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Hypercube percolation: a brief story

Connectivity threshold

Burtin ’77, Erdős, Spencer ’79, Bollobás ’84

Emergence of giant component (transition at p = 1/d)

Atjai, Komlós, Szemerédi ’82

Emergence of giant component (giant for p ≥ 1/(d − 1))

Bollobás, Kohayakawa,  Luczak ’92

Formal introduction of pc Borgs et al. ’05, ’06

Asymptotic expansion of pc Hosftad, Slade ’05, ’06

Unlacing the hypercube Hosftad, Nachmias ’14

Previously, on Zd :

First three terms of pc(Zd) expansion Hara, Slade ’93
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Expansion of critical probability

Hosftad, Slade [’05, ’06]

Let G denote either Qd or Zd and let Ω = d or Ω = 2d , respectively.

For all K > 0, there exists rational coefficients ak such that

pc(G) =
K∑

k=1

akΩ−k + O(Ω−K−1)

and

pc(G) = Ω−1 + Ω−2 +
7

2
Ω−3 + O(Ω−4)

= (Ω− 1)−1 +
5

2
(Ω− 1)−3 + O(Ω−4)

It is believed that pc(Qd) and pc(Zd) differ after third term.
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A branching process with deletions and mergers

Let p > −1, q ∈ [0, 1]. Let G(p, q) = (Gn, n ≥ 0) with Gn = (Vn,En)

In = Vn \ Vn−1 is the nth generation.

For v ∈ In−1, let kv = #{w ∈ Vn−1 : dGn(v ,w) = 3}.

Construction: G0 = ({∅}, ∅). For n ≥ 1 conditional on Gn−1:

1 Let Pv ∼ Poi((1 + p)(1− q)kv ) be independent for v ∈ In−1.
I Form G̃n from Gn−1 by attaching Pv new vertices to v .
I Let Ĩn be the set of the new vertices.

2 Let B{v ,w} ∼ Ber(q) be independent for each pair v ,w ∈ Ĩn.
I Let v ∼ w if dG̃n(v ,w) = 4 and B{v ,w} = 1.

I Form Gn from G̃n by identifying each class and merging multi-edges.
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Example: Deletion and merger stages

Offspring: Poi((1 + p)(1− q)kv ); Cousin mergers: Ber(q).

I0 :

I1 :

Ĩ2 :

Difficulties:
The process (|In|, n ≥ 0) is non-Markovian.

Genealogical structure becomes a graph.

Siblings may have distinct sets of ancestors.
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Survival and extinction conditions

Offspring: Poi((1 + p)(1− q)kv ); Cousin mergers: Ber(q).

Theorem (EPS, 21+)

There is C > 0 and p0 ∈ (0, 1) such that for 0 < p ≤ p0

if q < 2
5p(1− Cp) then G(p, q) survives with positive probability;

if q > 2
5p(1 + Cp) then G(p, q) dies out almost surely.

Open Question:
Is there a threshold qc(p) that determines the extinction of G (p, q)?

Open Question:
Is the survival probability of G (p, q) monotone in p or q?

(IIMAS-UNAM) 7 / 15



Combinatorial heuristic for 5/2 coefficient

The estimated average growth per generation is

E[|In|] ≈
(

1 + p−5

2
q

)
E[|In−1|].

Pairs of cousins may be counted by their common grandparent:

E[# pairs of cousins per grandparent] = E[# pairs of siblings](1 + p)2

=
(1 + p)4

2
.

u1

u2

mergers ≈ 1

2
q(1 + p)4E|In−2|,

Per generation, there are deletions occurring 4 times as often!
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Example: Exploration of random cluster

0

u1

u2

v1

v2

v3w

Detour: Let u1, . . . u5 be a non-backtracking walk in G then

cb = P(walk forms a 4-cycle) =

{
(Ω− 1)−2 if G = Qd

(Ω− 1)−2 − (Ω− 1)−3 if G = Zd

A non-backtracking walk u1, . . . u2`+1 forms a 2`-cycle with probability O(Ω−`).
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Exploration setup

Let H be the percolation cluster of 0 in Gρ. The exploration process
Hn = (Vn,En), n ≥ 0 is performed as follows: let H0 = ({0}, ∅) and T−1 = ∅.
For n ≥ 0, let Sn = Vn \ Vn−1 and

Tn = {uv ∈ E (G) : u ∈ Vn, v /∈ Vn},

and let Fn contain each e ∈ Tn \ Tn−1 independently with probability ρ. Then

En \ En−1 = Fn \ Tn−1

0

u1 u2

v1
v2

v3

w

x

S0 :

S1 :

S2 :

S3 :

S4 :

0

u1

u2

v1

v2

v3w

x
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Local properties of Qd and Zd

Properties of G and exploration:

1 Edges only connect vertices in consecutive generations (no odd cycles)

2 Each v ∈ Sn−1 generates Bin(Ω− degHn−1
(v), ρ) edges in Fn (transitivity)

3 Deletion stage: Edges in Fn ∩ Tn−1 were previously explored.

4 Merger stage: Edges in En \ En−1 may close cycles in H.

Idealization of the exploration, for Ω large, using the probability that a
non-backtracking walk forms a cycle:

Pairwise mergers: Ber(cb(1 + o(1)) ∼ Ber((Ω− 1)−2)

Offspring: Bin(Ω− degHn−1
(v), ρ) ∼ Poi((Ω− 1)ρ)

Thinning factor: 1{vw ∈ Fn \ Tn−1| vw ∈ Fn} ∼ Ber(1− cb)kv

∗ Neglecting correlations and cycles of length at least 6.
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A special regime of our theorem

Consider Qm+1,ρ or Z(m+1)/2
ρ :

Exploration of a cluster is approximated by G(p(ρ),Qb) where

1 + p(ρ) = mρ, qb = m−2.

Corollary (EPS, 21+)

There is K > 0, such that under suitable conditions on ρ and m, letting

ρ̂c := m−1 +
5

2
m−3.

if ρ > ρ̂c + Km−5 then G(p(ρ), qb) survives with positive probability;

if ρ < ρ̂c − Km−5 then G(p(ρ), qb) dies out almost surely.
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Proof of Corollary: extinction phase

p(ρ) = mρ− 1, qb = m−2 and ρ̂c := m−1 +
5

2
m−3.

Let ρ = ρ̂c − xm−5. Using that p(ρ) = 5
2m
−2 − xm−4.

m−2
?
>

2

5
p(ρ)(1 + Cp(ρ))

=
2

5

(
5

2
m−2 − xm−4

)(
1 +

5C

2
m−2 − xCm−4

)
= m−2 +

2

5
m−4

(
Cx2m−4 − x(1 + 5Cm−2) +

25

4
C

)
.

We require that Cx2m−4 − x(1 + 5Cm−2) + 25
4 C < 0; that is, that

x ∈ (x1, x2) where x1 and x2 are the solutions to the quadratic equation.

If x > K then for m large, x ∈ (x1, x2) and G(p(ρ), qb) dies out a.s.
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Other critical probabilities
Borgs et al [’05], Federico et al. [’20], Heydenreich, Matzke [’19,’20]

For site percolation on Zd , as d →∞

psc(Zd) = Ω−1 +
5

2
Ω−2 +

31

4
Ω−3 + O(Ω−4).

Hamming graphs H(d ,m) have vertex set {0, 1, . . . ,m − 1}d , edges join
nearest neighbours. Let Ω = d(m − 1) and V = md .

For d ≥ 2, as m→∞

pc(H(d ,m)) = Ω−1 +
2d2 − 1

2(d − 1)2
Ω−2 + O(Ω−3) + O(Ω−1V−1/3)

Some differences with our heuristics:

For site percolation, edges are not independently present.

Hamming graphs contain shorter, odd cycles (triangles).
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Summary

Exploration of a cluster of Qm+1,ρ or Z(m+1)/2
ρ is approximated by G(p(ρ),Qb).

p(ρ) = mρ− 1, qb = m−2 and ρ̂c := m−1 +
5

2
m−3.

Corollary (EPS, 21+)

There is K > 0, such that under suitable conditions on ρ and m,

if ρ > ρ̂c + Km−5 then G(p(ρ), qb) survives with positive probability;

if ρ < ρ̂c − Km−5 then G(p(ρ), qb) dies out almost surely.
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