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Hypercube percolation: a brief story

@ Connectivity threshold
Burtin '77, Erdds, Spencer '79, Bollobds '84

e Emergence of giant component (transition at p = 1/d)
Atjai, Komléds, Szemerédi '82

e Emergence of giant component (giant for p > 1/(d — 1))
Bollobas, Kohayakawa, tuczak '92

@ Formal introduction of p. Borgs et al. '05, '06

@ Asymptotic expansion of p. Hosftad, Slade '05, '06

@ Unlacing the hypercube Hosftad, Nachmias '14

Previously, on Z9:

o First three terms of p.(Z9) expansion Hara, Slade 93

57T



Expansion of critical probability
Hosftad, Slade ['05, '06]

Let G denote either Qg or Z¢ and let Q) = d or Q) = 2d, respectively.

For all K > 0, there exists rational coefficients ax such that

K
pe(G) =) a0 “+ oK
k=1

and

pe(G)=Q 14+ 2+ 29*3 +0(Q7%

=(Q-1)"1+

o1

S@-1)7+ 0@

It is believed that p.(Qq) and pc(Z?) differ after third term.
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A branching process with deletions and mergers

Let p> —1,q €[0,1]. Let G(p,q) = (G, n > 0) with G, = (Vi Ep)
In =V, \ V,_1 is the nth generation.

For v € I,,_]_, let kv = #{W S Vn—l . dG,,(V7 W) = 3}
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A branching process with deletions and mergers

Let p> —1,q € [0,1]. Let G(p, q) = (G,, n > 0) with G, = (V,,, Ep)
In =V, \ V,_1 is the nth generation.

For v € Ih_1, let k, = #{w € V,_1: dg,(v,w) = 3}.

Construction: Gy = ({0},0). For n > 1 conditional on G,_1:

@ Let P, ~ Poi((1+ p)(1 — g)*) be independent for v € I, 1.

» Form G, from G,_; by attaching P, new vertices to v.
» Let /, be the set of the new vertices.
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A branching process with deletions and mergers

Let p> —1,q € [0,1]. Let G(p, q) = (G,, n > 0) with G, = (V,,, Ep)
In =V, \ V,_1 is the nth generation.

For v € Ih_1, let k, = #{w € V,_1: dg,(v,w) = 3}.

Construction: Gy = ({0},0). For n > 1 conditional on G,_1:

@ Let P, ~ Poi((1+ p)(1 — g)*) be independent for v € I, 1.

» Form G, from G,_; by attaching P, new vertices to v.
» Let /, be the set of the new vertices.

Q Let By, ,, ~ Ber(q) be independent for each pair v, w € I
» Let v~ wifds (v,w)=4and By, ,; =1
» Form G, from G, by identifying each class and merging multi-edges.

(IIMAS-UNAM) 5/15



Example: Deletion and merger stages

Offspring: Poi((1 + p)(1 — g)*); Cousin mergers: Ber(q).
/0 :

/12
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Example: Deletion and merger stages

Offspring: Poi((1 + p)(1 — g)"); Cousin mergers: Ber(q).
/0 :
/1 .

/23
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Example: Deletion and merger stages

Offspring: Poi((1 + p)(1 — g)*); Cousin mergers: Ber(q).
Io :
i :

/2:
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Example: Deletion and merger stages
Offspring: Poi((1 + p)(1 — q)); Cousin mergers: Ber(q).

/0:
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Example: Deletion and merger stages
Offspring: Poi((1 + p)(1 — g)*); Cousin mergers: Ber(q).

/0:

/3: [
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Example: Deletion and merger stages

Offspring: Poi((1 + p)(1 — g)*); Cousin mergers: Ber(q).

/0:

Ip :

I :

Difficulties:

@ The process (|/5], n > 0) is non-Markovian.

@ Genealogical structure becomes a graph.

@ Siblings may have distinct sets of ancestors.
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Survival and extinction conditions

Offspring: Poi((1 + p)(1 — g)*); Cousin mergers: Ber(q).
Theorem (EPS, 217)
There is C > 0 and po € (0,1) such that for 0 < p < pg

e ifg< %p(l — Cp) then G(p, q) survives with positive probability;
e ifqg> %p(l + Cp) then G(p, q) dies out almost surely.

Open Question:
Is there a threshold g.(p) that determines the extinction of G(p, q)?

Open Question:
Is the survival probability of G(p, g) monotone in p or g?
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Combinatorial heuristic for 5/2 coefficient

The estimated average growth per generation is

Bl ~ (1+ 5 50 ) Ellh-al).

Pairs of cousins may be counted by their common grandparent:

E[# pairs of cousins per grandparent] = E[# pairs of siblings](1 + p)’
(1+p)*

> .

—— o

uy A .
mergers ~ o1+ p)Elly 2|,
—

Per generation, there are deletions occurring 4 times as often!
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Example: Exploration of random cluster

(IIMAS-UNAM)

/

7z

A

\

/




Example: Exploration of random cluster
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Example: Exploration of random cluster
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Example: Exploration of random cluster
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Example: Exploration of random cluster
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Example: Exploration of random cluster

Detour: Let u1,...us be a non-backtracking walk in G then

(Q-1)2 if G = Qq

cp = P(walk forms a 4-cycle) = {(Q 1) (Q-1)2 G =2y

A non-backtracking walk vy, ... tps 1 forms a 2/-cycle with probability O(Q2 ).
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Exploration setup

Let H be the percolation cluster of 0 in G,. The exploration process
H, = (V,.E,), n > 0 is performed as follows: let Hy = ({0},0) and T_; = 0.

Forn>0,letS,=V,\ V,_1 and

To={uv € E(G):ue Vpv¢V,},

and let F, contain each e € T, \ T,_1 independently with probability p. Then

So :
S
Sy
S3:
Sy

En\En—l = Fn\ Tn—l
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Local properties of Q4 and Z¢

Properties of G and exploration:
@ Edges only connect vertices in consecutive generations (no odd cycles)
@ Each v € S, generates Bin(Q — degy _ (v), p) edges in F, (transitivity)
© Deletion stage: Edges in F, N T,_1 were previously explored.

@Q Merger stage: Edges in E, \ E,—1 may close cycles in H.
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Local properties of Q4 and Z¢

Properties of G and exploration:
@ Edges only connect vertices in consecutive generations (no odd cycles)
@ Each v € S, generates Bin(Q — degy _ (v), p) edges in F, (transitivity)
© Deletion stage: Edges in F, N T,_1 were previously explored.

@Q Merger stage: Edges in E, \ E,—1 may close cycles in H.

Idealization of the exploration, for €2 large, using the probability that a
non-backtracking walk forms a cycle:

Pairwise mergers: Ber(c,(1+ o(1)) ~ Ber((Q2—1)7?)

* Neglecting correlations and cycles of length at least 6.
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Local properties of Q4 and Z¢

Properties of G and exploration:
@ Edges only connect vertices in consecutive generations (no odd cycles)
@ Each v € S, generates Bin(Q — degy _ (v), p) edges in F, (transitivity)
© Deletion stage: Edges in F, N T,_1 were previously explored.
@Q Merger stage: Edges in E, \ E,—1 may close cycles in H.
Idealization of the exploration, for €2 large, using the probability that a
non-backtracking walk forms a cycle:
Pairwise mergers: Ber(cy(1+ o(1)) ~ Ber((Q — 1)7?)
Offspring: Bin(Q — degy, ,(v),p) ~ Poi((2 —1)p)

* Neglecting correlations and cycles of length at least 6.
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Local properties of Q4 and Z¢

Properties of G and exploration:
@ Edges only connect vertices in consecutive generations (no odd cycles)
@ Each v € S, generates Bin(Q — degy _ (v), p) edges in F, (transitivity)
© Deletion stage: Edges in F, N T,_1 were previously explored.
@Q Merger stage: Edges in E, \ E,—1 may close cycles in H.
Idealization of the exploration, for €2 large, using the probability that a
non-backtracking walk forms a cycle:
Pairwise mergers: Ber(cy(1+ o(1)) ~ Ber((Q — 1)7?)
Offspring: Bin(Q — degy, ,(v),p) ~ Poi((2 —1)p)
Thinning factor: {w € F,\ Toa|w € F} ~Ber(l —c)™

* Neglecting correlations and cycles of length at least 6.
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A special regime of our theorem

Consider ()1, or Zg,m+1)/2:

Exploration of a cluster is approximated by G(p(p), Qp) where

1+p(p)=mp, qp=m 2.

Corollary (EPS, 217)
There is K > 0, such that under suitable conditions on p and m, letting

e if p> pc + Km=5 then G(p(p), qp) survives with positive probability;

e if p < pc — Km=5 then G(p(p), qp) dies out almost surely.
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Proof of Corollary: extinction phase

5
plp)=mp—1, go=m"? and pci=m'+ m

Let p = pc — xm~2. Using that p(p) = %m*Q —xm™%,

-2

m2 = Zp(p)(1+ Cpl(p))

(gm2 — xm4) <1 + %mfz — XCm4>

=m?2+ %m_‘1 (szm_4 —x(14+5Cm™2) + %TSC) .

Gl Gl N

We require that Cx?2m~* — x(1 +5Cm~2) + 22C < 0; that is, that
x € (x1,x2) where x; and x are the solutions to the quadratic equation.

If x > K then for m large, x € (x1,x2) and G(p(p), gp) dies out a.s.
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Other critical probabilities
Borgs et al ['05], Federico et al. ['20], Heydenreich, Matzke ['19,'20]

For site percolation on Z9, as d — oo

5 1
iz =t 4+ 59—2 + 379-3 +0(Q7%).
Hamming graphs H(d, m) have vertex set {0,1,...,m — 1}9, edges join

nearest neighbours. Let Q = d(m — 1) and V = m?.

Ford > 2, as m — >

2 _
2771 624 o)+ 0@ Lv-113)

pe(H(d, m)) = Q7! + Ad—1)
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Other critical probabilities
Borgs et al ['05], Federico et al. ['20], Heydenreich, Matzke ['19,'20]

For site percolation on Z9, as d — oo

31

iz =t 4+ 29—2 + 79-3 +0(Q7%).

Hamming graphs H(d, m) have vertex set {0,1,...,m — 1}9, edges join
nearest neighbours. Let Q = d(m — 1) and V = m?.
Ford > 2, as m — >

2 _
271 a2 4 (@3 + o(Q1v-113)

pe(H(d, m)) = Q7! + Ad—1)

Some differences with our heuristics:
@ For site percolation, edges are not independently present.

e Hamming graphs contain shorter, odd cycles (triangles).
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Summary

Exploration of a cluster of Q1 or Zs)mﬂw is approximated by G(p(p), Qp).

5
plp)=mp—1, g=m"? and pc=m "4 m.

Corollary (EPS, 217)

There is K > 0, such that under suitable conditions on p and m,

@ if p> p. + Km=5 then G(p(p), g») survives with positive probability;
@ if p < p. — Km=5 then G(p(p), g») dies out almost surely.
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