Survival for a Galton-Watson tree with cousin mergers to approximate hypercube's percolation

Laura Eslava, Sarah Penington and Fiona Skerman

LAGOS 2021 May 21st Poisson Galton-Watson trees (p > -1)

 $P_v = \#$ offspring of v independent variables Poi(1 + p).

Expected growth: Z_n is the *n*th generation size.

$$\mathbb{E}[Z_{n+1}] = \mathbb{E}[\sum_{v \in Z_n} P_v] = (1+p)\mathbb{E}[Z_n]$$

Poisson Galton-Watson trees (p > -1)

 $P_v = \#$ offspring of v independent variables Poi(1 + p).

Expected growth: Z_n is the *n*th generation size.

$$\mathbb{E}[Z_{n+1}] = \mathbb{E}[\sum_{v \in Z_n} P_v] = (1+p)\mathbb{E}[Z_n]$$

Survival Threshold [G.,W., 1875]

For a Galton-Watson tree, if P_v satisfies $\mathbb{E}[P_v] = (1 + p)$, then

- if p > 0 then the process survives with positive probability;
- if $p \leq 0$ then the process dies out with probability one.

Proof Sketch: If p < 0 then

 $\mathrm{P}(Z_n \geq 1 \text{ for all } n) \leq \mathrm{P}(Z_n \geq 1) \leq \mathbb{E}[Z_n] = (1+p)^n \rightarrow 0.$

Slowing down the growth

One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Independent offspring deletions:

Let $\mathcal{G}_d(p,q)$ be a population process where $P_v \sim \text{Poi}(1+p)$ and each of the new individuals is deleted with probability q.

Slowing down the growth

One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Independent offspring deletions:

Let $\mathcal{G}_d(p,q)$ be a population process where $P_v \sim \text{Poi}(1+p)$ and each of the new individuals is deleted with probability q.

Theorem

For p > 0 and $q \in (0, 1)$,

- if $q < \frac{p}{1+p}$ then $\mathcal{G}_d(p,q)$ survives with positive probability;
- if $q \ge \frac{p}{1+p}$ then $\mathcal{G}_d(p,q)$ dies out with probability one.

Proof. Per vertex, offspring distribution after deletions is Poi((1 + p)(1 - q)). Then $\mathcal{G}_d(p, q)$ remains a Galton-Watson tree!

GW tree with cousin merges

One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Let $\mathcal{G}_c(p,q)$ be a population process where $P_v \sim \text{Poi}(1+p)$ and each pair of cousins is identified with probability q.

Difficulties:

- The process $(Z_n, n \ge 0)$ is non-Markovian.
- Genealogical structure becomes a graph.
- Siblings may have distinct sets of ancestors.

GW tree with cousin merges

One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Independent cousin mergers:

V

Let $\mathcal{G}_c(p,q)$ be a population process where $P_v \sim \text{Poi}(1+p)$ and each pair of cousins is identified with probability q.

Theorem (E., Penington, Skerman, LAGOS 2021) There is C > 0 and $p_0 \in (0, 1)$ such that for 0 ,• if <math>q < 2p(1 - Cp) then $\mathcal{G}_c(p, q)$ survives with positive probability; • if q > 2p(1 + Cp) then $\mathcal{G}_c(p, q)$ dies out with probability one.

Percolated graph G_{ρ} keeps edges independently with probability ρ .

Cluster exploration:

Exploring cluster of $Q_{4,\rho}$

At each step, traverse all edges of the cluster that are incident to discovered vertices.

Percolated graph G_{ρ} keeps edges independently with probability ρ .

Cluster exploration:

Exploring cluster of $Q_{4,\rho}$

At each step, traverse all edges of the cluster that are incident to discovered vertices.

Percolated graph G_{ρ} keeps edges independently with probability ρ .

Cluster exploration:

Exploring cluster of $Q_{4,\rho}$

At each step, traverse all edges of the cluster that are incident to discovered vertices.

• Edges may merge;

Percolated graph G_{ρ} keeps edges independently with probability ρ .

Cluster exploration:

Exploring cluster of $Q_{4,\rho}$

At each step, traverse all edges of the cluster that are incident to discovered vertices.

• Edges may merge;

Percolated graph G_{ρ} keeps edges independently with probability ρ .

Cluster exploration:

Exploring cluster of $Q_{4,\rho}$

At each step, traverse all edges of the cluster that are incident to discovered vertices.

- Edges may merge;
- some edges had been discarded.

For p > -1 and $q \in (0, 1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From *n*th to (n + 1)th generation:

- 1 Individuals have Poi(1 + p) offspring.
- Deletions: each offspring of v survives independently with probability (1 - q)^{k_v}.
- Mergers: identify pairs of cousins independently with probablity q.

 $k_v = #\{$ Individuals in previous generations at distance three $\}.$

For p > -1 and $q \in (0, 1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From *n*th to (n + 1)th generation:

- 1 Individuals have Poi(1 + p) offspring.
- Deletions: each offspring of v survives independently with probability (1 - q)^{k_v}.
- Mergers: identify pairs of cousins independently with probablity q.

 $k_v = #\{$ Individuals in previous generations at distance three $\}.$

For p > -1 and $q \in (0, 1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From *n*th to (n + 1)th generation:

- 1 Individuals have Poi(1 + p) offspring.
- Deletions: each offspring of v survives independently with probability (1 - q)^{k_v}.
- Mergers: identify pairs of cousins independently with probablity q.

 $k_{v} = #\{$ Individuals in previous generations at distance three $\}.$

For p > -1 and $q \in (0, 1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From *n*th to (n + 1)th generation:

- 1 Individuals have Poi(1 + p) offspring.
- Deletions: each offspring of v survives independently with probability (1 - q)^{k_v}.
- Mergers: identify pairs of cousins independently with probablity q.

 $k_{v} = #\{$ Individuals in previous generations at distance three $\}.$

For p > -1 and $q \in (0, 1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From *n*th to (n + 1)th generation:

- 1 Individuals have Poi(1 + p) offspring.
- Deletions: each offspring of v survives independently with probability (1 - q)^{k_v}.
- Mergers: identify pairs of cousins independently with probablity q.

 $k_v = #\{$ Individuals in previous generations at distance three $\}.$

For p > -1 and $q \in (0, 1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From *n*th to (n + 1)th generation:

- 1 Individuals have Poi(1 + p) offspring.
- Deletions: each offspring of v survives independently with probability (1 - q)^{k_v}.
- Mergers: identify pairs of cousins independently with probablity q.

 $k_{v} = #\{$ Individuals in previous generations at distance three $\}.$

For p > -1 and $q \in (0, 1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From *n*th to (n + 1)th generation:

- 1 Individuals have Poi(1 + p) offspring.
- Deletions: each offspring of v survives independently with probability (1 q)^{k_v}.
- Mergers: identify pairs of cousins independently with probablity q.

 $k_{v} = #\{$ Individuals in previous generations at distance three $\}.$

Survival threshold for $\mathcal{G}(p,q)$

- Offspring after deletions: $Poi((1+p)(1-q)^{k_v})$
- Pairwise cousin mergers: Ber(q).

Theorem (E., Penington, Skerman, 21⁺)

There is C > 0 and $p_0 \in (0, 1)$ such that for 0 ,

- if $q < \frac{2}{5}p(1-Cp)$ then $\mathcal{G}(p,q)$ survives with positive probability;
- if $q > \frac{2}{5}p(1+Cp)$ then $\mathcal{G}(p,q)$ dies out with probability one.

* See arxiv:2104.04407

The third model's the charm

Exploration of a cluster of $Q_{m+1,\rho}$ or $\mathbb{Z}_{\rho}^{(m+1)/2}$ is approximated by $\mathcal{G}(p(\rho), q_b)$.

$$p(
ho) = m
ho - 1, \quad q_b = m^{-2} \quad ext{and} \quad \hat{
ho}_c := m^{-1} + rac{5}{2}m^{-3}.$$

Corollary (E., Penington, Skerman, 21⁺)

There is K > 0, such that under suitable conditions on ρ and m sufficiently large,

- if $\rho > \hat{\rho}_c + Km^{-5}$ then $\mathcal{G}(p(\rho), q_b)$ survives with positive probability;
- if $\rho < \hat{\rho}_c Km^{-5}$ then $\mathcal{G}(\rho(\rho), q_b)$ dies out with probability one.

