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Making sense of formulas
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Percolation

Given an underlying graph, keep each edge independently with prob. p

Critical Probability: Edge density where an giant component appears

Infinite graphs: pc := inf{p : P(|C (0)| =∞) > 0}
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Phase transition for Erdős-Rényi Gn,p

Critical Probability: Edge density where a giant component appears

If p = 1
n (1 + ε), whp largest component of size:

Subcritical ε3n→ −∞: L1(Gn,p) = O(log n)

Critical ε3n→ a ∈ R: L1(Gn,p) = Θ(n2/3)

Supercritical ε3n→∞: L1(Gn,p) = Θ(n)

The critical window is of order O(n−4/3)
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Percolation in finite graphs

First reference was Erdős-Rényi graphs pc = 1
n

Finite graphs: pc := ???

How big can components be?

A definition that works
For finite transitive graphs with V vertices and degree m, fix λ ∈ (0, 1).

Let pc = pc(λ) solve
Epc (λ)[|C (0)|] = λV 1/3

Fact:

pc(λ1)− pc(λ2) = O(m−1V−1/3)
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Why is pc = 1/n?

Detour to Galton-Watson trees

Indiv. v has random ξv children independently from rest.

Zn = #indiv. at generation n

Galton-Watson Survival

Average children E[ξv ] = (1 + ε) determines

ε ≤ 0: Extinction w.p. 1

ε > 0: Survival with positive prob.

Markovian process: Each generation only depends on previous one.

Zn+1 =
Zn∑
i=1

ξvi
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Why is pc = 1/n?

Exploring components approximation:

When graph has high dimension, exploration on giant component
goes on forever.

On Gn,p, each vertex sees Bin(n − 1, p) other vertices

Heuristic for percolation: should use pc(n − 1) ∼ 1 instead

If ε+ O(n−1/3) then there is ε′ = O(n−1/3) with

p =
1

n
(1 + ε) =

1

n − 1
(1 + ε′)
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The case of the Hypercube Qn

Borgs et al. [’05, ’06]; Hosftad, Slade [’05, ’06], Hofstad, Nachmias [’12,’14]

There exists rational coefficients ak such that

pc =
K∑

k=1

akn
−k + O(n−K−1)

In particular,

pc =
1

n
+

1

n2
+

7

2n3
+ O(n−4)

=
1

n − 1
+

5

2
(n − 1)−3 + O(n−4)

Based on lace expansion and triangle condition verification

Window too small O(n−12−1/3) to neglect any expansion term
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Exploration on lattice-like graphs

Goal: Count size of a vertex v component

Exploration tracks:

Explored vertices Dk

To-explore vertices Xk

D0 = {v}, X0 = ∅

At each step k:

1 Choose w ∈ Xk to explore

2 Add not explored neighbors

of w to Xk

3 Move w ∈ Dk

v. .

Branching process - collisions
≈

Component size
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The hypercube’s local structure

{0, 1}n Representation

Sequences with n entries

Crossing edge changes one entry:

(0, 0, 1, 0, . . . , 0)

Smallest cycle has length 4

Simple collisions

Parent: (1, 0, 0, 0, . . . , 0)

Possible children:

(1, 0, 1, 0, . . . , 0)

(1, 1, 0, 0, . . . , 0)

Possible grandkid:
(1, 1, 1, 0, . . . , 0)

• r

⑥ 0 @

• •

BOO• @ • •

⑧ @ ⑧ •

Two steps in exploration
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Project: Heuristic to recover c = 5
2

The local structure of hypercube predicts coefficients of critical pc

‘Guess’ pc = (n − 1)−1 + c(n − 1)−3

and tune c via the survival threshold of a branching process

Design: A modified Poisson branching process with suitable survival
threshold.

Exploration Hypercube dim. n Branching

Average children 1 + 5
2(n − 1)−2 1 + ε

Cousin identification (n − 1)−2 q

Bin(n − 1, pc) ≈ Poi(1 + ε)

(n − 1)pc ≈ 1 + ε = 1 + cq
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Branching process with cousin mergers

Indiv. have ξv ∼ Poi(1 + ε) children

Independently with probability q, each
pair of cousins becomes a single indiv.

Multiple mergers allowed

• r

⑥ 0 •

• Be ⑥

• @ • •

⑧ @ ⑧ •

Difficulties:

Non-Markovian Process: Z0,Z1, . . . ,Zn not enough to obtain Zn+1

Non-monotonicity: No straightforward coupling gives monotonicity of
survival
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Survival Gap

BP with cousin mergers (E., Penington, Skerman, ’20+)

If ξv ∼ Poi(1 + ε), ε > 0 suff. small, then merger prob. q determines

q ≥ 2ε+ Kε2: Extinction w.p. 1

q ≤ 2ε− Kε2: Survival w. positive prob.

But ideal ratio was q = 2
5ε

Partial Idea: Estimate average growth per generation

E[Zn+1] ≈
(

1 + ε− q

2

)
E[Zn]

≈ (1 + ε)E[Zn]− q

2
E[Zn−1]
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Zoom-in on idea

Partial Idea: Estimate average growth per generation

E[Zn+1] ≈ (1 + ε)E[Zn]− q

2
(1 + ε)4E[Zn−1] + O(ε2)

Recall. If X ∼ Poi(λ), then E[X (X − 1)] = λ2

E[# pairs of cousins per grandparent]

=E[# pairs of children {v1, v2}]
· E[ξv1 ]E[ξv2 ]

=
(1 + ε)2

2
· (1 + ε)(1 + ε)
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What went wrong?
Offspring distribution: Not all vertices can explore n − 1 new edges

E[Zn+1] ≈ (1 + ε)E[Zn]− q

2
E[Zn−1]− qE[Zn−2]− qE[Zn−3]

E[# pairs of aunt-niece per grandparent]

=E[# pairs of children (v1, v2)]

· E[# grandchildren of v1]

=(1 + ε)2(1 + ε)2 = (1 + ε)4

and

E[# greatgrandchildren per indiv.] = (1 + ε)4

All these pairs give collisions with probability

(n − 1)−2 ∼ q
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Refining the cousin mergers model

Process construction

From generation n to n + 1:

1 Reproduction: Indiv. at generation n have children.

2 Deletions: Keep authentic children w.p. (1− q)kv

3 Collisions: Each pair of cousins flip biased coin,

4 Identification: of pairs of cousins.
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Survival gets the mysterious coefficients!

Refined BP with collisions (E., Penington, Skerman, ’20+)

If ξv ∼ Poi(1 + ε), ε > 0 suff. small, then collision prob. q determines

q ≥ 2
5ε+ Kε2: Extinction w.p. 1

q ≤ 2
5ε− Kε2: Survival w. positive prob.

Partial Idea: There are collisions occurring 4 times as often

E[Zn+1] ≈
(

1 + ε −1

2
q −2

2
q −2

2
q

)
(1 + O(ε))E[Zn].
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Summary

We obtain a survival threshold for a variant of a branching process

that mimics hypercube’s exploration near criticality

This sheds light on structures determining its critical probability

Refined BP with collisions (E., Penington, Skerman, ’20+)

If ξv ∼ Poi(1 + ε), ε > 0 suff. small, then collision prob. q determines

q ≥ 2
5ε+ Kε2: Extinction w.p. 1

q ≤ 2
5ε− Kε2: Survival w. positive prob.
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