sqrt{(1 / 2) \ln n}} \xrightarrow{\mathcal{L}} N(0,1) .
$$

Extreme-valued degrees in recursive trees

Kingman's Coalescent

Fix $n \in \mathbb{N}$, for each $1 \leq t \leq n$ construct a forest of rooted labelled trees on $V\left(F_{t}\right)=\{1, \ldots, n\}$. Given F_{t}, construct F_{t+1} :
\triangleright Uniformly choose two trees in F_{t},
\triangleright Add an edge between the roots: directed to either tree with equal probability.
All choices are independent.

Lemma. There is a mapping ϕ such that

$$
\phi\left(F_{n}\right) \stackrel{\mathcal{L}}{=} T_{n} ;
$$

furthermore, ϕ preserves the shape of F_{n}.

Degree and depth of vertex 1 in F_{n}

$$
\mathcal{S}=\mathcal{S}^{(n)}=\{t \leq n-1: \text { Tree containing } 1 \text { merges at time } t\}
$$

A favourable merge for 1 is when its tree's root increases its degree.

Proposition.

Depth $=$ Total \# unfavourable merges.

$$
\operatorname{ht}_{F_{n}}(1) \stackrel{\mathcal{L}}{=} \operatorname{Bin}(|\mathcal{S}|, 1 / 2)
$$

Degree $=$ First streak favourable merges.

$$
\operatorname{deg}_{F_{n}}(1) \stackrel{\mathcal{L}}{=} \min \{G e o(1 / 2),|\mathcal{S}|\}
$$

My research main focus: A marked point process

$$
\text { - }=\left(\operatorname{deg}(v)-\lfloor\log n\rfloor, \frac{\operatorname{ht}(v)-(1-\alpha) \ln n}{\sqrt{(1-\alpha / 2) \ln n}}\right)
$$

\triangleright Natural

- \# vertices with same degree k have Poisson $\left(2^{-k-1}\right)$ distribution
- Depths have Gaussian fluctuations
\triangleright Good news
- '\# vertices'/depths become independent variables
\triangleright Surprising
- Process of vertex-overtakes to become max-degree

Comparing to Linear Pref. Attachement

[Mori2005, Pekös, Röllin, Ross 2016] If T_{n} is a linear perf. attachment tree. As $n \rightarrow \infty$,

$$
\left(\frac{\operatorname{deg}_{T_{n}}(i)}{\sqrt{n}}, i \geq 1\right) \xrightarrow{\mathcal{L}}\left(B_{i}, i \geq 1\right)
$$

where for all $k \geq 2$,

$$
\sum_{i=1}^{k} B_{i} \stackrel{\mathcal{L}}{=}\left(\sum_{i=1}^{k} E_{i}\right)^{1 / 2}
$$

$E_{i} \stackrel{\mathcal{L}}{=} \operatorname{Exp}(1)$ are iid., and

$$
\frac{B_{k}}{\sum_{i=1}^{k} B_{i}} \stackrel{\mathcal{L}}{=} \operatorname{Beta}(2,3 \mathrm{k}-4)
$$

Summary of results

\triangleright Poisson Point Process for near-maximum degree vertices Number and their depth
\triangleright Conditional depth of high-degree vertices
\triangleright Tighten tails for maximum degree distribution (\sim Gumbel)
\triangleright CLT's -rates of converge $(1<c<\log e)$

$$
X_{c}=\left\{v \in[n], \operatorname{deg}_{T_{n}}(v) \geq c \ln n\right\}
$$

Summary of results

\triangleright Poisson Point Process for near-maximum degree vertices Number and their depth
\triangleright Conditional depth of high-degree vertices
\triangleright Tighten tails for maximum degree distribution (\sim Gumbel)
\triangleright CLT's -rates of converge $(1<c<\log e)$

$$
X_{c}=\left\{v \in[n], \operatorname{deg}_{T_{n}}(v) \geq c \ln n\right\}
$$

- High degrees of random recursive trees (joint with Louigi Addario-Berry). RSA 2017^{+}
- Depth of vertices with high degree in random recursive trees.
- Extremal values in recursive trees via a new tree growth process.

Summary

\triangleright Uniform vs. preferential attachtment

- Depth: Both logarithmic
- Degrees: Geometric / Power laws
- Max-deg vertex: Ever-changing / 'Fixed’
\triangleright Advantages of coalescent
- Exchangeability
- Decouple randomness
- Depth/degree relation
\triangleright Further research
- Depth of max-deg for branching processes
- Novel dynamics for tree growth process

Thanks!

Image from scalefreenetworks, Flickr

