A branching process with deletions and mergers that matches the threshold for hypercube percolation

Laura Eslava, Sarah Penington and Fiona Skerman

Percolation Today

May 4th

Contents

(1) Motivation

- Hypercube percolation
- Critical probability expansion
(2) The model
- A branching process with deletions and mergers
- Survival and extinction conditions
- Combinatorial heuristic for 5/2 coefficient
(3) Heuristic for percolation
- Exploration of a random cluster
- Hypercube's local properties
- A special regime of our theorem

Hypercube percolation: a brief story

- Connectivity threshold

Burtin '77, Erdős, Spencer '79, Bollobás '84

- Emergence of giant component (transition at $p=1 / d$) Atjai, Komlós, Szemerédi ' 82
- Emergence of giant component (giant for $p \geq 1 /(d-1)$) Bollobás, Kohayakawa, Łuczak '92
- Formal introduction of p_{c} Borgs et al. '05, '06
- Asymptotic expansion of p_{c} Hosftad, Slade '05, '06
- Unlacing the hypercube Hosftad, Nachmias '14

Previously, on \mathbb{Z}^{d} :

- First three terms of $p_{c}\left(\mathbb{Z}^{d}\right)$ expansion Hara, Slade '93

Expansion of critical probability

Hosftad, Slade ['05, '06]

Let \mathbb{G} denote either Q_{d} or \mathbb{Z}^{d} and let $\Omega=d$ or $\Omega=2 d$, respectively. For all $K>0$, there exists rational coefficients a_{k} such that

$$
p_{c}(\mathbb{G})=\sum_{k=1}^{K} a_{k} \Omega^{-k}+O\left(\Omega^{-K-1}\right)
$$

and

$$
\begin{aligned}
p_{c}(\mathbb{G}) & =\Omega^{-1}+\Omega^{-2}+\frac{7}{2} \Omega^{-3}+O\left(\Omega^{-4}\right) \\
& =(\Omega-1)^{-1}+\frac{5}{2}(\Omega-1)^{-3}+O\left(\Omega^{-4}\right)
\end{aligned}
$$

It is believed that $p_{c}\left(Q_{d}\right)$ and $p_{c}\left(\mathbb{Z}^{d}\right)$ differ after third term.

A branching process with deletions and mergers

Let $p>-1, q \in[0,1]$. Let $\mathcal{G}(p, q)=\left(G_{n}, n \geq 0\right)$ with $G_{n}=\left(V_{n}, E_{n}\right)$

$$
I_{n}=V_{n} \backslash V_{n-1} \text { is the } n \text {th generation. }
$$

For $v \in I_{n-1}$, let $k_{v}=\#\left\{w \in V_{n-1}: d_{G_{n}}(v, w)=3\right\}$.

A branching process with deletions and mergers

Let $p>-1, q \in[0,1]$. Let $\mathcal{G}(p, q)=\left(G_{n}, n \geq 0\right)$ with $G_{n}=\left(V_{n}, E_{n}\right)$

$$
I_{n}=V_{n} \backslash V_{n-1} \text { is the } n \text {th generation. }
$$

For $v \in I_{n-1}$, let $k_{v}=\#\left\{w \in V_{n-1}: d_{G_{n}}(v, w)=3\right\}$.
Construction: $G_{0}=(\{\emptyset\}, \emptyset)$. For $n \geq 1$ conditional on G_{n-1} :
(1) Let $P_{v} \sim \operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$ be independent for $v \in I_{n-1}$.

- Form $\tilde{\mathcal{G}}_{n}$ from G_{n-1} by attaching P_{v} new vertices to v.
- Let \tilde{I}_{n} be the set of the new vertices.

A branching process with deletions and mergers

Let $p>-1, q \in[0,1]$. Let $\mathcal{G}(p, q)=\left(G_{n}, n \geq 0\right)$ with $G_{n}=\left(V_{n}, E_{n}\right)$

$$
I_{n}=V_{n} \backslash V_{n-1} \text { is the } n \text {th generation. }
$$

For $v \in I_{n-1}$, let $k_{v}=\#\left\{w \in V_{n-1}: d_{G_{n}}(v, w)=3\right\}$.

Construction: $G_{0}=(\{\emptyset\}, \emptyset)$. For $n \geq 1$ conditional on G_{n-1} :
(1) Let $P_{v} \sim \operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$ be independent for $v \in I_{n-1}$.

- Form $\tilde{\mathcal{G}}_{n}$ from G_{n-1} by attaching P_{v} new vertices to v.
- Let \tilde{I}_{n} be the set of the new vertices.
(2) Let $B_{\{v, w\}} \sim \operatorname{Ber}(q)$ be independent for each pair $v, w \in \tilde{I}_{n}$.
- Let $v \sim w$ if $d_{\tilde{\mathcal{G}}_{n}}(v, w)=4$ and $B_{\{v, w\}}=1$.
- Form G_{n} from $\tilde{\mathcal{G}}_{n}$ by identifying each class and merging multi-edges.

Example: Deletion and merger stages

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$; Cousin mergers: $\operatorname{Ber}(q)$.
$10:$
$I_{1}:$
$\tilde{I}_{2}:$

Example: Deletion and merger stages

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$; Cousin mergers: $\operatorname{Ber}(q)$.

10 :
$I_{1}:$
$\tilde{I}_{2}:$

Example: Deletion and merger stages

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$; Cousin mergers: $\operatorname{Ber}(q)$.
I_{0} :
$I_{1}:$
I_{2} :

Example: Deletion and merger stages

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$; Cousin mergers: $\operatorname{Ber}(q)$.

$$
\begin{aligned}
& I_{0}: \\
& I_{1}: \\
& I_{2}: \\
& \tilde{I}_{3}:
\end{aligned}
$$

Example: Deletion and merger stages

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k_{\mathrm{v}}}\right) ;$ Cousin mergers: $\operatorname{Ber}(q)$.

$$
\begin{aligned}
& I_{0}: \\
& I_{1}: \\
& I_{2}: \\
& \tilde{I}_{3}:
\end{aligned}
$$

Example: Deletion and merger stages

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k v}\right) ;$ Cousin mergers: $\operatorname{Ber}(q)$.
$10:$
$I_{1}:$
I_{2} :
$I_{3}:$

Example: Deletion and merger stages

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$; Cousin mergers: $\operatorname{Ber}(q)$.

$$
\begin{aligned}
& 1_{0}: \\
& I_{1}: \\
& I_{2}: \\
& 1_{3}:
\end{aligned}
$$

Difficulties:

- The process $\left(\left|I_{n}\right|, n \geq 0\right)$ is non-Markovian.
- Genealogical structure becomes a graph.
- Siblings may have distinct sets of ancestors.

Survival and extinction conditions

Offspring: $\operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$; Cousin mergers: $\operatorname{Ber}(q)$.
Theorem (EPS, 21^{+})
There is $C>0$ and $p_{0} \in(0,1)$ such that for $0<p \leq p_{0}$

- if $q<\frac{2}{5} p(1-C p)$ then $\mathcal{G}(p, q)$ survives with positive probability;
- if $q>\frac{2}{5} p(1+C p)$ then $\mathcal{G}(p, q)$ dies out almost surely.

Open Question:

Is there a threshold $q_{c}(p)$ that determines the extinction of $G(p, q)$?

Open Question:

Is the survival probability of $G(p, q)$ monotone in p or q ?

Combinatorial heuristic for $5 / 2$ coefficient

The estimated average growth per generation is

$$
\mathbb{E}\left[\left|I_{n}\right|\right] \approx\left(1+p-\frac{5}{2} q\right) \mathbb{E}\left[\left|I_{n-1}\right|\right] .
$$

Pairs of cousins may be counted by their common grandparent:
$\mathbb{E}[\#$ pairs of cousins per grandparent $]=\mathbb{E}[\#$ pairs of siblings $](1+p)^{2}$

$$
=\frac{(1+p)^{4}}{2} .
$$

$$
\text { mergers } \approx \frac{1}{2} q(1+p)^{4} \mathbb{E}\left|I_{n-2}\right|,
$$

Per generation, there are deletions occurring 4 times as often!

Example: Exploration of random cluster

Detour: Let $u_{1}, \ldots u_{5}$ be a non-backtracking walk in \mathbb{G} then

$$
c_{b}=\mathrm{P}(\text { walk forms a 4-cycle })= \begin{cases}(\Omega-1)^{-2} & \text { if } \mathbb{G}=Q_{d} \\ (\Omega-1)^{-2}-(\Omega-1)^{-3} & \text { if } \mathbb{G}=\mathbb{Z}_{d}\end{cases}
$$

A non-backtracking walk $u_{1}, \ldots u_{2 \ell+1}$ forms a 2ℓ-cycle with probability $O\left(\Omega^{-\ell}\right)$.

Exploration setup

Let H be the percolation cluster of $\mathbf{0}$ in \mathbb{G}_{ρ}. The exploration process $H_{n}=\left(V_{n}, E_{n}\right), n \geq 0$ is performed as follows: let $H_{0}=(\{\mathbf{0}\}, \emptyset)$ and $T_{-1}=\emptyset$.
For $n \geq 0$, let $S_{n}=V_{n} \backslash V_{n-1}$ and

$$
T_{n}=\left\{u v \in E(\mathbb{G}): u \in V_{n}, v \notin V_{n}\right\}
$$

and let F_{n} contain each $e \in T_{n} \backslash T_{n-1}$ independently with probability ρ. Then

$$
E_{n} \backslash E_{n-1}=F_{n} \backslash T_{n-1}
$$

Local properties of Q_{d} and \mathbb{Z}^{d}

Properties of \mathbb{G} and exploration:

(1) Edges only connect vertices in consecutive generations (no odd cycles)
(2) Each $v \in S_{n-1}$ generates $\operatorname{Bin}\left(\Omega-\operatorname{deg}_{H_{n-1}}(v), \rho\right)$ edges in F_{n} (transitivity)
(3) Deletion stage: Edges in $F_{n} \cap T_{n-1}$ were previously explored.
(9) Merger stage: Edges in $E_{n} \backslash E_{n-1}$ may close cycles in H.

Local properties of Q_{d} and \mathbb{Z}^{d}

Properties of \mathbb{G} and exploration:

(1) Edges only connect vertices in consecutive generations (no odd cycles)
(2) Each $v \in S_{n-1}$ generates $\operatorname{Bin}\left(\Omega-\operatorname{deg}_{H_{n-1}}(v), \rho\right)$ edges in F_{n} (transitivity)
(3) Deletion stage: Edges in $F_{n} \cap T_{n-1}$ were previously explored.
(4) Merger stage: Edges in $E_{n} \backslash E_{n-1}$ may close cycles in H.

Idealization of the exploration, for Ω large, using the probability that a non-backtracking walk forms a cycle:
Pairwise mergers:
$\operatorname{Ber}\left(c_{b}(1+o(1))\right.$
$\sim \operatorname{Ber}\left((\Omega-1)^{-2}\right)$

* Neglecting correlations and cycles of length at least 6.

Local properties of Q_{d} and \mathbb{Z}^{d}

Properties of \mathbb{G} and exploration:

(1) Edges only connect vertices in consecutive generations (no odd cycles)
(2) Each $v \in S_{n-1}$ generates $\operatorname{Bin}\left(\Omega-\operatorname{deg}_{H_{n-1}}(v), \rho\right)$ edges in F_{n} (transitivity)
(3) Deletion stage: Edges in $F_{n} \cap T_{n-1}$ were previously explored.
(9) Merger stage: Edges in $E_{n} \backslash E_{n-1}$ may close cycles in H.

Idealization of the exploration, for Ω large, using the probability that a non-backtracking walk forms a cycle:
Pairwise mergers:
Offspring: $\quad \operatorname{Bin}\left(\Omega-\operatorname{deg}_{H_{n-1}}(v), \rho\right)$

$$
\begin{aligned}
& \sim \operatorname{Ber}\left((\Omega-1)^{-2}\right) \\
& \sim \operatorname{Poi}((\Omega-1) \rho)
\end{aligned}
$$

* Neglecting correlations and cycles of length at least 6.

Local properties of Q_{d} and \mathbb{Z}^{d}

Properties of \mathbb{G} and exploration:

(1) Edges only connect vertices in consecutive generations (no odd cycles)
(2) Each $v \in S_{n-1}$ generates $\operatorname{Bin}\left(\Omega-\operatorname{deg}_{H_{n-1}}(v), \rho\right)$ edges in F_{n} (transitivity)
(3) Deletion stage: Edges in $F_{n} \cap T_{n-1}$ were previously explored.
(9) Merger stage: Edges in $E_{n} \backslash E_{n-1}$ may close cycles in H.

Idealization of the exploration, for Ω large, using the probability that a non-backtracking walk forms a cycle:

$$
\begin{array}{rll}
\text { Pairwise mergers: } & \operatorname{Ber}\left(c_{b}(1+o(1))\right. & \sim \operatorname{Ber}\left((\Omega-1)^{-2}\right) \\
\text { Offspring: } & \operatorname{Bin}\left(\Omega-\operatorname{deg}_{H_{n-1}}(v), \rho\right) & \sim \operatorname{Poi}((\Omega-1) \rho) \\
\text { Thinning factor: } & \mathbf{1}\left\{v w \in F_{n} \backslash T_{n-1} \mid v w \in F_{n}\right\} & \sim \operatorname{Ber}\left(1-c_{b}\right)^{k_{v}}
\end{array}
$$

* Neglecting correlations and cycles of length at least 6.

A special regime of our theorem

Consider $Q_{m+1, \rho}$ or $\mathbb{Z}_{\rho}^{(m+1) / 2}$:
Exploration of a cluster is approximated by $\mathcal{G}\left(p(\rho), Q_{b}\right)$ where

$$
1+p(\rho)=m \rho, \quad q_{b}=m^{-2}
$$

Corollary (EPS, 21+)

There is $K>0$, such that under suitable conditions on ρ and m, letting

$$
\hat{\rho}_{c}:=m^{-1}+\frac{5}{2} m^{-3} .
$$

- if $\rho>\hat{\rho}_{c}+K m^{-5}$ then $\mathcal{G}\left(p(\rho), q_{b}\right)$ survives with positive probability;
- if $\rho<\hat{\rho}_{c}-K m^{-5}$ then $\mathcal{G}\left(p(\rho), q_{b}\right)$ dies out almost surely.

Proof of Corollary: extinction phase

$$
p(\rho)=m \rho-1, \quad q_{b}=m^{-2} \quad \text { and } \quad \hat{\rho}_{c}:=m^{-1}+\frac{5}{2} m^{-3}
$$

Let $\rho=\hat{\rho}_{c}-x m^{-5}$. Using that $p(\rho)=\frac{5}{2} m^{-2}-x m^{-4}$.

$$
\begin{aligned}
m^{-2} & \stackrel{?}{>} \frac{2}{5} p(\rho)(1+C p(\rho)) \\
& =\frac{2}{5}\left(\frac{5}{2} m^{-2}-x m^{-4}\right)\left(1+\frac{5 C}{2} m^{-2}-x C m^{-4}\right) \\
& =m^{-2}+\frac{2}{5} m^{-4}\left(C x^{2} m^{-4}-x\left(1+5 C m^{-2}\right)+\frac{25}{4} C\right)
\end{aligned}
$$

We require that $C x^{2} m^{-4}-x\left(1+5 C m^{-2}\right)+\frac{25}{4} C<0$; that is, that $x \in\left(x_{1}, x_{2}\right)$ where x_{1} and x_{2} are the solutions to the quadratic equation.

If $x>K$ then for m large, $x \in\left(x_{1}, x_{2}\right)$ and $\mathcal{G}\left(p(\rho), q_{b}\right)$ dies out a.s.

Other critical probabilities

Borgs et al ['05], Federico et al. ['20], Heydenreich, Matzke ['19,'20]
For site percolation on \mathbb{Z}^{d}, as $d \rightarrow \infty$

$$
p_{c}^{s}\left(\mathbb{Z}^{d}\right)=\Omega^{-1}+\frac{5}{2} \Omega^{-2}+\frac{31}{4} \Omega^{-3}+O\left(\Omega^{-4}\right)
$$

Hamming graphs $H(d, m)$ have vertex set $\{0,1, \ldots, m-1\}^{d}$, edges join nearest neighbours. Let $\Omega=d(m-1)$ and $V=m^{d}$.

For $d \geq 2$, as $m \rightarrow \infty$

$$
p_{c}(H(d, m))=\Omega^{-1}+\frac{2 d^{2}-1}{2(d-1)^{2}} \Omega^{-2}+O\left(\Omega^{-3}\right)+O\left(\Omega^{-1} V^{-1 / 3}\right)
$$

Other critical probabilities

Borgs et al ['05], Federico et al. ['20], Heydenreich, Matzke ['19,'20]
For site percolation on \mathbb{Z}^{d}, as $d \rightarrow \infty$

$$
p_{c}^{s}\left(\mathbb{Z}^{d}\right)=\Omega^{-1}+\frac{5}{2} \Omega^{-2}+\frac{31}{4} \Omega^{-3}+O\left(\Omega^{-4}\right)
$$

Hamming graphs $H(d, m)$ have vertex set $\{0,1, \ldots, m-1\}^{d}$, edges join nearest neighbours. Let $\Omega=d(m-1)$ and $V=m^{d}$.

For $d \geq 2$, as $m \rightarrow \infty$

$$
p_{c}(H(d, m))=\Omega^{-1}+\frac{2 d^{2}-1}{2(d-1)^{2}} \Omega^{-2}+O\left(\Omega^{-3}\right)+O\left(\Omega^{-1} V^{-1 / 3}\right)
$$

Some differences with our heuristics:

- For site percolation, edges are not independently present.
- Hamming graphs contain shorter, odd cycles (triangles).

Summary

Exploration of a cluster of $Q_{m+1, \rho}$ or $\mathbb{Z}_{\rho}^{(m+1) / 2}$ is approximated by $\mathcal{G}\left(p(\rho), Q_{b}\right)$.

$$
p(\rho)=m \rho-1, \quad q_{b}=m^{-2} \quad \text { and } \quad \hat{\rho}_{c}:=m^{-1}+\frac{5}{2} m^{-3} .
$$

Corollary (EPS, 21^{+})

There is $K>0$, such that under suitable conditions on ρ and m,

- if $\rho>\hat{\rho}_{c}+K m^{-5}$ then $\mathcal{G}\left(p(\rho), q_{b}\right)$ survives with positive probability;
- if $\rho<\hat{\rho}_{c}-K m^{-5}$ then $\mathcal{G}\left(p(\rho), q_{b}\right)$ dies out almost surely.

