A branching process with deletions and mergers that matches the threshold for hypercube percolation

Laura Eslava, Sarah Penington and Fiona Skerman

Percolation Today May 4th

Contents

Motivation

- Hypercube percolation
- Critical probability expansion

2 The model

- A branching process with deletions and mergers
- Survival and extinction conditions
- Combinatorial heuristic for 5/2 coefficient

Heuristic for percolation

- Exploration of a random cluster
- Hypercube's local properties
- A special regime of our theorem

Hypercube percolation: a brief story

• Connectivity threshold

Burtin '77, Erdős, Spencer '79, Bollobás '84

- Emergence of giant component (transition at p = 1/d) Atjai, Komlós, Szemerédi '82
- Emergence of giant component (giant for $p \ge 1/(d-1)$) Bollobás, Kohayakawa, Łuczak '92
- Formal introduction of p_c Borgs et al. '05, '06
- Asymptotic expansion of pc Hosftad, Slade '05, '06
- Unlacing the hypercube Hosftad, Nachmias '14

Previously, on \mathbb{Z}^d :

• First three terms of $p_c(\mathbb{Z}^d)$ expansion Hara, Slade '93

Expansion of critical probability

Hosftad, Slade ['05, '06]

Let \mathbb{G} denote either Q_d or \mathbb{Z}^d and let $\Omega = d$ or $\Omega = 2d$, respectively.

For all K > 0, there exists rational coefficients a_k such that

$$p_{c}(\mathbb{G}) = \sum_{k=1}^{K} a_{k} \Omega^{-k} + O(\Omega^{-K-1})$$

and

$$p_{c}(\mathbb{G}) = \Omega^{-1} + \Omega^{-2} + \frac{7}{2}\Omega^{-3} + O(\Omega^{-4})$$
$$= (\Omega - 1)^{-1} + \frac{5}{2}(\Omega - 1)^{-3} + O(\Omega^{-4})$$

It is believed that $p_c(Q_d)$ and $p_c(\mathbb{Z}^d)$ differ after third term.

A branching process with deletions and mergers

Let $p > -1, q \in [0, 1]$. Let $\mathcal{G}(p, q) = (G_n, n \ge 0)$ with $G_n = (V_n, E_n)$

 $I_n = V_n \setminus V_{n-1}$ is the *n*th generation.

For $v \in I_{n-1}$, let $k_v = \#\{w \in V_{n-1} : d_{G_n}(v, w) = 3\}$.

A branching process with deletions and mergers

Let $p > -1, q \in [0, 1]$. Let $\mathcal{G}(p, q) = (G_n, n \ge 0)$ with $G_n = (V_n, E_n)$

 $I_n = V_n \setminus V_{n-1}$ is the *n*th generation.

For $v \in I_{n-1}$, let $k_v = \#\{w \in V_{n-1} : d_{G_n}(v, w) = 3\}$.

Construction: $G_0 = (\{\emptyset\}, \emptyset)$. For $n \ge 1$ conditional on G_{n-1} :

- Let $P_v \sim \operatorname{Poi}((1+p)(1-q)^{k_v})$ be independent for $v \in I_{n-1}$.
 - Form $\tilde{\mathcal{G}}_n$ from \mathcal{G}_{n-1} by attaching P_v new vertices to v.
 - Let \tilde{l}_n be the set of the new vertices.

A branching process with deletions and mergers

Let $p > -1, q \in [0, 1]$. Let $\mathcal{G}(p, q) = (G_n, n \ge 0)$ with $G_n = (V_n, E_n)$

 $I_n = V_n \setminus V_{n-1}$ is the *n*th generation.

For $v \in I_{n-1}$, let $k_v = \#\{w \in V_{n-1} : d_{G_n}(v, w) = 3\}$.

Construction: $G_0 = (\{\emptyset\}, \emptyset)$. For $n \ge 1$ conditional on G_{n-1} :

- Let $P_v \sim \operatorname{Poi}((1+p)(1-q)^{k_v})$ be independent for $v \in I_{n-1}$.
 - Form $\tilde{\mathcal{G}}_n$ from \mathcal{G}_{n-1} by attaching P_v new vertices to v.
 - Let \tilde{l}_n be the set of the new vertices.
- 2 Let $B_{\{v,w\}} \sim \text{Ber}(q)$ be independent for each pair $v, w \in \tilde{l}_n$.
 - Let $v \sim w$ if $d_{\tilde{\mathcal{G}}_n}(v, w) = 4$ and $B_{\{v,w\}} = 1$.
 - Form G_n from $\tilde{\mathcal{G}}_n$ by identifying each class and merging multi-edges.

Offspring: $\operatorname{Poi}((1+p)(1-q)^{k_v})$; Cousin mergers: $\operatorname{Ber}(q)$.

Difficulties:

- The process $(|I_n|, n \ge 0)$ is non-Markovian.
- Genealogical structure becomes a graph.
- Siblings may have distinct sets of ancestors.

Survival and extinction conditions

Offspring: $\operatorname{Poi}((1+p)(1-q)^{k_v})$; Cousin mergers: $\operatorname{Ber}(q)$.

Theorem (EPS, 21⁺) There is C > 0 and $p_0 \in (0, 1)$ such that for 0 $• if <math>q < \frac{2}{5}p(1 - Cp)$ then $\mathcal{G}(p, q)$ survives with positive probability; • if $q > \frac{2}{5}p(1 + Cp)$ then $\mathcal{G}(p, q)$ dies out almost surely.

Open Question:

Is there a threshold $q_c(p)$ that determines the extinction of G(p,q)?

Open Question:

Is the survival probability of G(p,q) monotone in p or q?

Combinatorial heuristic for 5/2 coefficient

The estimated average growth per generation is

$$\mathbb{E}[|I_n|] \approx \left(1 + p - \frac{5}{2}q\right) \mathbb{E}[|I_{n-1}|].$$

Pairs of cousins may be counted by their common grandparent:

 $\mathbb{E}[\# \text{ pairs of cousins per grandparent}] = \mathbb{E}[\# \text{ pairs of siblings}](1+p)^2$ $= \frac{(1+p)^4}{2}.$

Per generation, there are deletions occurring 4 times as often!

Detour: Let $u_1, \ldots u_5$ be a non-backtracking walk in \mathbb{G} then

$$c_b = \mathrm{P}(\mathsf{walk} \mathsf{ forms a 4-cycle}) = egin{cases} (\Omega - 1)^{-2} & \mathrm{if } \mathbb{G} = Q_d \ (\Omega - 1)^{-2} - (\Omega - 1)^{-3} & \mathrm{if } \mathbb{G} = \mathbb{Z}_d \end{cases}$$

A non-backtracking walk $u_1, \ldots u_{2\ell+1}$ forms a 2ℓ -cycle with probability $O(\Omega^{-\ell})$.

Exploration setup

Let *H* be the percolation cluster of **0** in \mathbb{G}_{ρ} . The exploration process $H_n = (V_n, E_n), n \ge 0$ is performed as follows: let $H_0 = (\{\mathbf{0}\}, \emptyset)$ and $T_{-1} = \emptyset$. For $n \ge 0$, let $S_n = V_n \setminus V_{n-1}$ and

$$T_n = \{uv \in E(\mathbb{G}) : u \in V_n, v \notin V_n\},\$$

and let F_n contain each $e \in T_n \setminus T_{n-1}$ independently with probability ρ . Then

 $E_n \setminus E_{n-1} = F_n \setminus T_{n-1}$

Properties of \mathbb{G} and exploration:

- In Edges only connect vertices in consecutive generations (no odd cycles)
- 2 Each $v \in S_{n-1}$ generates $Bin(\Omega \deg_{H_{n-1}}(v), \rho)$ edges in F_n (transitivity)
- **3** Deletion stage: Edges in $F_n \cap T_{n-1}$ were previously explored.
- **4** Merger stage: Edges in $E_n \setminus E_{n-1}$ may close cycles in H.

Properties of \mathbb{G} and exploration:

- In Edges only connect vertices in consecutive generations (no odd cycles)
- 2 Each $v \in S_{n-1}$ generates $Bin(\Omega \deg_{H_{n-1}}(v), \rho)$ edges in F_n (transitivity)
- **3** Deletion stage: Edges in $F_n \cap T_{n-1}$ were previously explored.
- **4** Merger stage: Edges in $E_n \setminus E_{n-1}$ may close cycles in H.

Idealization of the exploration, for Ω large, using the probability that a non-backtracking walk forms a cycle:

Pairwise mergers: $\operatorname{Ber}(c_b(1+o(1))) \sim \operatorname{Ber}((\Omega-1)^{-2})$

* Neglecting correlations and cycles of length at least 6.

Properties of **G** and exploration:

- In Edges only connect vertices in consecutive generations (no odd cycles)
- 2 Each $v \in S_{n-1}$ generates $Bin(\Omega \deg_{H_{n-1}}(v), \rho)$ edges in F_n (transitivity)
- **3** Deletion stage: Edges in $F_n \cap T_{n-1}$ were previously explored.
- **4** Merger stage: Edges in $E_n \setminus E_{n-1}$ may close cycles in H.

Idealization of the exploration, for Ω large, using the probability that a non-backtracking walk forms a cycle:

Pairwise mergers: $\operatorname{Ber}(c_b(1+o(1)))$ $\sim \operatorname{Ber}((\Omega-1)^{-2})$ Offspring: $\operatorname{Bin}(\Omega - \deg_{H_{n-1}}(v), \rho)$ $\sim \operatorname{Poi}((\Omega-1)\rho)$

* Neglecting correlations and cycles of length at least 6.

Properties of \mathbb{G} and exploration:

- In Edges only connect vertices in consecutive generations (no odd cycles)
- 2 Each $v \in S_{n-1}$ generates $Bin(\Omega \deg_{H_{n-1}}(v), \rho)$ edges in F_n (transitivity)
- **3** Deletion stage: Edges in $F_n \cap T_{n-1}$ were previously explored.
- **4** Merger stage: Edges in $E_n \setminus E_{n-1}$ may close cycles in H.

Idealization of the exploration, for Ω large, using the probability that a non-backtracking walk forms a cycle:

Pairwise mergers:	$\operatorname{Ber}(c_b(1+o(1)))$	$\sim \operatorname{Ber}((\Omega-1)^{-2})$
Offspring:	$\operatorname{Bin}(\Omega - deg_{H_{n-1}}(v), \rho)$	$\sim \mathrm{Poi}((\Omega - 1)\rho)$
Thinning factor:	$1\{vw \in F_n \setminus T_{n-1} vw \in F_n\}$	$\sim \mathrm{Ber}(1-c_b)^{k_v}$

* Neglecting correlations and cycles of length at least 6.

A special regime of our theorem

Consider $Q_{m+1,\rho}$ or $\mathbb{Z}_{\rho}^{(m+1)/2}$:

Exploration of a cluster is approximated by $\mathcal{G}(p(\rho), Q_b)$ where

$$1 + p(\rho) = m\rho, \quad q_b = m^{-2}.$$

Corollary (EPS, 21^+)

There is K > 0, such that under suitable conditions on ρ and m, letting

$$\hat{\rho}_c := m^{-1} + \frac{5}{2}m^{-3}.$$

if ρ > ρ̂_c + Km⁻⁵ then G(p(ρ), q_b) survives with positive probability;
if ρ < ρ̂_c − Km⁻⁵ then G(p(ρ), q_b) dies out almost surely.

Proof of Corollary: extinction phase

$$p(\rho) = m\rho - 1, \quad q_b = m^{-2} \text{ and } \hat{\rho}_c := m^{-1} + \frac{5}{2}m^{-3}.$$

Let $\rho = \hat{\rho}_c - xm^{-5}$. Using that $p(\rho) = \frac{5}{2}m^{-2} - xm^{-4}$.

$$m^{-2} \stackrel{?}{>} \frac{2}{5} p(\rho)(1 + Cp(\rho))$$

= $\frac{2}{5} \left(\frac{5}{2}m^{-2} - xm^{-4} \right) \left(1 + \frac{5C}{2}m^{-2} - xCm^{-4} \right)$
= $m^{-2} + \frac{2}{5}m^{-4} \left(Cx^2m^{-4} - x(1 + 5Cm^{-2}) + \frac{25}{4}C \right).$

We require that $Cx^2m^{-4} - x(1+5Cm^{-2}) + \frac{25}{4}C < 0$; that is, that $x \in (x_1, x_2)$ where x_1 and x_2 are the solutions to the quadratic equation.

If x > K then for *m* large, $x \in (x_1, x_2)$ and $\mathcal{G}(p(\rho), q_b)$ dies out a.s.

Other critical probabilities

Borgs et al ['05], Federico et al. ['20], Heydenreich, Matzke ['19,'20]

For site percolation on \mathbb{Z}^d , as $d o \infty$

$$p_c^{s}(\mathbb{Z}^d) = \Omega^{-1} + \frac{5}{2}\Omega^{-2} + \frac{31}{4}\Omega^{-3} + O(\Omega^{-4}).$$

Hamming graphs H(d, m) have vertex set $\{0, 1, ..., m-1\}^d$, edges join nearest neighbours. Let $\Omega = d(m-1)$ and $V = m^d$.

For $d\geq 2$, as $m \to \infty$

$$p_{c}(H(d,m)) = \Omega^{-1} + \frac{2d^{2}-1}{2(d-1)^{2}}\Omega^{-2} + O(\Omega^{-3}) + O(\Omega^{-1}V^{-1/3})$$

Other critical probabilities

Borgs et al ['05], Federico et al. ['20], Heydenreich, Matzke ['19,'20]

For site percolation on \mathbb{Z}^d , as $d o \infty$

$$p_c^{s}(\mathbb{Z}^d) = \Omega^{-1} + \frac{5}{2}\Omega^{-2} + \frac{31}{4}\Omega^{-3} + O(\Omega^{-4}).$$

Hamming graphs H(d, m) have vertex set $\{0, 1, ..., m-1\}^d$, edges join nearest neighbours. Let $\Omega = d(m-1)$ and $V = m^d$.

For $d\geq 2$, as $m \to \infty$

$$p_{c}(H(d,m)) = \Omega^{-1} + \frac{2d^{2}-1}{2(d-1)^{2}}\Omega^{-2} + O(\Omega^{-3}) + O(\Omega^{-1}V^{-1/3})$$

Some differences with our heuristics:

- For site percolation, edges are not independently present.
- Hamming graphs contain shorter, odd cycles (triangles).

Summary

Exploration of a cluster of $Q_{m+1,\rho}$ or $\mathbb{Z}_{\rho}^{(m+1)/2}$ is approximated by $\mathcal{G}(\rho(\rho), Q_b)$.

$$p(
ho) = m
ho - 1, \quad q_b = m^{-2} \quad ext{and} \quad \hat{
ho}_c := m^{-1} + rac{5}{2}m^{-3}.$$

Corollary (EPS, 21⁺)

There is K > 0, such that under suitable conditions on ρ and m,

- if $\rho > \hat{\rho}_c + Km^{-5}$ then $\mathcal{G}(p(\rho), q_b)$ survives with positive probability;
- if $\rho < \hat{\rho}_c Km^{-5}$ then $\mathcal{G}(p(\rho), q_b)$ dies out almost surely.

