Survival for a Galton-Watson tree with cousin mergers
 to approximate hypercube's percolation

Laura Eslava, Sarah Penington and Fiona Skerman

LAGOS 2021
May 21st

Poisson Galton-Watson trees $(p>-1)$

$P_{v}=\#$ offspring of v independent variables $\operatorname{Poi}(1+p)$.
Expected growth: Z_{n} is the nth generation size.

$$
\mathbb{E}\left[Z_{n+1}\right]=\mathbb{E}\left[\sum_{v \in Z_{n}} P_{v}\right]=(1+p) \mathbb{E}\left[Z_{n}\right]
$$

Poisson Galton-Watson trees $(p>-1)$

$P_{v}=\#$ offspring of v independent variables $\operatorname{Poi}(1+p)$.
Expected growth: Z_{n} is the nth generation size.

$$
\mathbb{E}\left[Z_{n+1}\right]=\mathbb{E}\left[\sum_{v \in Z_{n}} P_{v}\right]=(1+p) \mathbb{E}\left[Z_{n}\right]
$$

Survival Threshold [G.,W., 1875]

For a Galton-Watson tree, if P_{v} satisfies $\mathbb{E}\left[P_{v}\right]=(1+p)$, then

- if $p>0$ then the process survives with positive probability;
- if $p \leq 0$ then the process dies out with probability one.

Proof Sketch: If $p<0$ then

$$
\mathrm{P}\left(Z_{n} \geq 1 \text { for all } n\right) \leq P\left(Z_{n} \geq 1\right) \leq \mathbb{E}\left[Z_{n}\right]=(1+p)^{n} \rightarrow 0 .
$$

Slowing down the growth
One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Independent offspring deletions:
Let $\mathcal{G}_{d}(p, q)$ be a population process where $P_{v} \sim \operatorname{Poi}(1+p)$ and each of the new individuals is deleted with probability q.

Slowing down the growth

One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Independent offspring deletions:
Let $\mathcal{G}_{d}(p, q)$ be a population process where $P_{v} \sim \operatorname{Poi}(1+p)$ and each of the new individuals is deleted with probability q.

Theorem
For $p>0$ and $q \in(0,1)$,

- if $q<\frac{p}{1+p}$ then $\mathcal{G}_{d}(p, q)$ survives with positive probability;
- if $q \geq \frac{p}{1+p}$ then $\mathcal{G}_{d}(p, q)$ dies out with probability one.

Proof. Per vertex, offspring distribution after deletions is $\operatorname{Poi}((1+p)(1-q))$. Then $\mathcal{G}_{d}(p, q)$ remains a Galton-Watson tree!

GW tree with cousin merges

One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Independent cousin mergers:
Let $\mathcal{G}_{c}(p, q)$ be a population process where $P_{v} \sim \operatorname{Poi}(1+p)$ and each pair of cousins is identified with probability q.

Difficulties:

- The process $\left(Z_{n}, n \geq 0\right)$ is non-Markovian.
- Genealogical structure becomes a graph.
- Siblings may have distinct sets of ancestors.

GW tree with cousin merges

One might trim each new generation by

- deleting some of the offspring, or
- identifying some individuals.

Independent cousin mergers:

Let $\mathcal{G}_{c}(p, q)$ be a population process where $P_{v} \sim \operatorname{Poi}(1+p)$ and each pair of cousins is identified with probability q.

Theorem (E., Penington, Skerman, LAGOS 2021)
There is $C>0$ and $p_{0} \in(0,1)$ such that for $0<p \leq p_{0}$,

- if $q<2 p(1-C p)$ then $\mathcal{G}_{c}(p, q)$ survives with positive probability;
- if $q>2 p(1+C p)$ then $\mathcal{G}_{c}(p, q)$ dies out with probability one.

Resemblance to percolation?

Percolated graph G_{ρ} keeps edges independently with probability ρ.

Cluster exploration:
At each step,
traverse all edges of the cluster that are incident to discovered vertices.

Resemblance to percolation?

Percolated graph G_{ρ} keeps edges independently with probability ρ.

Cluster exploration:
At each step,
traverse all edges of the cluster that are incident to discovered vertices.

Resemblance to percolation?

Percolated graph G_{ρ} keeps edges independently with probability ρ.

Cluster exploration:
At each step,
traverse all edges of the cluster that are incident to discovered vertices.

- Edges may merge;

Resemblance to percolation?

Percolated graph G_{ρ} keeps edges independently with probability ρ.

Cluster exploration:
At each step,
traverse all edges of the cluster that are incident to discovered vertices.

- Edges may merge;

Resemblance to percolation?

Percolated graph G_{ρ} keeps edges independently with probability ρ.

Cluster exploration:

At each step,
traverse all edges of the cluster that are incident to discovered vertices.

- Edges may merge;
- some edges had been discarded.

GW tree with deletions and cousin merges

For $p>-1$ and $q \in(0,1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From nth to $(n+1)$ th generation:
(1) Individuals have $\operatorname{Poi}(1+p)$ offspring.
(2) Deletions: each offspring of v survives independently with probability $(1-q)^{k_{v}}$.
(3) Mergers: identify pairs of cousins independently with probablity q.

$$
k_{v}=\#\{\text { Individuals in previous generations at distance three }\} .
$$

GW tree with deletions and cousin merges

For $p>-1$ and $q \in(0,1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From nth to $(n+1)$ th generation:
(1) Individuals have $\operatorname{Poi}(1+p)$ offspring.
(2) Deletions: each offspring of v survives independently with probability $(1-q)^{k_{v}}$.

(3) Mergers: identify pairs of cousins independently with probablity q.

$$
k_{v}=\#\{\text { Individuals in previous generations at distance three }\} .
$$

GW tree with deletions and cousin merges

For $p>-1$ and $q \in(0,1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From nth to $(n+1)$ th generation:
(1) Individuals have $\operatorname{Poi}(1+p)$ offspring.
(2) Deletions: each offspring of v survives independently with probability $(1-q)^{k_{v}}$.

(3) Mergers: identify pairs of cousins independently with probablity q.

$$
k_{v}=\#\{\text { Individuals in previous generations at distance three }\} .
$$

GW tree with deletions and cousin merges

For $p>-1$ and $q \in(0,1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From nth to $(n+1)$ th generation:
(1) Individuals have $\operatorname{Poi}(1+p)$ offspring.
(2) Deletions: each offspring of v survives independently with probability $(1-q)^{k_{v}}$.

(3) Mergers: identify pairs of cousins independently with probablity q.

$$
k_{v}=\#\{\text { Individuals in previous generations at distance three }\} .
$$

GW tree with deletions and cousin merges

For $p>-1$ and $q \in(0,1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From nth to $(n+1)$ th generation:
(1) Individuals have $\operatorname{Poi}(1+p)$ offspring.
(2) Deletions: each offspring of v survives independently with probability $(1-q)^{k_{v}}$.
(3) Mergers: identify pairs of cousins independently with probablity q.

$k_{v}=\#\{$ Individuals in previous generations at distance three $\}$.

GW tree with deletions and cousin merges

For $p>-1$ and $q \in(0,1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From nth to $(n+1)$ th generation:
(1) Individuals have $\operatorname{Poi}(1+p)$ offspring.
(2) Deletions: each offspring of v survives independently with probability $(1-q)^{k_{v}}$.
(3) Mergers: identify pairs of cousins independently with probablity q.

$k_{v}=\#\{$ Individuals in previous generations at distance three $\}$.

GW tree with deletions and cousin merges

For $p>-1$ and $q \in(0,1)$, define $\mathcal{G}(p, q)$ as follows.

Construction:

From nth to $(n+1)$ th generation:
(1) Individuals have $\operatorname{Poi}(1+p)$ offspring.
(2) Deletions: each offspring of v survives independently with probability $(1-q)^{k_{v}}$.
(3) Mergers: identify pairs of cousins independently with probablity q.

$k_{v}=\#\{$ Individuals in previous generations at distance three $\}$.

Survival threshold for $\mathcal{G}(p, q)$

- Offspring after deletions: $\operatorname{Poi}\left((1+p)(1-q)^{k_{v}}\right)$
- Pairwise cousin mergers: Ber(q).

Theorem (E., Penington, Skerman, 21^{+})
There is $C>0$ and $p_{0} \in(0,1)$ such that for $0<p \leq p_{0}$,

- if $q<\frac{2}{5} p(1-C p)$ then $\mathcal{G}(p, q)$ survives with positive probability;
- if $q>{ }_{5}^{2} p(1+C p)$ then $\mathcal{G}(p, q)$ dies out with probability one.

The third model's the charm

Exploration of a cluster of $Q_{m+1, \rho}$ or $\mathbb{Z}_{\rho}^{(m+1) / 2}$ is approximated by $\mathcal{G}\left(p(\rho), q_{b}\right)$.

$$
p(\rho)=m \rho-1, \quad q_{b}=m^{-2} \quad \text { and } \quad \hat{\rho}_{c}:=m^{-1}+\frac{5}{2} m^{-3}
$$

Corollary (E., Penington, Skerman, 21^{+})

There is $K>0$, such that under suitable conditions on ρ and m sufficiently large,

- if $\rho>\hat{\rho}_{c}+K m^{-5}$ then $\mathcal{G}\left(p(\rho), q_{b}\right)$ survives with positive probability;
- if $\rho<\hat{\rho}_{c}-K m^{-5}$ then $\mathcal{G}\left(p(\rho), q_{b}\right)$ dies out with probability one.

