Branching processes with cousin mergers and locality of hypercube’s critical percolation

Laura Eslava,
joint work in progress with S. Penington, F. Skerman

Spectra, Algorithms and Random Walks on Random Networks
CIRM 2019
Making sense of formulas
Contents

1 Percolation
 ▶ Critical probability
 ▶ Exploration of components

2 The structure of the hypercube
 ▶ Critical probability expansions
 ▶ The quest for a heuristic

3 Branching processes with mergers
 ▶ Cousin mergers does not suffice
 ▶ A refined collision model
Percolation

Given an underlying graph, keep each edge independently with prob. p

Critical Probability: Edge density where an giant component appears

- Infinite graphs: $p_c := \inf \{ p : P(|C(0)| = \infty) > 0 \}$
Phase transition for Erdős-Rényi $G_{n,p}$

Critical Probability: *Edge density where a giant component appears*

![Diagram showing phase transition](image)

- **Subcritical** \(\epsilon \to -\infty \): \(L_1(G_{n,p}) = O(\log n) \)
- **Critical** \(\epsilon \to a \in \mathbb{R} \): \(L_1(G_{n,p}) = \Theta(n^{2/3}) \)
- **Supercritical** \(\epsilon \to \infty \): \(L_1(G_{n,p}) = \Theta(n) \)
Phase transition for Erdős-Rényi $G_{n,p}$

Critical Probability: *Edge density where a giant component appears*

If $p = \frac{1}{n}(1 + \epsilon)$, whp largest component of size:

- **Subcritical** $\epsilon^3 n \to -\infty$: $L_1(G_{n,p}) = O(\log n)$
- **Critical** $\epsilon^3 n \to a \in \mathbb{R}$: $L_1(G_{n,p}) = \Theta(n^{2/3})$
- **Supercritical** $\epsilon^3 n \to \infty$: $L_1(G_{n,p}) = \Theta(n)$

The critical window is of order $O(n^{-4/3})$
Percolation in finite graphs

First reference was Erdős-Rényi graphs \(p_c = \frac{1}{n} \)

- Finite graphs: \(p_c := ??? \)
- How big can components be?
Percolation in finite graphs

First reference was Erdős-Rényi graphs $p_c = \frac{1}{n}$

- Finite graphs: $p_c := ???$
- How big can components be?

A definition that works
For finite transitive graphs with V vertices and degree m, fix $\lambda \in (0, 1)$.

Let $p_c = p_c(\lambda)$ solve

$$E_{p_c(\lambda)}[|C(0)|] = \lambda V^{1/3}$$

Fact:

$$p_c(\lambda_1) - p_c(\lambda_2) = O(m^{-1}V^{-1/3})$$
Why is $p_c = 1/n$?

Detour to Galton-Watson trees

- Indiv. v has random ξ_v children independently from rest.

\[Z_n = \#\text{indiv. at generation } n \]

Galton-Watson Survival

Average children $\mathbb{E}[\xi_v] = (1 + \epsilon)$ determines

- $\epsilon \leq 0$: Extinction w.p. 1
- $\epsilon > 0$: Survival with positive prob.
Why is $p_c = 1/n$?

Detour to Galton-Watson trees

- Indiv. v has random ξ_v children independently from rest.

\[Z_n = \text{#indiv. at generation } n \]

Galton-Watson Survival

Average children $\mathbb{E}[\xi_v] = (1 + \epsilon)$ determines

- $\epsilon \leq 0$: Extinction w.p. 1
- $\epsilon > 0$: Survival with positive prob.

Markovian process: Each generation only depends on previous one.

\[Z_{n+1} = \sum_{i=1}^{Z_n} \xi_{v_i} \]
Why is $p_c = 1/n$?

Exploring components approximation:

- When graph has high dimension, exploration on giant component goes on forever.
- On $G_{n,p}$, each vertex sees $Bin(n - 1, p)$ other vertices
Why is $p_c = 1/n$?

Exploring components approximation:
- When graph has high dimension, exploration on giant component goes on forever.
- On $G_{n,p}$, each vertex sees $Bin(n - 1, p)$ other vertices

Heuristic for percolation: should use $p_c(n - 1) \sim 1$ instead

If $\epsilon + O(n^{-1/3})$ then there is $\epsilon' = O(n^{-1/3})$ with

$$p = \frac{1}{n}(1 + \epsilon) = \frac{1}{n-1}(1 + \epsilon')$$
The case of the Hypercube Q^n

Borgs et al. ['05, '06]; Hosftad, Slade ['05, '06], Hofstad, Nachmias ['12,'14]

There exists rational coefficients a_k such that

$$p_c = \sum_{k=1}^{K} a_k n^{-k} + O(n^{-K-1})$$

In particular,

$$p_c = \frac{1}{n} + \frac{1}{n^2} + \frac{7}{2n^3} + O(n^{-4})$$

$$= \frac{1}{n - 1} + \frac{5}{2}(n - 1)^{-3} + O(n^{-4})$$

- Based on lace expansion and triangle condition verification
- Window too small $O(n^{-1}2^{-1/3})$ to neglect any expansion term
Exploration on lattice-like graphs

Goal: Count size of a vertex v component

Exploration tracks:
- Explored vertices D_k
- To-explore vertices X_k

$$D_0 = \{v\}, \quad X_0 = \emptyset$$
Exploration on lattice-like graphs

Goal: Count size of a vertex v component

Exploration tracks:
- Explored vertices D_k
- To-explore vertices X_k

$$D_0 = \{v\}, \quad X_0 = \emptyset$$

At each step k:
1. Choose $w \in X_k$ to explore
2. Add **not explored** neighbors of w to X_k
3. Move $w \in D_k$
Exploration on lattice-like graphs

Goal: Count size of a vertex v component

Exploration tracks:
- Explored vertices D_k
- To-explore vertices X_k

\[
D_0 = \{v\}, \quad X_0 = \emptyset
\]

At each step k:
1. Choose $w \in X_k$ to explore
2. Add not explored neighbors of w to X_k
3. Move $w \in D_k$
Exploration on lattice-like graphs

Goal: Count size of a vertex v component

Exploration tracks:
- Explored vertices D_k
- To-explore vertices X_k

\[D_0 = \{ v \}, \quad X_0 = \emptyset \]

At each step k:
1. Choose $w \in X_k$ to explore
2. Add **not explored neighbors** of w to X_k
3. Move $w \in D_k$
Exploration on lattice-like graphs

Goal: Count size of a vertex \(v \) component

Exploration tracks:
- Explored vertices \(D_k \)
- To-explore vertices \(X_k \)

\[
D_0 = \{ v \}, \quad X_0 = \emptyset
\]

At each step \(k \):
1. Choose \(w \in X_k \) to explore
2. Add not explored neighbors of \(w \) to \(X_k \)
3. Move \(w \in D_k \)

Branching process - collisions

\(\approx \)

Component size
The hypercube’s local structure

\[\{0, 1\}^n \] Representation

- Sequences with \(n \) entries
- Crossing edge changes \textbf{one} entry:
 \((0, 0, 1, 0, \ldots, 0) \)
- Smallest cycle has length 4

Two steps in exploration
The hypercube’s local structure

\{0, 1\}^n \textbf{Representation}

- Sequences with \(n \) entries
- Crossing edge changes \textbf{one} entry:
 \((0, 0, 1, 0, \ldots, 0)\)
- Smallest cycle has length 4

\textbf{Simple collisions}

- Parent: \((1, 0, 0, 0, \ldots, 0)\)
- Possible children:
 \((1, 0, 1, 0, \ldots, 0)\)
 \((1, 1, 0, 0, \ldots, 0)\)
- Possible grandkid:
 \((1, 1, 1, 0, \ldots, 0)\)

Two steps in exploration
Project: Heuristic to recover \(c = \frac{5}{2} \)

The local structure of hypercube predicts coefficients of critical \(p_c \)

- ‘Guess’
 \[p_c = (n - 1)^{-1} + c(n - 1)^{-3} \]
 and tune \(c \) via the survival threshold of a branching process
Project: Heuristic to recover $c = \frac{5}{2}$

"The local structure of hypercube predicts coefficients of critical p_c"

- ‘Guess’

 $$p_c = (n - 1)^{-1} + c(n - 1)^{-3}$$

 and tune c via the survival threshold of a branching process

- **Design:** A *modified* Poisson branching process with suitable survival threshold.

<table>
<thead>
<tr>
<th>Exploration</th>
<th>Hypercube dim. n</th>
<th>Branching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average children</td>
<td>$1 + \frac{5}{2}(n - 1)^{-2}$</td>
<td>$1 + \epsilon$</td>
</tr>
<tr>
<td>Cousin identification</td>
<td>$(n - 1)^{-2}$</td>
<td>q</td>
</tr>
</tbody>
</table>

$$\text{Bin}(n - 1, p_c) \approx \text{Poi}(1 + \epsilon)$$

$$(n - 1)p_c \approx 1 + \epsilon = 1 + cq$$
Branching process with cousin mergers

- Indiv. have $\xi_v \sim \text{Poi}(1 + \epsilon)$ children
- Independently with probability q, each pair of cousins becomes a single indiv.
- Multiple mergers allowed
Branching process with cousin mergers

- Indiv. have $\xi \sim \text{Poi}(1 + \epsilon)$ children
- Independently with probability q, each pair of cousins becomes a single indiv.
- Multiple mergers allowed

Difficulties:

Non-Markovian Process: Z_0, Z_1, \ldots, Z_n not enough to obtain Z_{n+1}

Non-monotonicity: No straightforward coupling gives monotonicity of survival
Survival Gap

BP with cousin mergers (E., Penington, Skerman, '20+)

If $\xi_v \sim \text{Poi}(1 + \epsilon)$, $\epsilon > 0$ suff. small, then merger prob. q determines:

- $q \geq 2\epsilon + K\epsilon^2$: Extinction w.p. 1
- $q \leq 2\epsilon - K\epsilon^2$: Survival w. positive prob.

Partial Idea: Estimate average growth per generation

$$E[Z_{n+1}] \approx (1 + \epsilon - q^2) E[Z_n] \approx (1 + \epsilon) E[Z_n] - q^2 E[Z_{n-1}]$$

But ideal ratio was $q = \frac{2}{5}\epsilon$
Survival Gap

BP with cousin mergers (E., Penington, Skerman, ’20+)

If $\xi_v \sim \text{Poi}(1 + \epsilon)$, $\epsilon > 0$ suff. small, then **merger prob.** q determines

- $q \geq 2\epsilon + K\epsilon^2$: Extinction w.p. 1
- $q \leq 2\epsilon - K\epsilon^2$: Survival w. positive prob.

But ideal ratio was $q = \frac{2}{5}\epsilon$

Partial Idea: Estimate average growth per generation

$$\mathbb{E}[Z_{n+1}] \approx \left(1 + \epsilon - \frac{q}{2}\right) \mathbb{E}[Z_n]$$
Survival Gap

BP with cousin mergers (E., Penington, Skerman, '20+)

If $\xi_v \sim \text{Poi}(1 + \epsilon)$, $\epsilon > 0$ suff. small, then merger prob. q determines

- $q \geq 2\epsilon + K\epsilon^2$: Extinction w.p. 1
- $q \leq 2\epsilon - K\epsilon^2$: Survival w. positive prob.

But ideal ratio was $q = \frac{2}{5}\epsilon$

Partial Idea: Estimate average growth per generation

$$
\mathbb{E}[Z_{n+1}] \approx \left(1 + \epsilon - \frac{q}{2}\right) \mathbb{E}[Z_n] \\
\approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2} \mathbb{E}[Z_{n-1}]
$$
Partial Idea: Estimate average growth per generation

$$
\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}(1 + \epsilon)^4\mathbb{E}[Z_{n-1}] + O(\epsilon^2)
$$
Partial Idea: Estimate average growth per generation

$$\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}(1 + \epsilon)^4\mathbb{E}[Z_{n-1}] + O(\epsilon^2)$$

Recall. If $X \sim \text{Poi}(\lambda)$, then $\mathbb{E}[X(X - 1)] = \lambda^2$
Zoom-in on idea

Partial Idea: Estimate average growth per generation

\[
\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}(1 + \epsilon)^4\mathbb{E}[Z_{n-1}] + O(\epsilon^2)
\]

Recall. If \(X \sim \text{Poi}(\lambda) \), then \(\mathbb{E}[X(X - 1)] = \lambda^2 \)

\(\mathbb{E}[\# \text{ pairs of cousins per grandparent}] \)
Partial Idea: Estimate average growth per generation

\[
\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}(1 + \epsilon)^4\mathbb{E}[Z_{n-1}] + O(\epsilon^2)
\]

Recall. If \(X \sim \text{Poi}(\lambda)\), then \(\mathbb{E}[X(X - 1)] = \lambda^2\)

\[
\mathbb{E}[\# \text{ pairs of cousins per grandparent}] = \mathbb{E}[\# \text{ pairs of children } \{v_1, v_2\}] \\
\quad \cdot \mathbb{E}[\xi_{v_1}]\mathbb{E}[\xi_{v_2}]
\]
Zoom-in on idea

Partial Idea: Estimate average growth per generation

\[
E[Z_{n+1}] \approx (1 + \epsilon)E[Z_n] - \frac{q}{2} \left(1 + \epsilon\right)^4 E[Z_{n-1}] + O(\epsilon^2)
\]

Recall. If \(X \sim \text{Poi}(\lambda)\), then \(E[X(X - 1)] = \lambda^2\)

\[
E[\# \text{ pairs of cousins per grandparent}] = E[\# \text{ pairs of children } \{v_1, v_2\}] \\
\cdot E[\xi_{v_1}]E[\xi_{v_2}] \\
= \frac{(1 + \epsilon)^2}{2} \cdot (1 + \epsilon)(1 + \epsilon)
\]
What went wrong?

Offspring distribution: Not all vertices can explore $n - 1$ new edges

\[
\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}\mathbb{E}[Z_{n-1}] - q\mathbb{E}[Z_{n-2}] - q\mathbb{E}[Z_{n-3}]
\]

\[
\mathbb{E}[\# \text{ pairs of aunt-niece per grandparent}]
\]
What went wrong?

Offspring distribution: Not all vertices can explore \(n - 1 \) new edges

\[
\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}\mathbb{E}[Z_{n-1}] - q\mathbb{E}[Z_{n-2}] - q\mathbb{E}[Z_{n-3}]
\]

\[
\mathbb{E}[\# \text{ pairs of aunt-niece per grandparent}] = \mathbb{E}[\# \text{ pairs of children } (v_1, v_2)] \\
\quad \cdot \mathbb{E}[\# \text{ grandchildren of } v_1]
\]
What went wrong?

Offspring distribution: Not all vertices can explore $n - 1$ new edges

\[\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2} \mathbb{E}[Z_{n-1}] - q\mathbb{E}[Z_{n-2}] - q^{2}\mathbb{E}[Z_{n-3}] \]

\[\mathbb{E}[\# \text{ pairs of aunt-niece per grandparent}] \]
\[= \mathbb{E}[\# \text{ pairs of children } (v_1, v_2)] \]
\[\cdot \mathbb{E}[\# \text{ grandchildren of } v_1] \]
\[= (1 + \epsilon)^2(1 + \epsilon)^2 = (1 + \epsilon)^4 \]
What went wrong?

Offspring distribution: Not all vertices can explore \(n - 1 \) new edges

\[
\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}\mathbb{E}[Z_{n-1}] - q\mathbb{E}[Z_{n-2}] - q\mathbb{E}[Z_{n-3}]
\]

\[
\mathbb{E}[\# \text{ pairs of aunt-niece per grandparent}] = \mathbb{E}[\# \text{ pairs of children } (v_1, v_2)] \cdot \mathbb{E}[\# \text{ grandchildren of } v_1]
\]

\[
= (1 + \epsilon)^2(1 + \epsilon)^2 = (1 + \epsilon)^4
\]

and

\[
\mathbb{E}[\# \text{ greatgrandchildren per indiv.}] = (1 + \epsilon)^4
\]
What went wrong?

Offspring distribution: Not all vertices can explore \(n - 1 \) new edges

\[
\mathbb{E}[Z_{n+1}] \approx (1 + \epsilon)\mathbb{E}[Z_n] - \frac{q}{2}\mathbb{E}[Z_{n-1}] - q\mathbb{E}[Z_{n-2}] - q\mathbb{E}[Z_{n-3}]
\]

\[
\mathbb{E}[\# \text{ pairs of aunt-niece per grandparent}] = \mathbb{E}[\# \text{ pairs of children } (v_1, v_2)] \cdot \mathbb{E}[\# \text{ grandchildren of } v_1]
\]
\[
= (1 + \epsilon)^2(1 + \epsilon)^2 = (1 + \epsilon)^4
\]

and

\[
\mathbb{E}[\# \text{ greatgrandchildren per indiv.}] = (1 + \epsilon)^4
\]

All these pairs give collisions with probability

\[
(n - 1)^{-2} \sim q
\]
Refining the cousin mergers model

Process construction

From generation n to $n + 1$:

1. **Reproduction**: Indiv. at generation n have children.
2. **Deletions**: Keep *authentic* children w.p. $(1 - q)^{k_v}$
3. **Collisions**: Each pair of cousins flip biased coin,
4. **Identification**: of pairs of cousins.
Survival gets the mysterious coefficients!

Refined BP with collisions (E., Penington, Skerman, '20+)

If $\xi_v \sim \text{Poi}(1 + \epsilon)$, $\epsilon > 0$ suff. small, then collision prob. q determines

- $q \geq \frac{2}{5} \epsilon + K\epsilon^2$: Extinction w.p. 1
- $q \leq \frac{2}{5} \epsilon - K\epsilon^2$: Survival w. positive prob.

Partial Idea: There are collisions occurring 4 times as often

$$
\mathbb{E}[Z_{n+1}] \approx \begin{pmatrix}
1 + \epsilon & -\frac{1}{2}q & -\frac{2}{2}q & -\frac{2}{2}q \\
\end{pmatrix} (1 + O(\epsilon))\mathbb{E}[Z_n].
$$
Summary

- We obtain a survival threshold for a variant of a branching process that mimics hypercube’s exploration near criticality.

- This sheds light on structures determining its critical probability.

Refined BP with collisions (E., Penington, Skerman, ’20+)

If $\xi_v \sim \text{Poi}(1 + \epsilon)$, $\epsilon > 0$ suff. small, then collision prob. q determines:

- $q \geq \frac{2}{5}\epsilon + K\epsilon^2$: Extinction w.p. 1
- $q \leq \frac{2}{5}\epsilon - K\epsilon^2$: Survival w. positive prob.