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ABSTRACT

In this work we are concerned with recursive trees and linear preferential

attachment trees. These are random tree growth processes; that is random

networks, with no cycles that evolve with time by sequentially connecting new

vertices to the existing network.

Despite having similar descriptions, there are several qualitative differences

between recursive trees and linear preferential attachment trees; for example,

their degree distributions and maximum degrees. Although the vertices with

highest degree have been described for linear preferential attachment trees,

an study for recursive trees with the same level of detail is missing in the

literature.

We obtain a description, in very much detail, of the number and location

of vertices with near-maximal degrees in recursive trees. From this, we com-

ment on the qualitatively different behavior compared with linear preferential

attachment trees. Additionally, we establish central limit theorems for the

number of nodes with large degree, strengthen previous results about the lim-

iting distribution of the maximum degree, and apply our methodology to raise

a question about targeted cuttings in recursive trees.
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ABRÉGÉ

Dans cet ouvrage, nous nous intéressons aux arbres récursifs et aux arbres

d’attachement préférentiel linéaire. Ce sont des processus aléatoires de crois-

sance des arbres; c’est-à-dire des réseaux aléatoires, sans cycles, qui évoluent

avec le temps en reliant séquentiellement de nouveaux sommets au réseau exis-

tant. En dépit de descriptions similaires, il existe plusieurs différences qualita-

tives entre les arbres récursifs et les arbres d’attachement préférentiel linéaire;

par exemple, leurs suites de degrés et leurs degrés maximaux. Bien que les som-

mets des degrés les plus élevés ont été décrits pour les arbres d’attachement

préférentiel linéaire, une étude aussi approfondie de ceux-ci dans les arbres

récursifs est absente dans la littérature.

Nous obtenons une description avec autant de détails du nombre et de

l’emplacement des sommets des degrés près du maximal dans les arbres récursifs.

De ce point de vue, nous soulignons le comportement qualitativement différent

par rapport aux arbres d’attachement préférentiel linéaires. De plus, nous

établissons des théorèmes de limite centrale pour le nombre de nœuds avec

hauts degrés. Ainsi, on renforce des résultats précédents sur la distribution

limite du degré maximal. Enfin, nous appliquons notre méthodologie pour

élever à une question sur les attaques ciblées dans les arbres récursifs.
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CHAPTER 1
Introduction

Probability models allow us to have a rough (and sometimes rather precise)

idea of phenomena occurring within a large, complex system whose actual evo-

lution escapes our control or understanding; in social sciences, probability can

be used to account for our inability to predict human behavior. Around the

1870s, Galton and Watson motivated what would later become the theory of

branching processes [55]. Galton and Watson investigated, independent from

Bienaymé’s work on the same problem [72], why many family names had dis-

appeared in spite of the growing population in England. Their model assumed

that all individuals have a random number of offspring and the only parameter

studied was the number of individuals at each generation. Naturally, the com-

plexity of probabilistic models has increased over time. Today there is a vast

range of research areas that utilizes combinatorial structures, mainly graphs,

to describe the interactions between the elements of interest.

In this work, we are concerned with random networks; mainly the prop-

erties of exceptional elements (vertices) with many more connections (we call

these the degree of a vertex) than usual. In particular we consider tree growth

processes; that is, stochastic processes on graphs in which vertices are sequen-

tially added to a graph by applying a probabilistic rule, and without creating

cycles.

Our main object of study, recursive trees, was introduced by Na and

Rapoport in 1970 [67]. It was a first attempt to understand how, for ex-

ample, acquaintance networks are built over time. Many alternatives to these

models were later studied over the years, in particular with applications in
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computer science. Almost 30 years later, Barabási and Albert popularized a

range of processes now known as preferential attachment models [7].

The line of research during my doctoral studies was triggered by the prob-

lem of targeted attacks on random networks. To approach this problem, one

needs to understand the role that highly connected elements play within the

network. Although the vertices with highest degree have been described for

linear PA trees [13, 19], a thorough study for those in recursive trees is missing

in the literature.

This dissertation presents a series of three manuscripts describing distinct

aspects of vertices with high degree in recursive trees. We specify the number

and location of vertices with near-maximal degrees, and obtain central limit

theorems for the number of vertices with large degree. In turn, this gives us

better insight on the depth distribution of a random vertex and strengthens

previous results about the limiting distribution of the maximum degree. Ad-

ditionally, we explain how these results can be used to partially answer the

problem of targeted attacks in recursive trees.

Our approach is based on two alternative constructions of recursive trees.

The first has been known from some time; it consists of a modified version

of the standard Kingman’s coalescent on a finite number of elements. The

second is a coupling of the aforementioned coalescent for distinct tree sizes.

To the best of our knowledge, the latter introduces a novel idea which points

to an unexplored feature of the growth of real-world networks.

1.1 Outline

This thesis comprises three distinct parts. Within the first one, Chapter 2

briefly introduces the tree growth processes we are considering and provides

two main frameworks used for their study; namely, the increasing tree model

of analytic combinatorics and age-dependent branching processes. Chapter 3
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offers a panoramic view of both properties and techniques of recursive trees

and linear PA trees; whenever possible, we make connections to related models

of random trees and graphs. Chapter 4 precises the difficulties that arise in

studying high-degree vertices in recursive trees and we present the successful

approach of mapping Kingman’s coalescents to recursive trees, together with

its key property. Chapter 5 contains a detailed description of the results of

this thesis.

There is a natural line of evolution in the main results obtained in each

of the manuscripts. Therefore, Part II presents the manuscripts without fur-

ther comments. Chapter 6 contains our first description on the number of

vertices with near-maximal degree in recursive trees using the theory of point

processes. Chapter 7, deepens our knowledge about the vertices with near-

maximum degree by adding the information of their depths as marks in the

point processes studied in Chapter 6. On a different note, Chapter 8 obtains

precise convergence rates for the number of vertices with high degree.

Finally, Part III closes this work with an application of our results to

the initial problem of targeted attacks and an outline of further avenues of

research.

1.2 Notation

For n ∈ N, we write [n] = {1, . . . , n} which usually denotes the set of

vertices in a graph with n vertices. We use lnn to denote natural logarithms

and log n to denote logarithms base 2. For functions f, g we write f(x) =

o(g(x)) and f(x) = O(g(x)) if, respectively, limx→∞ |f(x)/g(x)| = 0 and, for

some C > 0, lim supx→∞ |f(x)/g(x)| ≤ C.

We use
L
= and

L−→ to denote distributional equivalence and convergence in

distribution, respectively. Bernoulli and Geometric variables with parameter
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p ∈ [0, 1] are defined as follows. We say X
L
= Bernoulli(p) if P (X = 1) = p =

1−P (X = 0); and Y
L
= Geo(p) if for all integers k ≥ 0, P (Y = k) = (1−p)pk.

Given a rooted labeled tree t = (V (t), E(t)), we write |t| = |V (t)| and

denote |t| for the size of t. We denote the root of t by r(t). An edge is denoted

e = uv if it connects vertices u and v, we say that e is incident to u and v.

Let Tn the set of rooted trees of size n with vertex set V (t) = [n]. In rooted

trees, the edges can be naturally directed towards the root. As a convention,

an edge e = uv is denoted by u → v and we say that e is directed from u

to v and that v is the parent of u. For a rooted tree t and v ∈ V (t), the

depth ht(v) is the distance between v and r(t), while the degree degt(v) (also

denoted dt(v)) is the number of edges directed towards v.

6



CHAPTER 2
Tree growth processes

Through both continuous and discrete models, tree growth processes have

historically represented population models such as genealogies and infection

spreading. The book by Bacaër gives an excellent historical account for pop-

ulation models [6].

In the discrete setting, a tree growth process is a sequence (tn, n ≥ 1) of

rooted labeled trees with V (tn) = [n] for each n, or equivalently tn ∈ Tn for

all n ≥ 1. Now, we denote the recursive tree process by (Tn, n ≥ 1), where Tn

is a recursive tree of size n. Recursive trees received their name due to their

construction: Start with a vertex as the single element of a tree T1 and for

n > 1, obtain Tn by adding to Tn−1 a vertex labeled n and connecting it to

a uniformly chosen vertex vn ∈ [n − 1], independently for each n; see Figure

2–1.

The evolutionary properties of this definition have been useful in contexts

ranging from practical social applications to probability theoretical ones. For

example, mathematically proving that offers from pyramid schemes are scams

1

32

4 65

Figure 2–1: A recursive tree t on n = 6 vertices. Adding a new vertex to t can
be done in n− 1 distinct ways, depicted with dotted-line squares.
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36 5

4 1

2

63 5

4 1

2

Figure 2–2: Two distinct rooted plane-oriented trees.

1

3 2

6 4 5

Figure 2–3: A recursive plane-oriented t tree on n = 6 vertices. Adding a
new vertex to t can be done in 2n− 1 distinct ways, depicted with dotted-line
squares. There are, e.g., two distinct ways to add the edge 7 → 2.

[38], analyzing sorting and searching algorithms in computer science, and de-

scribing more complex dynamics like the Bolthausen-Sznitman coalescent [41].

Szymański introduced plane-oriented recursive trees in 1985 [79]. Plane-

oriented tree are thought of being embedded in the plane (up to homeomor-

phisms); see Figure 2–2. Therefore, for each vertex in a tree t, the ordering

of offspring is relevant. That is, if dt(v) = j, then the are j! possible ways to

draw the edges connecting v with its children in the plane. If a new child is

added to v, this can be done in j + 1 distinct ways; see Figure 2–3.

Plane-oriented recursive trees (PAn, n ≥ 1), the choice of notation will be

apparent shortly, are constructed in an analogous fashion as to recursive trees.

To construct PAn from PAn−1, the position of the new vertex n is chosen

uniformly at random among all possibilities; which are

∑
v∈[n−1]

(degPAn−1
(v) + 1) = 2n− 3.

8



In particular, denoting by wn to the parent of vertex n, then for v ∈ [n− 1],

P (wn = v |PAm m ≤ n− 1) =
degPAn−1

(v)+1

2n−3 ;

that is, the probability distribution of wn is proportional to degPAn−1
(wn)+1.

Both recursive trees and plane-oriented recursive trees have similar prop-

erties in terms of depth and height. Their qualitative differences arise mainly

on the degree distribution, and consequently, maximum degree. As Albert

and Barabási would later describe the phenomenon, the attaching probabili-

ties for plane-oriented trees make ‘the rich (vertices) get richer’. This endows

their degrees with a power-law distribution, which is frequently observed in

real-world networks.

Barabási and Albert pointed out that, compared with the ubiquitous theo-

retical model of Erdös-Rényi random graphs, there was still missing a growing

process for graphs which would yield the qualitative properties of real-world

networks [7]. In this paper of 1999, they exhibit an informal construction,

which indeed, heuristically resulted on the graphs having a power-law degree

distribution. Several rigorous constructions have been proposed; for random

graphs, Bollobás, Riordan, Spencer and Tusnády [18] give a description of

preferential attachment graphs using the ‘Linearized Chord Diagram’ which

allows both loops and multiple edges.

For preferential tree growth models [21], Bubeck, Devroye and Lugosi de-

fine an ensemble of processes (PAα
n, n ≥ 1) as follows. Fix α ≥ 0; start with

a vertex as the single element of a tree PAα
1 and for n > 1, obtain PAα

n by

adding to PAα
n−1 a vertex labeled n, connecting it to a vertex pn ∈ [n − 1]

with probability proportional to proportional to the degrees in PAα
n−1 raised

to the power α. The case α = 0 yields recursive trees (Tn, n ≥ 1), also known

as uniform preferential trees; while plane-oriented trees (PAn, n ≥ 1), when

9



t3:

1

32

t4:

1

32

4

t5:

1

32

45

Figure 2–4: Example: t3, t4, t5 of an increasing tree growth process (tn, 1 ≥ 1).

devoid of their planar embedding, arise when α = 1. For this reason, we

slightly abuse notation and refer to plane-oriented trees as linear preferential

attachment trees.

As a final example of tree growth processes, we define the ensemble of

affine preferential attachment trees which encompasses both recursive trees

and plane-oriented trees [75]. For each b ≥ 0 let (T b
n, n ≥ 1) be defined as

follows. In T b
n+1 we attach vertex n + 1 to vertex vn chosen with probability

proportional to bdT b
n
(vn) + 1. Note that b = 0 yields recursive trees, while

b = 1 yields linear PA trees.

In the remainder of this chapter we introduce two wide frameworks which

are related to recursive trees. First, we discuss the class of increasing trees,

which have a combinatorial flavour and several points of connections with

computer science. Second, we define a special ensemble of age-dependent

branching processes (Crump-Mode-Jagers processes), which can be regarded

as the continuous version of increasing trees.

2.1 Increasing trees

For any n ≥ 1, the class of increasing trees In contains all rooted labeled

trees t ∈ Tn for which labels along any path from a leaf to the root are in

increasing order. A tree growth process is increasing if tn is a subtree of tn+1

for all n; this implies that tn ∈ In for all n; see an instance in Figure 2–4.
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Recursive trees are a stochastic example of increasing tree growth processes.

Note, that a tree t ∈ In is uniquely determined by a tree t′ ∈ In−1 and pt(n),

the parent of n in t. In other words, for an arbitrary t′ ∈ In−1, there are

exactly n−1 distinct trees in In for which the deletion of vertex n yields t′. It

follows that |In| = (n− 1)!. Consequently, from the construction of recursive

trees (Tn, n ≥ 1), we can see that Tn has the uniform distribution in In.

The fact that a tree is planar or not is not revelant for describing the depth

and degree of its vertices. In a slight abuse of notation, we consider the trees

in (PAn, n ≥ 1) devoided of their planar embedding and thus (PAn, n ≥ 1) is

also a tree growth process on In. However, we remark on the distribution of

PAn as a tree embedded in the plane. Let IOn be the set of plane-oriented

trees on n vertices; in particular, |IO2| = 1. Since a plane-oriented tree on n

vertices can be extended to a plane-oriented tree on n + 1 vertices in 2n − 1

distinct ways, it follows that

|IOn| = 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!! (2.1)

for n ≥ 1. As a consequence, plane-oriented recursive trees have the uniform

distribution on IOn.

Another example of increasing tree growth processes are binary search trees

and, more generally, m-ary search trees. For these, the parent of each newly

added vertex is chosen independently among all vertices with degree strictly

less than m. There are many other distributions for increasing growth pro-

cesses; see [10, 20]. A detailed analysis of several varieties of increasing trees,

planar or non-planar, can be performed through the analysis of of generating

functions [71, 10]; we present this setting in terms of non-planar trees.
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First, the degree-weight generating function, which is defined by

ϕ(x) =
∑
k≥0

ϕk
xk

k!
;

with ϕk ≥ 0 for each k. Second, an exponential generation function (EGF),

F (z) =
∑
k≥1

fn
zn

n!
;

where fn =
∑

t∈In wt is the sum of weights of trees in In. The information

to compute the weights is kept in the degree-weight generating function; the

parameter ϕ−1k may be viewed as the bias towards distinct degrees in the tree

(see e.g. [37, Section III.6.2, Example VII.24])

For recursive trees, there is no bias; that is ϕk = 1 for all k ≥ 0. Therefore,

wt = 1 to each of the trees t ∈ In, giving Tn the uniform distribution in In.

Hence its exponential generating functions are ϕ(x) = ex and

FT (z) =
∑
n≥1

(n−1)!zn
n!

= − ln(1− z).

Plane-oriented trees 1 have ϕk = k! and thus ϕ(x) = (1−x)−1. The weight

wt counts in the number of plane-oriented trees in IOn that yield t ∈ In when

forgetting the planar embedding. By (2.1),
∑

t∈In wt = |IOn| = (2n − 1)!!

which gives

FPA(z) = 1−
√
1− 2z.

We note that the EGF of a tree growth process with bounded maximum

degree m, such as m-ary search trees, boils down to a polynomial function.

This is because the weights ϕk are set to zero for all k > m. It is important to

note that not all increasing tree families obtained through weights (ϕk)k≥0 can

1 Plane-oriented trees are called heap ordered trees in [71]
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be obtained from an increasing tree growth process. For example, uniformly

random full-binary trees (vertices are either leaves or have two children); are

obtained with the sequence ϕ0 = ϕ2 = 1 and ϕk = 0 for k = 1 and k ≥ 3.

2.2 Branching processes

As we mentioned before, Galton-Walton processes analyse only the size of

a population as generations come along. However a richer process is obtained

if we follow the genealogy of each of the individuals in the process. The Ulam-

Harris tree is designed to formalize this approach; see [ection 13.6, Chapter

VI]Harris63.

As a convention, for any u = (u1, . . . , un) ∈ N
n and v = (v1, . . . , vm) ∈ N

m

we write uv = (u1, . . . , un, v1, . . . , vm) ∈ N
n+m; additionally, for any v ∈ N

n,

we write ∅v = v∅ = v. The Ulam-Harris (infinite) tree T is defined through

its vertex set

T = {∅} ∪ (∪n≥1N
n) ;

the edge set is implicity given by {v → w : v = (v1, . . . , vn) ∈ T , w =

(v1 . . . , vn−1)}. We say that the individual v = (v1, . . . , vn) ∈ T is the vn-th

child of (v1, . . . , vn−1) and that ∅ is the initial ancestor.

Again, we abuse notation by defining a proper tree in terms of its vertex

set. A subset t ⊂ T is a proper subtree of T if it satisfies the following two

conditions. First, ∅ ∈ t. Second, v = (v1, . . . , vn) ∈ t, ; that is (v1, . . . , vn−1) ∈

t and (v1, . . . , j) ∈ t for all j ∈ [vn]. With these conditions we can think of

proper subtrees as representing the genealogy of a family. For any individual

in a proper subtree t, has its parent and ‘older’ sibilings are contained in the

t as well.

Galton Watson trees can be defined as random proper subtrees of the Ulam-

Harris tree, see for example [76]. Branching random walks assign, furthermore,

a collection {N(v), v ∈ T} of positions. In the case we describe below each
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position N(v) ∈ R≥0 is interpreted as the birth time of v, and all individuals

are assumed to live forever.

We introduce a particular type of age-dependent branching processes (also

known as Crump-Mode-Jagers processes, see e.g. [48],[44, Chapter VI]) which

serve as a continuous model for increasing tree growth processes. A thor-

ough presentation of the applications of branching processes in the analysis of

random trees is given in [28].

Let {ξv, v ∈ V} of independent copies of a point process ξ = (ξi, i ≥ 1)

on R≥0 where 0 ≤ ξ1 ≤ ξ2 . . .; each ξv represents the birth times of all the

offspring of vertex v. We remark that in general, the point process ξv may

have a finite number of elements, say |ξv| = Kv < ∞. In that case, we use the

convention that xi is infinite for i > Kv and say that the (Kv + 1)-th child of

v is never born.

Now, the age-dependent process with birth distribution ξ is defined by the

birth times N : T → R≥0 as follows. First, N(∅) = 0 and, for each v = wj ∈ T,

set N(v) = N(w) + ξwj . For each s ∈ R, let Tξ(s) be defined by

Tξ(s) = {v ∈ T : N(v) ≤ s}.

Next, let Z(s) = |Tξ(s)| be the number of individuals alive at time s and let

τi be the birth time of the i-th individual in the process; that is, Z(τi) = i but

Z(τ−i ) = i− 1. Denote by Vi the individual born at time τi.

Now, we present an ensemble of distributions ξb for which the process

(Tξb(τn)n≥1) is probabilistically equivalent to the affine PA trees (T b
n, n ≥ 1).

For each b ≥ 0, let ξb = (ξi, i ≥ 1) be a point process whose interarrival times

(ξi+1 − ξi, i ≥ 0) are distributed as independent exponential variables with

mean λ(i) = bj + 1 (we set ξ0 = 0). For example, the point process ξ0 is the

standard Poisson point process as in this case λ(i) = 1 for all i ≥ 1.
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In what follows, fix b ≥ 0 and write T (s) = Tξb(s). The analysis of the total

population |T (s)| is facilitated by the fact that its transition rate depends only

on the number of individuals in the process, that is

∑
v∈T (s)

(b · dT (s)(v) + 1) = |T (s)|+ b
∑

v∈T (s)

dT (s)(v) = (b+ 1)|T (s)| − b.

It follows that for j < i,

P
(
pT (τi)(Vi) = Vj|T (τ−i )

)
=

(b·dT (τ−
i

)
(Vj)+1)

(b+1)(i−2)−b ;

or in other words, the parent of Vi is chosen to be w with probability propor-

tional to bj + 1, where dT (τ−i )(w) = j.

Therefore (T (τi), i ≥ 0) is an stochastic tree growth process with the

desired attachement probabilities (and we can relabel vertices in increasing

order of their birth times). In particular, to obtain the recursive tree process

we use b = 0; and b = 1 for the linear PA process; this observation was first

exploited in [74], see Theorem 3.3.1.

An important concept is the Malthusian parameter: it measures, for a

wide range of branching processes, the exponential rate at which the popula-

tion grows with time [68, 15]. For the age-depedendent models with ξb, the

Malthusian parameter αb can be explicitly computed [28, Theorem 5.2]. A

consequence of this computation is the fact that, almost surely,

lim
n→∞

τn
lnn

=
1

αb

=
1

1 + b
. (2.2)
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CHAPTER 3
Recursive trees: Properties and techniques

There are many ways to construct and to study recursive trees; through

branching processes, Pólya urns, random permutations, generating functions,

renewal theory and Kingman’s coalescent, to name a few. Each perspective

allow us to understand distinct characteristics of recursive trees. Some of the

approaches can be used to prove results for other models, including linear PA

trees but also DAGs (directed acyclic graphs), split trees and increasing trees.

In this chapter we briefly sample some of these techniques by reviewing main

properties of depth and degrees of recursive trees and linear PA trees.

The Kingman’s coalescent approach is not as widely exploited, as the other

representations for recursive trees. It underlies the connections found between

recursive trees and the data structure known as union-find [27, 75]. The con-

struction of recursive trees via Kingman’s coalescent is presented separatedly

in Section 4.1. Aside from the work presented in this thesis, [75] seems to

be the only research which uses the Kingman’s coalescent representation of

recursive trees.

3.1 Degree sequences and urn models

The first variables to be studied for random recursive trees were the count-

ing variables of the degree distribution. For m ∈ N, let

Z(n)
m = #{v ∈ [n] : dTn(v) = m}.

Na and Rapoport [67] first studied the mean of such variables through a system

of difference equations obtained by a first-step analysis. Recall that vn+1 ∈ [n]

denotes the parent of n+1. Note that at the n-th step of the process, the new
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vertex arrives having degree zero. Therefore, the total number of leaves in the

tree either increases by one or remains the same depending on the degree of

vn+1 in Tn. More precisely,

Z
(n+1)
0 = Z

(n)
0 + 1− 1[dTn (vn+1)=0];

and in general, for m ≥ 1, we have

Z(n+1)
m = Z(n)

m + 1[dTn (vn+1)=m−1] − 1[dTn (vn+1)=m].

Therefore, taking expectations we get

E
[
Z

(n+1)
0

]
= 1 +

(
1− 1

n

)
E
[
Z

(n)
0

]
,

E
[
Z(n+1)

m

]
=
(
1− 1

n

)
E
[
Z(n)

m

]
+ 1

n
E
[
Z

(n)
m−1

]
.

Using that Z
(1)
0 = Z

(2)
0 = 1, we have, E

[
Z

(n)
0

]
= n/2 for all n ∈ N. Solving

the remaining system of equations yields the next proposition.

Proposition 3.1.1 ([67]). For all m ∈ N, as n → ∞

lim
n→∞

E
[
Z

(n)
m

]

n
= 2−m−1.

More detailed information about the joint distributions of (Z
(n)
0 , Z

(n)
1 , Z

(n)
2 )

appeared in increments until the work of Mahmoud and Smythe, where the

limit was proven to be asymptotically normal with an explicit covariance ma-

trix [62]. For a detailed account of this history, see their survey [77, Section

3.3]. Mahmoud and Smythe observed that their technique could, in principle,

yield the joint limiting distribution of the vector (Z
(n)
m , m ≥ 0). Their idea

was to use the theory of Pólya urns, also known as generalized Friedman urns;

see e.g. [61].

Let k ∈ N be fixed and consider a generalized Pólya urn with k + 1 types

(colours) of balls. Let B(n) = (B0(n), . . . , Bk(n)) describe the urn at time n
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by setting

Bj(n) = #{Balls with color j at time n}.

The urn represents the vertices in Tn. The balls are colored according to their

degree; having the first k colours for the degrees zero to k − 1 and the last

colour for all the vertices with degree at least k. The dynamic of the urn is

defined so that when we select a random vertex vn+1 to be the parent of vertex

n+ 1, then for j ≤ k − 1,

P (dTn(vn+1) = j) =
Bj

n

P (dTn(vn+1) ≥ k) =
Bk

n
.

More precisely, at each step, regardless of the selected ball, we always add one

ball with the colour zero; this accounts for the newly added vertex having zero

degree. If we take a ball with colour j < k, then we take it out and return one

of colour j + 1; that is, if dTn(vn) = j then dTn+1(vn) = j + 1. The case j = k

is distinct, we put back the ball coloured k as dTn+1(vn) = dTn(vn) + 1 ≥ k.

The last case arises since we are only considering a finite number of colours.

In this way we have,

(Z(n)
m , 0 ≤ m ≤ k − 1)

L
= (B0(n), . . . , Bk−1(n)). (3.1)

The limiting distribution of the infinite vector (Z
(n)
m , m ≥ 0) required new

results on generalized Pólya urns, which were established by Janson [49, 50].

Interestingly, Janson’s work is based on the branching process perspective of

Pólya urns by Athreya and Karlin [5].

Theorem 3.1.2 ([50]). As n → ∞, n−1Z
(n)
m → 2−m−1 a.s., and

n−1/2(Z(n)
m − 2−m−1n)

L−→ Zm,
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jointly for all m ≥ 0, where the Zm are jointly Gaussian variables with zero

means and an explicit covariance matrix is given.

A similar analysis for linear PA trees can be performed. For m ≥ 0, let

Y (n)
m = #{v ∈ [n] : dPAn(v) = m}. (3.2)

In this case, the balls in the urn do not directly represent vertices in the

tree. Rather, if the urn has k + 1 types of balls, then for 0 ≤ j < k,

Bj(n) = (j + 1)Y
(n)
j ;

and Bk(n) =
∑

i≥k(i + 1)Y
(n)
i . The dynamics of the urn are now designed so

that at each step, each vertex v is represented by either dPAn(v) + 1 balls of

type j if dPAn(v) = j < k, or dPAn(v)+ 1 balls of type k if dPAn(v) ≥ k. That

is, at each step we remove a ball of type j; following we add one ball of colour

zero, remove j balls of type j, and replace j + 2 balls of type j + 1 or type k

according to j < k or j = k, respectively.

Theorem 3.1.3 ([50]). As n → ∞, n−1Y
(n)
m → 4/(m+1)(m+2)(m+3) a.s.,

and

n−1/2(Y (n)
m − 4n/(m+ 1)(m+ 2)(m+ 3))

L−→ Ym,

jointly for all m ≥ 0, where the Ym are jointly Gaussian variables with zero

means and an explicit covariance matrix is given.

One restriction of the Pólya urn results exploited in [50] is that we are

required to work with a finite number of variables (Z
(n)
m , 0 ≤ m < k). This

does not represent an obstacle to study the joint distribution of the degree

sequence (Z
(n)
m , m ≥ 0). However, one of the goals of the work in this thesis

was to understand the distribution of Z
(n)
m withm = m(n) → ∞, which cannot

be approached through this method.
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3.2 Depth, renewal theory and records

Recall that the depth of a vertex v in a tree t is the distance from v to

the root. For recursive trees, and increasing tree growth models in general,

the depth hTn(n) has been referred to as the insertion depth. This variable is

important for trees representing data structures, such as recursive trees and

binary search trees.

For recursive trees, hTn(n) was first studied in [27, 59]; however, we follow

the approach of [30], which provides a general framework to cover a wider class

of random trees.

Theorem 3.2.1 ([30]). As n → ∞, hTn(n)/ lnn → 1 in probability and

hTn(n)− lnn√
lnn

L−→ N(0, 1).

Proof sketch of Theorem 3.2.1. Let us shift the labels in Tn so that V (Tn) =

{0, 1 . . . , n − 1} and vn+1
L
= Unif{0, . . . , (n − 1)}. This is convenient as we

can then sample the random vertices (vn, n ≥ 1) using i.i.d. random variables

Xi
L
= Unif(0, 1) by setting vn+1 = �nXn
.

Now, denote the path from n to the root by (w0 = n + 1, w1, . . . wk = 1);

in particular, hTn+1(n+ 1) = k. It follows that for each j ∈ [k],

vwj−1
= wj = �wj−1Xwj−1


.

Furthermore,

k = min{j ∈ N : �wj−1Xwj−1

 = 0} = min{j ∈ N : ���nXw0
Xw1
 · · ·Xwj−1


 < 1}.

On the other hand, for each j ∈ N

nXw0 · · ·Xwj−1
− j < ���nXw0
Xw1
 · · ·Xwj−1


 ≤ nXw0 · · ·Xwj−1
.
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or in other words, the aim is to estimate the distribution of k = k(n), such

that

lnn− ln(1 + k) <
k∑

j=1

(− logXj) ≤ lnn;

Note that − logXj = Exp(1) and so E
[
hTn+1

]
= E(k) ∼ lnn. The result

then follows by an application of the renewal theory, see e.g. [35, Exercise

3.4.7].

This approach is used to generalize the result to distinct types of tree

growth processes in which the attaching rule gives vn+1 = �nXn
 with i.i.d.

random variables Xi such that Var [− lnXi] < ∞, see [30].

An interesting proof of Theorem 3.2.1 is through records of i.i.d. variables.

Let (Ui, i ≥ 1) be i.i.d. random variables have continuous distribution and

for each k ∈ N, let σk : [k] → [k] satisfy Uσk(1) > Uσk(2) > · · ·Uσk(k) (with

probability 1, there are no ties between the random variables). By symmetry,

σk is uniformly random among all permutations of [k].

Alternative proof sketch of Theorem 3.2.1. Let Mk = argmaxi∈[k] Ui, for each

k ∈ N. Then, using σk,

Mi = σ−1k (1)
L
= Unif{1, . . . , i}.

Now, we say that a record occurs, at time k, if Mk = k. Devroye observed in

[27], that writing Bi = 1[Mi=i] implies that

hTn(n)
L
=

n−1∑
i=1

Bi. (3.3)

The sum in the right of this distributional equivalence exhibits an asymp-

totically normal distribution; and so (3.3) establishes Theorem 3.2.1. Surpris-

ingly (Bi, i ∈ [n − 1]) is a vector of independent Bernoulli random variables,

which in addition, satisfy the Lindeberg-Feller conditions for the central limit
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theorem; see e.g. [35, Theorem 3.4.5]. We close the section by providing a

proof of this claim.

First, since the permutations σi are uniformly random, we haveP (Bi = 1) =

1/i. Second, for any permutation π : [i] → [i] and j > i,

P (Xj = 1|σi = π) =
(j−1

i )(j−i−1)!
j!/i!

= 1
j
;

this follows from three facts about the rankings σj: there are j!/i! distinct

permutations of [j] that preserve the partial rankings of π for the first i vari-

ables, (j− i− 1)! possible ways to rank the j− i variables Ui+1, . . . , Uj so that

Uj > Ul for i < l < j, and
(
j−1
i

)
ways to interlace the first i rankings with the

last ones so that Uj is a record.

Thus, that (Xi, i ∈ [n]) are independent follows from the fact that for all

i < j,

E [Xj = 1|σi] =
1
i!

∑
π:[i]→[i] P (Xj = 1|σi = π) = 1

j
.

Finally, the Linderberg conditions are satisfied since the variables properly

renormalized to B̂n,i = (Bi − 1/i) ln−1/2 n satisfy,

n∑
i=1

E
[
B̂2

n,i

]
= ln−1 n

n∑
i=1

Var
[
B2

i

]
= ln−1 n

n∑
i=1

(
1
i
− 1

i2

)
= 1 + o(1).

Additionally, |B̂n,i| → 0 uniformly over i, as n → ∞. Therefore for each ε > 0

there exists sufficiently large n such that
∑

i∈[n] E
[
B̂2

n,i1[|B̂n,i|>ε]

]
= 0.

Both arguments above are not suitable for linear PA trees as the attach-

ment probabilities depend on the degree of the vertices and not only on their

labels. Instead, Mahmoud uses the analysis of generating functions to obtain

the corresponding result for linear PA trees.
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Theorem 3.2.2 ([60]). As n → ∞, E [hPAn(n)] / lnn → 1/2 and

hPAn(n)− (1/2) lnn√
(1/2) lnn

L−→ N(0, 1).

3.3 Height and branching processes

One of the first results about the maximum depth of a recursive tree

Hn = max{hTn(v), v ∈ [n]}

was given by Szymański in [80]. He showed that

P ((1− ε) lnn < Hn < e lnn) → 1.

Devroye and Pittel used branching processes to obtain that, in probability,

e lnn is the right order of Hn [26, 75]. Other proofs using split trees appear

in [29, 20]. We present here the formulation of [75].

Consider the random increasing tree T b
n, b ≥ 0 (defined before Section 2.1),

and denote the height of T b
n by Hb

n. Recall that Tn
L
= T 0

n and PAn
L
= T 1

n .

Theorem 3.3.1 ([75]). For each b ≥ 0, let γ = γ(b) > 0 be the positive root

of bγ + ln γ + 1 = 0. Then, with probability one,

lim
n→∞

Hb
n

lnn
= ((1 + b)γ)−1.

It follows that γ−1 = e for recursive trees, while for linear PA trees,

(2γ)−1 ≈ 1.79.

Proof sketch. This proof uses the age-dependent branching process with the

associated tree process T = (Tξb(s), s ≥ 0); see Section 2.2. A very well-

known parameter is the minimal position Bk of T at each generation k ∈ N.

Precisely, Bk is the time at which the first member of the k-th generation in

T is born. A law of large numbers for the value Bk/k was studied, under
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several conditions, by Hammersley, Kingman and Biggins in [14, 56, 43]. In

particular, see e.g. [28, Theorem 5.1], it shows that there is γ = γ(ξb) defined

as in Theorem 3.3.1 such that, with probability one,

lim
k→∞

Bk

k
= γ. (3.4)

On the other hand, note that if the first member of the k-th generation in

T is born before τn, then the tree T (τn) has at least one element at depth k,

that is, {Hn ≥ k} = {Bk ≤ τn}. Also,

BHn ≤ τn ≤ BHn+1. (3.5)

Now, by (2.2), τn → ∞ as n → ∞; therefore, Hn → ∞ and

lim
n→∞

BHn

Hn
= limn→∞

τn
Hn

= γ.

Finally, using both (2.2) and (3.4) we get

lim
n→∞

lnn
Hn

= limn→∞
τn
Hn

· lnn
τn

= (1 + b)γ.

3.4 The maximum degree and analytic combinatorics

In [80], Szymański also gives bounds for the maximum degree of recursive

trees Δn = max{dTn(v), v ∈ [n]}; showing that, as n → ∞,

P ((1− ε) lnn < Δn < (1 + ε) log n) → 1. (3.6)

The lower bound follows simply from the fact that the degree of the root is

asymptotically normal and has E [dTn(1)] = lnn+O(1). On the other side, if

the limit in Theorem 3.1.1 were to hold for m = m(n) → ∞, then having

E
[
Z

(n)
�logn+1�

]
≈ 1
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would suggest that the maximum degree is of order log n. Devroye and Lu

[31] showed that this is correct. Their method involves upper bounds on

P (dTn(v) ≥ m) which have to be tailored for disticnt ranges of v ∈ [n].

Theorem 3.4.1 ([31]). As n → ∞, E [Δn/ log n] → 1 and

lim
n→∞

Δn

log n
= 1 a.s.

An analogous limit holds for the maximum degree in uniform random re-

cursive DAGs. In a DAG, vertices are sequentially added and connected to r

uniformly chosen vertices in the current tree. Then Theorem 3.4.1 holds for

the maximum degree of a DAG by replacing log n with log1+1/r n [31].

The convergence in L1 can be proved using analytic combinatorics, a proof

sketch can be found in [32, following Theorem 6.12]. The upper bound is

obtained by a simple argument. For each k ≥ 1, write

Z
(n)
≥k = #{v ∈ [n] : dTn ≥ k}.

Since {Δn ≥ j} = {Z(n)
≥j > 0}, Markov’s inequality yields

P (Δn ≥ j) = P
(
Z

(n)
≥j > 0

)
≤ E

[
Z

(n)
≥j

]
.

Thus,

E [Δn] =
∑
j≥0

P (Δn ≥ j) ≤ log n+
∑

j>logn

E
[
Z

(n)
≥j

]
= log n+O(1).

The last equality holds by an explicit uniform bound for the error in approxi-

mating E
[
Z

(n)
≥k

]
. Precisely, by [32, Lemma 6.14], uniformly for all k ∈ N,

E
[
Z

(n)
≥k

]
= n

2k
+O

(
(lnn)k

n(k!)

)
;

then, using k = �log n�, and Stirling’s formula, we get
∑

j≥k
(lnn)j

n(j!)
= O(1).
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Another remarkable achievement of the analysis of singularities for gener-

ating functions is the approximation of the limiting distribution of Δn by Goh

and Schmutz.

Theorem 3.4.2 ([39]). For d ∈ N fixed,

P (Δn < �log n
+ d) = exp{−2logn−�logn�−d}+ o(1).

We briefly explain the analytic combinatoric setup for the proof of Theo-

rem 3.4.2.

Proof sketch of Theorem 3.4.2. Fix k ∈ N. Let Tn,k be the class of increasing

trees with maximum degree at most k and let yn,k = |Tn,k|. The EGF we

analyze is

Yk(z) =
∑
n≥1

yn,k
zn

n!
.

A standard technique in analytic combinatorics is noting that, under some

conditions on the combinatorial class, differentiation of generating functions

corresponds to deleting an element within the the given structure. In this case,

consider t ∈ Tn,k, a tree on n vertices and maximum degree k. By deleting the

root of the tree t, we are left with a sequence of j increasing trees with degree

at most k; moreover, we have the additional restriction that j ≤ k. Therefore,

we get

Y ′k(z) =
∑
n≥0

yn+1,k
zn

n!
=
∑k

j=0
Yk(z)

m

m!
. (3.7)

On the other hand, using Cauchy’s integral formula we have that

P (Δn ≤ k) =
yn,k

(n−1)! =
n
2πi

∮
Ck

Yk(z)
zn+1 dz;
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where Ck is a suitable circle inside the radius of convergence of Yk(z). The rest

of the proof follows from (3.7) and relies heavily on asymptotic approximations

for the partial sums of the exponential series.

We conclude this overview on recursive trees with one of the starkest differ-

ences with linear PA trees. The maximum degree ΔPA
n of PAn is of a different

order of magnitude.

Theorem 3.4.3 ([66]). There exists a finite random variable D with absolutely

continuous distribution such that, as n → ∞,

lim
n→∞

ΔPA
n√
n

= D a.s.

Moreover, with probability tending to one, there is exactly one vertex

attaining the maximum degree and its label is bounded; see [13]. The work in

[19] gives a description of high-degree vertices in linear PA trees, that is, Ym

with m = m(n) → ∞.

In these series of manuscripts, we develop techniques to study the behaviour

of both near-maximum degree and high-degree vertices for recursive trees.

Our findings show that their properties are remarkably different compared

with linear PA trees. Most importantly, the labels of near-maximum degree

vertices are constantly changing, see Theorem 5.1.2 and the remarks afterward.

Chapter 5 provides a complete description of our results.
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CHAPTER 4
Object of study and challenges

In this collection of papers we focus on describing both the depth and the

number of vertices with high and near-maximal degree in random recursive

trees. More precisely, vertices with dTn(v) ≥ c lnn for some c > 0 and with

dTn(v) = �log n
+ b for some integer b ∈ Z, respectively.

Our investigation faced two important challenges; first, the distribution of

each vertex degree changes quite drastically, for each j ∈ [n],

dTn(j)
L
=

n−1∑
i=j

Bi; (4.1)

where the variables Bi
L
= Bernoulli(1/i) are independent. It follows that only

for j fixed or slowly tending to infinity we have dTn(j) being asymptotically

normally distributed with mean E [dTn(j)] = (1 − o(1)) lnn. Moreover, these

degrees are correlated, although this correlation is weak between any bounded

number of vertices.

Second, the depth of a vertex is determined at its arrival to the network,

while its degree depends only on the process afterwards. Through the standard

construction of recursive trees (see Section 2.1), it is not clear how conditioning

on a given vertex having large or near-maximum degree is changing the global

distribution of the rest of the tree, particularly, the depth of such a vertex.

To overcome the difficulties of studying high-degree vertices, we turn to

the Kingman’s representation of recursive trees, which we describe in the next

section. In addtion, the convergence rates obtained in Chapter 8 required

the introduction of a distinct tree growth process, which couples Kingman’s
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coalescents on [n], for all finite n. To the best of our knowledge, this is a novel

representation of Kingman’s coalescent dynamics.

The connection between recursive trees and Kingman’s coalescent is central

to understanding the close relation between degree and depth of vertices in

recursive trees; see Lemma 4.1.5. Given the importance of such point of view

in obtaining our results, we extracted from the manuscripts the definition of

Kingman’s coalescent and the key observation on degree and depth of a given

vertex.

4.1 A Kingman’s coalescent approach

In this section we give a representation of Kingman’s coalescent in terms of

labeled forests and connect this with recursive trees. For a general description

of Kingman’s coalescent, see [9, Chapter 2]; the construction below is based

on that given in [1]. Recall that we write dt(v) and ht(v) for the degree and

depth of vertex v in a tree t.

A forest f is a set of trees whose vertex sets are pairwise disjoint. Denote

by V (f) and E(f), respectively, the unions of the vertex and edge sets of

the trees contained in f . For each n ≥ 1, we consider the set of forests

Fn = {f : V (f) = [n]} with vertex labels [n]. An n-chain is a sequence

C = (fn, . . . , f1) of elements of Fn if for 1 < i ≤ n, fi−1 is obtained from fi by

adding an edge connecting two of the roots in fi. In particular, fn contains n

one-vertex trees, and f1 contains exactly one tree denoted by tC ∈ Fn.

For an n-chain (fn, . . . , f1) ∈ CFn and 1 ≤ i ≤ n, we always list the trees

in fi = {t(i)1 , . . . , t
(i)
i } in increasing order of their smallest-labeled vertex.

Definition 4.1.1. The following constructs Kingman’s n-coalescent as a ran-

dom n-chain C = (Fn, . . . , F1).
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For each 1 < i ≤ n, choose {ai, bi} ⊂ {{a, b} : 1 ≤ a < b ≤ i} inde-

pendently and uniformly at random; also let (ξi, i ∈ [n − 1]) be a sequence of

independent Bernoulli(1/2) random variables.

For 1 ≤ i < n, Fi is obtained from Fi+1 = {T (i+1)
1 , . . . , T

(i+1)
i+1 } as follows.

Add an edge ei between the roots of r(T
(i+1)
ai+1 ) and r(T

(i+1)
bi+1

); direct ei towards

r(T
(i+1)
ai+1 ) if ξi = 1, and towards r(T

(i+1)
bi+1

) otherwise. Then Fi contains the new

tree and the remaining i− 1 unaltered trees from Fi+1.

For an example of the process see Figure 4–1.

Lemma 4.1.2. Kingman’s n-coalescent C is uniformly random in CFn, the

set of n-chains.

Proof. Any (fn, . . . , f1) ∈ CFn is determined by the order in which the edges

of tC are added. For each 2 ≤ i < n, there are (i+ 1)i possible oriented edges

between the roots in fi+1 and only one of them is e ∈ E(fi) \ E(fi+1). Thus,

P ((Fn, . . . , F1) = (fn, . . . , f1)) =

∏n−1
k=1 P (Fk = fk|Fj = fj, k < j ≤ n)

n!(n− 1)!
.

This expression holds for all (fn, . . . , f1) ∈ CFn, so the result follows.

Let en−1, . . . , e1 be the edges of tC ordered as they were added to the chain

C. That is, ei ∈ E(Fi) while ei /∈ E(Fi+1) for all 1 ≤ i < n. Now, write

ei = viwi. Let σC : V (tC) → [n] be defined as σC(r(tC)) = 1 and for each

ei = viwi ∈ E(tC),

σC(vi) = i+ 1.

This is well defined as all edges are directed towards the root, so vi �= vj for

all i, j ∈ [n − 1]. Note that for each 1 ≤ i < n, ei is directed towards the

root of the new tree in fi. Thus, the labels {σC(v), v ∈ [n]} decrease along

leaf-to-root paths in tC . As a consequence, we obtain an increasing tree by

relabeling the vertices of tC using σC .
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Figure 4–1: An example of Kingman’s n-coalescentC = (Fn, . . . , F1) for n = 6.
For 1 < i ≤ n, we present the edge E(Fi−1) \ E(Fi) with a dotted line in Fi.
Edges are marked with the labels ρC ; n − ρC(e) is the first forest where e is
present. In this case, ξ6 = ξ4 = ξ3 = 1, ξ5 = ξ2 = 0 and {a5, b5} = {2, 5},
{a4, b4} = {1, 5}, {a3, b3} = {1, 4}, {a2, b2} = {2, 3}, {a1, b1} = {1, 2}.
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Proposition 4.1.3. For each C = (fn, . . . , f1) ∈ CFn, relabel the vertices in

tC with σC to obtain φ(C) ∈ In. Then the law of φ(C) is that of a recursive

tree of size n.

Proof. From the argument in the proof of Lemma 7.2.2, we have that |CFn| =

n!(n−1)!. Next, we show that φ is onto and, additionally, an n!-to-1 mapping.

Thus φ preserves the uniform measure from CFn to In.

Fix an increasing tree t ∈ In. Every vertex j > 1 has outdegree 1 in t, thus

we write uniquely define vj ∈ V (t) such that jvj ∈ E(t). For each 1 < j ≤ n,

let ej−1 = jvj. Consider an n-chain C = (fn, . . . , f1) defined as follows. Let

fn ∈ Fn have no edges, and for each 1 ≤ i < n, construct fi from fi+1 by

adding the edge ei. It is easy to see that C satisfies σC(i) = i for all i ∈ [n]

and tC . Therefore φ(C) = t, showing that φ is onto.

Now, consider C ∈ CFn such that φ(C) = t. For each permutation π :

[n] → [n], let Cπ be the n-chain obtained from C = (fn, . . . , f1) by applying

π to each of the labels of V (fi), i ∈ [n]. The mapping φ does not depend of

the vertex labels in C, but on the order in which edges are added; therefore,

φ(C) = φ(Cπ) for all permutations π. This shows that |φ−1(t)| ≥ n! for any

t ∈ In, completing the proof.

For each n, let C be a Kingman’s n-coalescent and let T (n) = tC be the

unique tree in F1. Since φ(C) only relabels vertices in tC, it follows that the

shape of the tree is preserved; and so are the degrees and depths of the vertices.

That is, as multisets,

{(degT (n)(v), hT (n)(v))}v∈[n] = {(degφ(C)(v), hφ(C)(v))}v∈[n].

Moreover, for each t ∈ In the set φ−1(t) can be indexed by permutations on

[n]. This directly implies the following key corollary of Proposition 4.1.3.
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Corollary 4.1.4. For all n ∈ N,

((dT (n)(i), hT (n)(i)), i ∈ [n]) = ((dTn(σ(i)), hTn(σ(i))), i ∈ [n]);

where σ is a uniformly random permutation of [n] and is independent of Tn.

Consequently, the following equality in distribution holds jointly for all i ∈ Z

and j ∈ N,

|{v ∈ [n] : dTn(v) = i, hTn = j}| = |{v ∈ [n] : dT (n)(v) = i, hT (n)(v) = j}|

Proof. For any n ∈ N, let Pn be the set of permutations on [n]. For any

n-chain C = (fn, . . . , f1) let ϕ(C) = (φ(C), σC). Then ϕ : CFn → In × Pn is

a bijection and the result follows.

4.1.1 The degree and depth relation

Fix n ∈ N and consider Kingman’s n-coalescent C = (Fn, . . . , F1). For

each vertex v ∈ [n] and 1 ≤ i ≤ n, let Ti(v) be the tree in Fi that contains v.

We use dFi
(v) and hFi

(v) to denote the degree and depth of v in Ti(v). For

simplicity, we use dn(v) and hn(v) for the degree and depth of vertices in T (n).

We next define indicator functions (si,v, 2 ≤ i ≤ n) and the selection set

Sn(v) as follows, let si,v be the indicator that Ti(v) ∈ {T (i)
ai , T

(i)
bi
}; that is,

si,v = 1 when Ti(v) ∈ Fi is chosen to be merged and form a larger tree in Fi−1,

and otherwise si,v = 0. Now we set

Sn(v) = {2 ≤ i ≤ n : si,v = 1}.

The selection set Sn(v) keeps track of each time i where Ti(v) merges.

The lemma below describes the joint law of the depth and degree of a given

vertex.
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Lemma 4.1.5. Fix v ∈ [n], let G be Geo(1/2) independent of Sn(v) and let

D = min{G, |Sn(v)|}. Then, dn(v)
L
= D and for all k, l ∈ N,

P (dn(v) ≥ k, hn(v) ≤ l) = 2−kP (Bin(|Sn(v)| − k, 1/2) ≤ l, |Sn(v)| ≥ k) .

Proof. Any vertex starts as the root of a single-vertex tree. If |Sn(v)| = m,

then we flip a fair coin m times and set dn(v) as the length of the first streak

of heads and hn(v) as the total number of tails; this proves the distributional

identity of dn(v).

Moreover, if dn(v) ≥ k, then |Sn(v)| ≥ k and the first k coin flips are

determined to be heads, the latter event occurring with probability 2−k. The

remaining |Sn(v)| − k coin flips are independent of the previous tosses.

One of the challenges in both Chapters 6 and 7 is to understand the cor-

relations between the selection sets {S(n)
1 , . . . ,S(n)

k } for any fixed k ∈ N.
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CHAPTER 5
Summary of results

We recall the use of lnn to denote natural logarithms and log n to denote

logarithms base 2. In addition, for the remainder of the chapter we write

εn = log n − �log n
; this value is used to account for the lattice effect that

occurs when looking at degrees around log n, which are required to be integer-

valued. We recall that for m ∈ N, we write

Zn
m = #{v ∈ [n], dTn(v) = m},

Zn
≥m = #{v ∈ [n], dTn(v) ≥ m}.

Since we will deal with near-maximum degrees, we may simplify the notation

by writing X
(n)
d = Zn

�logn�+d and X
(n)
≥d = Zn

≥�logn�+d for each d ∈ Z.

5.1 A Poisson point process for highest-degree vertices

The next theorem describes the asymptotic joint law of the number of

vertices with near-maximal degree.

Theorem 5.1.1. Fix ε ∈ [0, 1]. Let (nl)l≥1 be an increasing sequence of inte-

gers satisfying εnl
→ ε as l → ∞. Then, as l → ∞

(X
(nl)
i , i ∈ Z)

d−→ (P ε
i , i ∈ Z)

jointly for all i ∈ Z where the P ε
i are independent Poisson r.v.’s with mean

2−i−1+ε.

We present a stronger version of this result. Denote by v1n, . . . , v
n
n the

vertices in Tn in decreasing order of degree; use a uniformly random ordering

of vertices with the same degree to break ties. Write din and hi
n for the degree
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and depth of vin, respectively. Next, let P be a Poisson point process on R

with rate function λ(x) = 2−x ln 2. Since E [P(x,∞)] < ∞, for all x ∈ R,

we can list the elements in P in decreasing order. That is, for i ≥ 1 let Pi

be the i-th largest point of P , or equivalently, such that P [Pi,∞) = i but

P(Pi,∞) = i− 1.

Theorem 5.1.2. Let Ni be independent standard Gaussian variables, i ∈ N.

For each ε ∈ [0, 1] and for any sequence of integers (nl, l ≥ 1) for which

log nl − �log n
 → ε as l → ∞, then(
dinl

− �log nl
,
hi
nl
− (1− (log e)/2) lnnl√
(1− (log e)/4) lnnl

, i ≥ 1

)
L−→ ((�Pi+ε
, i ≥ 1), (Ni, i ≥ 1)) .

For recursive trees, there is not only one vertex attaining the maximum

degree. Instead, such number converges to a random variable. Let

Mn = {v ∈ [n] : dn(v) = Δn}.

For each ε ∈ [0, 1], consider the positive integer-valued random variable Mε

whose distribution is given, for each integer k ≥ 1, by

P (Mε = k) =
∑
m∈Z

e−2
−m+ε 2−(m+1−ε)k

k!
.

Proposition 5.1.3. For any sequence of integers (nl, l ≥ 1) for which log nl−

�log nl
 → ε and nl → ∞ as l → ∞, then |Mnl
| converges to Mε in distribu-

tion, and(
hTnl

(v)− (1− (log e)/2) lnnl√
(1− (log e)/4) lnnl

, v ∈ Mnl

)
L−→ (Ni, 1 ≤ i ≤ Mε),

where Ni are independent standard Gaussian variables.

Theorem 5.1.3 contrasts the behaviour of highest-degree vertices in linear

PA trees; it implies that there is an interesting process of vertices that are
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involved in streaks of gaining degree that position them in the set Mn but are

overtaken by other vertices when they run out of luck.

Additionally, Theorem 5.1.2 implies the following convergence in distribu-

tion.

Proposition 5.1.4. For any sequence of integers (nl, l ≥ 1) for which log nl−

�log nl
 → ε and nl → ∞ as l → ∞. For each i ∈ Z,

X
(nl)
≥i

L−→ Poi(2−i+ε).

5.2 Central limit theorems for high-degree vertices

First, we can formalize the heuristic given in Section 3.4 for the order of

Δn.

Proposition 5.2.1. For fixed c ∈ (0, 2), uniformly over m = m(n) < c lnn,

E [Zm] = (1 + o(1))2−m+1+logn,

E [Z≥m] = (1 + o(1))2−m+logn.

Write λn,m = E
[
Z

(n)
≥m

]
. By restricting the range of m = m(n), we obtain

both normal asymptotic behavior and explicit convergence rates for Z
(n)
≥m.

Theorem 5.2.2. For each c′ ∈ (1, log e] there exists c ∈ (1, c′) such that if

c lnn < m < c′ lnn, and λn,m → ∞ as n → ∞, then

Z
(n)
≥m − λn,m√

λn,m

L−→ N(0, 1).

Theorem 5.2.3. Fix 1 < c < c′ < 2. There are constants α = α(c′) ∈ (0, 1)

and β = β(c) > 0 such that uniformly for m = m(n) satisfying c lnn < m <

c′ lnn,

dTV

(
Z(n)

m ,Poi(λn,m)
)
≤ O(2−m+(1−α) logn) +O(n−β).
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Theorem 5.2.2 follows directly from the central limit theorem for Poisson

variables and Theorem 5.2.3; analogous results for linear PA trees are given in

[19].

Finally, we are able to track the conditional depths of a finite number of

vertices, given that their degrees are lower bounded, possibly by a high-degree

value.

Theorem 5.2.4. Fix k ∈ N and let (ui, i ∈ [k]) be k distinct vertices in Tn

chosen uniformly at random. For every (a1, . . . , ak) ∈ [0, 1]k and (b1, . . . , bk) ∈

Z
k, the conditional law of(

hTn(ui)− (1− (ai log e)/2) lnn√
(1− (ai log e)/4) lnn

, i ∈ [k]

)
,

given that dTn(ui) ≥ �ai log n
 + bi for all i ∈ [k], converges to the law of k

independent standard Gaussian variables.

5.3 Gumbel approximation for maximum degree

Using that for all d ∈ Z, {Δn ≥ �log n
 + d} = {X≥d > 0}. The Poisson

approximations of Proposition 5.1.4 and Theorem 5.2.3 yield the next two

approximations; strengthening the results of Theorem 3.4.2.

Theorem 5.3.1. For any i = i(n) with i+log n < 2 lnn and lim infn→∞ i(n) >

−∞,

P(Δn ≥ �log n
+ i) = (1− exp{−2−i+εn})(1 + o(1)).

Theorem 5.3.2. Uniformly over 0 < i = i(n) < log e ln lnn − C, for some

C > 0,

P (Δn < �log n
 − i) = exp{−2i+εn}(1 + o(1)).
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CHAPTER 6
High degrees in random recursive trees

For n ≥ 1, let Tn be a random recursive tree (RRT) on the vertex set

[n] = {1, . . . , n}. Let degTn
(v) be the degree of vertex v in Tn, that is, the

number of children of v in Tn. Devroye and Lu [31] showed that the maximum

degree Δn of Tn satisfies Δn/�log2 n
 → 1 almost surely; Goh and Schmutz [39]

showed distributional convergence of Δn−�log2 n
 along suitable subsequences.

In this work we show how a version of Kingman’s coalescent can be used to

access much finer properties of the degree distribution in Tn.

For any i ∈ Z, let X
(n)
i = |{v ∈ [n] : degTn

(v) = �log n
 + i}|. Also,

let P be a Poisson point process on R with rate function λ(x) = 2−x · ln 2.

We show that, up to lattice effects, the vectors (X
(n)
i , i ∈ Z) converge weakly

in distribution to (P [i, i + 1), i ∈ Z). We also prove asymptotic normality

of X
(n)
i when i = i(n) → −∞ slowly, and obtain precise asymptotics for

P (Δn − log2 n > i) when i(n) → ∞ and i(n)/ log n is not too large. Our

results recover and extend the previous distributional convergence results on

maximal and near-maximal degrees in random recursive trees.

6.1 Statement of results

The process of random recursive trees (Tn, n ≥ 1) is defined as follows. T1

has a single node with label 1, which its root. The tree Tn+1 is obtained from

Tn by directing an edge from a new vertex n + 1 to v ∈ [n]; the choice of v

is uniformly random and independent for each n ∈ N. We call Tn a random

recursive tree (RRT) of size n.
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As a consequence of the construction, vertex-labels in Tn increase along

root-to-leaf paths. Rooted labelled trees with such property are called in-

creasing trees. It is not difficult to see that, in fact, Tn is uniformly chosen

among the set In of increasing trees with vertex set [n].

We write degTn
(v) to denote the number of children of v in Tn. The degree

distribution of Tn is encoded by the variables Z
(n)
i = |{v ∈ [n] : degTn

(v) = i}|,

for i ≥ 0. In fact, the study of RRT’s started with a paper by Na and

Rapoport [67] in which they obtained, for any fixed i ≥ 0, the convergence

E(Z
(n)
i )/n → 2−i−1 as n → ∞; this result was extended to convergence in

probability by Meir and Moon in [64]. Mahmoud and Smythe [62] derived the

asymptotic joint normality of Z
(n)
i for i ∈ {0, 1, 2}; and finally, Janson [50]

extended the joint normality to Z
(n)
i for i ≥ 0 and gave explicit formulae for

the covariance matrix.

The above results concern typical degrees; the focus in this work is large

degree vertices, and in particular the maximum degree in Tn, which we denote

Δn = maxv∈[n] degTn
(v). For the rest of the paper we write log to denote

logarithms with base 2, and ln to denote natural logarithms. For n ∈ N let

εn = log n− �log n
.

A heuristic to find the order of Δn is that, if E(Z
(n)
i ) ≈ n2−i−1 were to

hold for all i, as it does when i is fixed, then we would have E(Z
(n)
�logn�) ≈

n2−�logn�−1 = 2−1+εn . This heuristic suggests that Δn is of order log n. This is

indeed the case: Szymanski [80] proved that E [Δn] / log n → 1 as n → ∞, and

Devroye and Lu [31] later established that Δn/ log n → 1 a.s.. Finally, Goh

and Schmutz [39] showed that Δn − �log n
 converges in distribution along

suitable subsequences, and identified the possible limiting laws.

Since we focus on maximal degrees, it is useful to let

X
(n)
i = Z

(n)
i+�logn� = |{v ∈ [n] : degTn

(v) = �log n
+ i}|,
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for n ∈ N and i ≥ −�log n
. The following is a simplified version of one of our

main results.

Theorem 6.1.1. Fix ε ∈ [0, 1]. Let (nl)l≥1 be an increasing sequence of inte-

gers satisfying εnl
→ ε as l → ∞. Then, as l → ∞

(X
(nl)
i , i ∈ Z)

d−→ (P ε
i , i ∈ Z)

jointly for all i ∈ Z where the P ε
i are independent Poisson r.v.’s with mean

2−i−1+ε.

The random variables X
(n)
i do not converge in distribution as n → ∞

without taking subsequences; this is essentially a lattice effect caused by the

floor �log n
 in the definition of X
(n)
i .

Theorem 6.1.1 can be stated in terms of weak convergence of point pro-

cesses (which is equivalent to convergence of finite dimensional distributions

(FDD’s); see Theorem 11.1.VII in [25]). In fact, we will also prove convergence

(along subsequences) of

X
(n)
≥i =

∑
k≥i

X
(n)
k = |{v ∈ [n] : degTn

(v) ≥ �log n
+ i}|.

This is useful as it yields information about Δn which cannot be derived

from Theorem 6.1.1. We formulate this result as a statement about con-

vergence of point processes, and now provide the relevant definitions. Let

Z
∗ = Z∪ {∞}. Endow Z

∗ with the metric defined by d(i, j) = |2−j − 2−i| and

d(i,∞) = 2−i for i, j ∈ Z. Let M#
Z∗ be the space of boundedly finite measures

of Z∗.

Let P be a Poisson point process on R with rate function λ(x) = 2−x · ln 2.

For each ε ∈ [0, 1] let Pε be the point process on Z
∗ given by

Pε =
∑
x∈P

δ�x+ε�.
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Similarly, for all n ∈ N let

P (n) =
∑
v∈[n]

δdegTn (v)−�logn�.

Then, for each i ∈ Z we have that

Pε({i}) := |{x ∈ P : �x+ ε
 = i}| = |{x ∈ P : x ∈ [i− ε, i+ 1− ε)}|

has distribution Poi(2−i−1+ε); also P (n)({i}) = X
(n)
i . We abuse notation by

writing, e.g., P (n)(i) = P (n)({i}).

It is clear that P (n) and Pε are elements ofM#
Z∗ . The advantage of working

on the state space to Z
∗ is that intervals [k,∞] are compact. In particular,

the convergence of FDD’s of P (nl) implies the convergence in distribution of

X
(nl)
≥i = P (nl)[i,∞).

Theorem 6.1.2. Fix ε ∈ [0, 1]. Let (nl)l≥1 be an increasing sequence of inte-

gers satisfying εnl
→ ε as l → ∞. Then in M#

Z∗, P (nl) converges weakly to Pε

as l → ∞. Equivalently, for any i < i′ ∈ Z, jointly as l → ∞

(X
(nl)
i , . . . , X

(nl)
i′−1, X

(nl)
≥i )

d−→ (Pε(i), . . . ,Pε(i′ − 1),Pε[i′,∞)).

Note that Theorem 6.1.1 follows from Theorem 6.1.2. We finish this section

stating two additional results. The first is an extension of the main theorem

from [39], that result being essentially the case i = O(1).

Theorem 6.1.3. For any i = i(n) with i+log n < 2 lnn and lim infn→∞ i(n) >

−∞,

P(Δn ≥ �log n
+ i) = (1− exp{−2−i+εn})(1 + o(1)).

When i = O(1), the assertion of Theorem 6.1.3 is a straight-forward conse-

quence of Theorem 6.1.2. For the case that i(n) → ∞ we use estimates for the

first and second moments of X
(n)
≥i ; note that {Δn < �log n
+ i} = {X(n)

≥i = 0}.
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Finally, we also obtain the asymptotic normality for X
(n)
i when i tends to

−∞ slowly enough.

Theorem 6.1.4. If i = i(n) → −∞ and i = o(lnn), then as n → ∞

X
(n)
i − 2−i−1+εn

√
2−i−1+εn

d→ N(0, 1).

Remark 6.1.5. Up to lattice effects, Theorems 6.1.2 and 6.1.4 extend the

range of i = i(n) for which the heuristic that Z
(n)
i ≈ n2−i−1 holds.

A key novelty of our approach is that for each n we use Kingman’s co-

alescent to generate a tree T (n) whose vertex degrees {degT (n)(v)}v∈[n] are

exchangeable but otherwise have the same law as degrees in Tn. (See [9],

Chapter 2 for a description of Kingman’s coalescent, and [1], Section 2.2 for

a description of the connection with random recursive trees which we exploit

in this paper.) By this we mean that if σ : [n] → [n] is a uniformly random

permutation then the following distributional identiy holds:

(degT (n)(v), v ∈ [n])
d
= (degTn

(σ(v)), v ∈ [n]). (6.1)

We describe the trees T (n), n ∈ N in Section 6.3.

An essentially equivalent construction was used by Devroye [26] to study

union-find trees. In [75], Pittel related the results of [26] on union-find trees to

the height of RRT’s. It is worth mentioning that both Kingman’s coalescent

and the union-find trees can be equivalently represented as binary trees or,

as we will see in Section 6.3, as RRT’s. Aside from the works [26] and [75],

it seems that the use of Kingman’s coalescent or of union-find trees to study

RRT’s is rare. However, it turns out to provide just the right perspective for

studying high degree vertices.
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6.2 Outline

In this section we sketch the approach used in the paper. The proofs of the

theorems relay on the computation of the moments of the FDD’s of P (n); these

estimates are given in Proposition 6.2.1. In particular, the proofs of Theorems

6.1.2 and 6.1.4 use the method of moments (e.g., see [52] Section 6.1, and [16]

Section 1.5).

Any FDD of P (n) can be recovered from suitable marginals of the joint

distribution of (X
(nl)
i , . . . , X

(nl)
i′−1, X

(nl)
≥i′ ) for some i < i′ ∈ Z. For simplicity, we

focus for the moment on collections of variables X
(n)
i , . . . , X

(n)
i′ for i ≤ i′. For

r ∈ R and a ∈ N write (r)a = r(r − 1) · · · (r − a + 1), also let (r)0 = 1. We

will prove that for any non-negative integers ai, . . . , ai′ , as n → ∞, we have

E

[ ∏
i≤k≤i′

(X
(n)
k )ak

]
−

∏
i≤k≤i′

(
2−(k+1)+εn

)ak → 0. (6.2)

This immediately yields Theorem 6.1.1.

By the linearity of expectation, proving (6.2) reduces to understanding the

probabilities

P
(
degTn

(vk) = �log n
+ ik, k ∈ [K]
)

(6.3)

for all i1, . . . iK ∈ N and v1, . . . vK ∈ [n], K ∈ N; see Section 6.5 for more

details.

In the standard model for RRT’s described at the beginning, degTn
(v) is a

sum of Bernoulli variables:

degTn
(v) =

∑
v<u≤n

1{u→v}.

The lack of symmetry of the degrees {degTn
(v)}v∈[n] complicates the analysis

of (6.3). In proving that Δn/ log n
a.s.→ 1, Devroye and Lu [31] used that

{degTn
(v)}v∈[n] are negatively orthant dependent (see [53] for a definition),
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which in particular means that for all S ⊂ [n] and m1, . . . ,mn ∈ N

P
(
degTn

(v) ≥ mv, v ∈ S
)
≤
∏
v∈S

P
(
degTn

(v) ≥ mv

)
and then obtained upper bounds for P (degTn(v) ≥ c lnn) for each v ∈ [n].

One approach to studying high degrees in Tn would be to obtain matching

lower bounds for P
(
degTn

(v) ≥ mv, v ∈ S
)
, with uniform error terms even

when mv is large. Instead, we study trees T (n), mentioned in (6.1), above, for

which we can obtain precise asymptotics for the analogous probabilities

P (degT (n)(v) ≥ mv, v ∈ [K]) . (6.4)

The core of the paper lies in Proposition 6.4.2, which gives precise estimates

of (6.4) for m1, . . . ,mK in a suitable range. Broadly speaking, degT (n)(v)

depends on a set of random selection times Sv and the first streak of heads

in a sequence of |Sv| fair coin flips. As mentioned in the previous section, the

degrees of T (n) have the same distribution as the degrees in Tn. Consequently,

our estimation of (6.4) allows us to obtain the following moments estimate.

Proposition 6.2.1. For all c ∈ (0, 2) and K ∈ N there is α = α(c,K) > 0

such that the following holds. Fix any integers i, i′ with 0 < i + logn < i′ +

logn < c lnn. Then for any non-negative integers ai, . . . , ai′ with ai+. . .+ai′ =

K, we have

E

[
(X

(n)
≥i′ )ai′

∏
i≤k<i′

(X
(n)
k )ak

]
=
(
2−i

′+εn
)ai′ ∏

i≤k<i′

(
2−(k+1)+εn

)ak
(1 + o(n−α)).

Equipped with Proposition 6.2.1, the proofs of the theorems are straight-

forward. The rest of the paper is organized as follows. In Section 6.3, we

explain how to define the trees T (n) using Kingman’s coalescent and establish

the distributional relation between T (n) and the RRT; see Corollary 6.3.4. In

Section 6.4, we define the random sets (Sv, v ∈ T (n)) and explain their relation
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with degrees in T (n). The proof of Proposition 6.4.2, which is our estimate of

(6.4), is then presented using a decoupling of the events in (6.4) and the con-

centration of the random variables |Sv|. Finally, the proof of Proposition 6.2.1

is given in Section 6.5 and the proof of Theorems 6.1.2-6.1.4 are in Section 6.6.

6.3 Random Recursive Trees and Kingman’s coalescent

In this section we give a representation of Kingman’s coalescent in terms

of labelled forests, and relate it to RRT’s. All trees in the remainder of the

paper are rooted, and we write r(t) for the root of tree t. By convention, edges

of a tree are directed towards the root of the tree and we write uv to denote

an edge directed from u to v. A forest f is a set of trees whose vertex sets are

pairwise disjoint. The vertex set of a forest, denoted V (f), is the union of the

vertex sets of its trees. Similarly, E(f) denotes the set of edges in the trees of

f . For n ≥ 1, let

Fn = {f : V (f) = [n]}

be the set of forests with vertex set [n].

A sequence C = (f1, . . . , fn) of elements of Fn is an n-chain if f1 is the

forest in Fn with n one-vertex trees and, for 1 ≤ i < n, fi+1 is obtained

from fi by adding a directed edge between the roots of some pair of trees in

fi. If (f1, . . . , fn) is an n-chain then for 1 ≤ i ≤ n, the forest fi consists of

n+1− i trees, and in this case we list its elements in increasing order of their

smallest-labelled vertex as t
(i)
1 , . . . , t

(i)
n+1−i.

Definition 6.3.1. Kingman’s n-coalescent is the random n-chain C = (F1, . . . , Fn)

built as follows. Independently for each 1 ≤ i ≤ n− 1 let {ai, bi} be a random

pair uniformly chosen from {{a, b} : 1 ≤ a < b ≤ n + 1 − i} and let ξi be

independent with Bernoulli(1/2) distribution.

For 1 ≤ i < n, construct Fi+1 from Fi as follows. If ξi = 1 then add an

edge from r(T
(i)
bi
) to r(T

(i)
ai ) and if ξi = 0 then add an edge from r(T

(i)
ai ) to

47



r(T
(i)
bi
). The forest Fi+1 consists of the new tree and the remaining n − 1 − i

unaltered trees from Fi.

For an example of the process see Figure 6–1.

Lemma 6.3.2. Let CFn be the set of n-chains of elements in Fn. Then

|CFn| = n!(n−1)! and Kingman’s n-coalescent is a uniformly random element

of CFn.

Proof. Fix an n-chain (f1, . . . , fn) ∈ CFn. Then

P ((F1, . . . , Fn) = (f1, . . . , fn)) =
n−1∏
k=1

P (Fk+1 = fk+1|Fj = fj, 1 ≤ j ≤ k) .

Among the (n+1−k)(n−k) possible oriented edges between roots of fk, there

is exactly one whose addition yields fk+1. It follows that the k-th term in the

above product is ((n+ 1− k)(n− k))−1, so P ((F1, . . . , Fn) = (f1, . . . , fn)) =

[n!(n− 1)!]−1. The result follows since this expression does not depend on

(f1, . . . , fn) ∈ CFn.

Recall that In is the set of increasing trees with vertex set [n]. It is not

difficult to see that |In| = (n − 1)! and that a RRT is a uniformly random

element of In.

There is a natural mapping φ between n-chains and increasing trees. Given

an n-chain C = (f1, . . . , fn), write t(n) := t
(n)
1 for the unique tree in fn. Let

L−C : E(t(n)) → [n− 1] be defined as follows. For each e ∈ E(t(n)), let

L−C(e) = max{i ∈ [n− 1] : e /∈ E(t(i))}.

We think of L−C as a function that keeps track of the time of addition of the

edges along the n-chain C. Now, we define a vertex labelling LC : V (t(n)) → [n]

as follows. Let LC(r(t
(n))) = 1 and for each uv ∈ E(t(n)), let

LC(u) = n+ 1− L−C(uv);
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Figure 6–1: An example of Kingman’s n-coalescentC = (F1, . . . , Fn) for n = 6.
For 1 ≤ i < n, Fi has, in dotted line, the edge in E(Fi+1) \ E(Fi). Edges
are marked with their time of addition; this is the function L−C defined after
Lemma 6.3.2. In this instance, ξ1 = ξ3 = ξ4 = 1, ξ2 = ξ5 = 0 and {a1, b1} =
{2, 5}, {a2, b2} = {1, 5}, {a3, b3} = {1, 4}, {a4, b4} = {2, 3}, {a5, b5} =
{1, 2}.
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t(n), (L−C in bold) φ(f1, . . . , fn)

Figure 6–2: On the left a tree t(n); edges are marked with L−C , from which
the n-chain C = (f1, . . . , fn) can be recovered. On the right, the increasing
tree φ(f1, . . . , fn); it has the shape of t(n) and the vertex labels {LC(v), v ∈
V (t(n))}.

then LC(u) is the number of trees in the forest just before uv is added.

Note that for each i ∈ [n− 1], the new edge in fi+1 joins the roots of two

trees in fi and is directed towards the root of the resulting tree. Thus, the

labels {L−C(e), e ∈ E(t(n))} increase along all paths in t(n) towards the root

r(t(n)) and consequently, the labels {LC(v), v ∈ V (t(n))} increase along root-

to-leaf paths in t(n). This shows that relabelling the vertices of t(n) with LC

yields an increasing tree (specifically, an element of In). See Figure 6–2 for an

example.

Proposition 6.3.3. Let φ : CF → In be defined as follows. For an n-chain

C = (f1, . . . , fn) let φ(C) be the tree obtained from t(n) by relabelling its vertices

with LC. Then φ(C), the push-forward of Kingman’s n-coalescent by φ, has

the law of a RRT of size n.

Proof. First, we prove that φ is onto. Fix an increasing tree t ∈ In. For each

j ∈ V (t) \ {1}, let vj ∈ V (t) be such that jvj ∈ E(t), recall that edges are

directed toward the root of t, thus vj is uniquely defined. For each 1 < j ≤ n,

let en−j+1 = juj.

Now construct an n-chain C as follows. Let f1 be the forest with n one-

vertex trees. For each 1 < i ≤ n construct fi from fi−1 by adding the edge

ei−1. In other words, for each 1 ≤ i < n, L−C(ei) = i and so LC(n + 1 − i) =
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n+1−L−C(ei) = n+1−i; also since r(t) = 1, we have LC(1) = 1. Consequently,

φ(C) = t.

We claim that |φ−1(t)| ≥ n! for any t ∈ In. To see this, consider an n-chain

C and a permutation σ : [n] → [n]. Let Cσ be the n-chain obtained from C by

permuting the vertices in each forest of C by σ. Since LC(v) depends only on

the time of addition of its outgoing edge (if any), it follows that φ(C) = φ(Cσ)

for all permutations σ. By Lemma 6.3.2, this shows that φ is n!-to-1 and that

φ(C) is a uniform element in In.

Since φ(C) preserves the shape of T (n) and only relabels its vertices, the de-

grees in T (n) and φ(C) are equal as multisets: {degT (n)(v)}v∈[n] = {degφ(C)(v)}v∈[n].

This immediately gives the following key corollary of Proposition 6.3.3, on

which the rest of the paper relies.

Corollary 6.3.4. For all n ∈ N, we have the following equality in distribution

holds jointly for all i ∈ Z,

X
(n)
i

d
= |{v ∈ [n] : degT (n)(v) = �log n
+ i}|.

We now proceed to the study of the joint distribution of the vertex degrees

in T (n).

6.4 Degree distribution: Selection sets and coin flips

By construction, the vertex degrees {degT (n)(v)}v∈[n] are exchangeable. Our

next goal is to explain how to approximate (6.4); that is, for any fixed k ∈ N

and integersm1, . . . ,mk < 2 lnn, to obtain estimates forP (degT (n)(v) ≥ mv, v ∈ [k]).

The key to analyse the degrees in T (n) is to understand how the degrees

of a vertex v ∈ [n] change in Kingman’s coalescent C = (F1, . . . , Fn). For

any vertex v and 1 ≤ i ≤ n, denote degFi
(v) the number of children of v

in Fi. Also, we will simply write deg(v) = degFn
(v) = degT (n)(v). For each

1 ≤ i < n, if ξi = 1 we say that ξi favours the vertices of T
(i)
ai , and otherwise
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Figure 6–3: If v is a root in T
(i)
ai ∪ T

(i)
bi

and ξi favours v, then v increases its
degree and remains a root in Fi+1.

that it favours the vertices of T
(i)
bi
. For v ∈ [n], let

Sv = {i ∈ [n− 1] : v ∈ T (i)
ai

∪ T
(i)
bi
}.

For any vertex v, and 1 ≤ i < n, degFi+1
(v) increases by one only if v

is a root in Fi, i ∈ Sv and ξi favours v; see Figure 6–3. Conversely, let

pv = min{i ∈ Sv, ξi does not favour v}, then the first Fi+1 in which v is not

a root is exactly i = pv. In this case, in Fpv+1 there is an outgoing edge

from v, and v is not a root of any subsequent forests. As a consequence,

degFj
(v) = degFpv

(v) for pv < j ≤ n.

Fact 6.4.1. For v ∈ [n], deg(v) = degFpv
(v) = |Sv ∩ [pv − 1]|.

In other words, deg(v) depends only on its first streak of favourable random

variables ξi with i ∈ Sv. More precisely, given |Sv|, the degree deg(v) is

distributed as min{|Sv|, G}, where G is a Geometric(1/2) r.v. independent of

Sv.

Thus, it is relevant to observe that |Sv| is distributed as an sum of inde-

pendent (though not identically distributed) Bernoulli random variables and

so it is concentrated around its mean E [|Sv|] = 2 lnn + O(1); a more precise

statement can be found in Proposition 6.4.5 below. Since |Sv| → ∞ in prob-

ability as n → ∞, it follows easily that deg(v) is asymptotically geometric

for any fixed node v. More strongly, the following proposition shows that for
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any fixed k, the random variables {degT (n)(v)}v∈[k] asymptotically behave like

independent Geometric random variables, even if they are conditioned to be

quite large.

Proposition 6.4.2. Fix c ∈ (0, 2) and k ∈ N. There exists α = α(c, k) > 0

such that uniformly over positive integers m1, . . . ,mk < c lnn,

P (degT (n)(v) ≥ mv, v ∈ [k]) = 2−
∑

v mv(1 + o(n−α)).

We now explain how the events in the proposition above can be decoupled

into a product of two probabilities, one of them corresponding to tail bounds

for the random variables |Sv|. We start with an upper bound for Proposi-

tion 6.4.2.

Lemma 6.4.3. For any k ∈ N and positive integers m1, . . . ,mk < n,

P (deg(v) ≥ mv, v ∈ [k]) ≤ 2−
∑

v mv P (|Sv| ≥ mv, v ∈ [k]) .

Equality holds for k = 1.

Proof. For each v ∈ [k] list Sv in increasing order as (iv,j, 1 ≤ j ≤ |Sv|).

Let A be the set of sequences A = (A1, . . . , Ak) satisfying Av ⊂ [n − 1] and

|Av| = mv for all v ∈ [k]. For every A ∈ A, let DA be the event that |Sv| ≥ mv

and {iv,1, . . . , iv,mv} = Av, for all v ∈ [k]. By Fact 6.4.1, if deg(v) ≥ mv then

necessarily |Sv| ≥ mv so

{deg(v) ≥ mv, v ∈ [k]} ∩DA = {ξiv,j favours v for all j ∈ [mv], v ∈ [k]} ∩DA.

Now, ξi are i.i.d Bernoulli(1/2) r.v.’s. Thus, if DA has positive probability

then

P
(
ξiv,j favours v for all j ∈ [mv], v ∈ [k]|DA

)
=

⎧⎪⎪⎨⎪⎪⎩
2−

∑
v mv if |Au ∩ Av| = 0, ∀u �= v ∈ [k]

0 o.w.
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The second case follows from the fact that if i ∈ Su ∩ Sv for some u �= v,

then ξi cannot favour both u and v. The events (DA, A ∈ A) are pairwise

disjoint, and if deg(v) ≥ mv for all v ∈ [k] then one of the events DA must

occur. It follows that

P (deg(v) ≥ mv, v ∈ [k]) =
∑
A∈A

P (DA, deg(v) ≥ mv, v ∈ [k])

≤
∑
A∈A

2−
∑

v mv P (DA)

=2−
∑

v mv P (|Sv| ≥ mv, v ∈ [k]) .

Finally, the second line holds with equality when k = 1.

For the lower bound we restrict to events DA where the sets Av are already

disjoint. To do so, we consider instead the vertex degrees in FI for some I < n.

For k ≥ 2 let

τk = min{i ∈ [n− 1] : {ai, bi} ⊂ [k]}.

Since Fi ⊂ Fj for all i ≤ j ∈ [n] we have that for any I < n

P (deg(v) ≥ mv, v ∈ [k]) ≥ P
(
degFI+1

(v) ≥ mv, v ∈ [k]
)

≥ P
(
I < τk, degFI+1

(v) ≥ mv, v ∈ [k]
)
. (6.5)

Recall that trees in Fi are listed in increasing order of their least elements;

this implies that indices of the trees of vertices 1, . . . , k do not change until two

trees indexed by a, b ≤ k are merged. Therefore, for all v ∈ [k], v ∈ T
(i)
v for

i ≤ τk. This implies the sets {Sv∩[τk−1], v ∈ [k]} are pairwise disjoint. These

observations allow us to obtain a lower bound analogous to Lemma 6.4.3.

Lemma 6.4.4. For any positive integers k ≥ 2 and m1, . . . ,mk, I < n,

P (deg(v) ≥ mv, v ∈ [k]) ≥ 2−
∑

v mvP (I < τk, |Sv ∩ [I]| ≥ mv, v ∈ [k]) .
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Proof. By (6.5), it suffices to bound P
(
I < τk, degFI+1

(v) ≥ mv, v ∈ [k]
)
.

Let A∗ be the set of sequences A = (A1, . . . , Ak) of pairwise disjoint subsets

of [I] satisfying |Av| = mv for all v ∈ [k]. For each A ∈ A∗, let DA be the

event that for all v ∈ [k], {iv,j, . . . , iv,mv} = Av (and so |Sv ∩ [I]| ≥ mv).

As in the proof of Lemma 6.4.3, we have that

{degFI+1
(v) ≥ mv, v ∈ [k]} ∩DA = {ξiv,j favours v for all j ∈ [mv], v ∈ [k]} ∩DA.

In this case, the sets Av are pairwise disjoint. If P (DA) > 0 then

P
(
ξiv,j favours v for all j ∈ [mv], v ∈ [k]|DA

)
= 2−

∑
v mv .

Recall that I < τk if and only if the sets {Sv ∩ [I], v ∈ [k]} are pairwise

disjoint; that is, if one of the events DA occur. We then have

P
(
I < τk, degFI+1

(v) ≥ mv, v ∈ [k]
)
=

∑
A∈A∗

P
(
DA, degFI+1

(v) ≥ mv, v ∈ [k]
)

=
∑
A∈A∗

2−
∑

v mv P (DA)

=2−
∑

v mv P (I < τk, |Sv ∩ [I]| ≥ mv, v ∈ [k]) .

To use Lemma 6.4.4 we need tail bounds for |Sv ∩ [I]| for some suitable

I < n; these are provided by the following proposition.

Proposition 6.4.5. Fix ε ∈ (0, 1) and c ∈ (0, 2(1 − ε)). Then there exists

β = β(c, ε) > 0 such that for any vertex v,

P (|Sv ∩ [n− �nε�]| < c lnn) = o(n−β).

Proof. Fix ε ∈ (0, 1) and c ∈ (0, 2(1 − ε)). Let {Bi, i ∈ N} be a collection of

independent Bernoulli r.v.’s, with E [Bi] =
2
i
. Recall the definition of Sv at

the beginning of the section.
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For any fixed vertex v ∈ [n], and each i ∈ [n − 1], the probability of the

event {v ∈ T
(i)
ai ∪T

(i)
bi
} is 2/(n−i+1); this is because, in the forest Fi, there are

n− i+ 1 trees and the trees T
(i)
ai , T

(i)
bi

are chosen uniformly at random among

them. Since each of these events are independent we have |Sv| d
=

∑n
i=2 Bi.

Moreover, writing Wn,ε =
∑n

i=n−�nε�Bi, we also have

Wn,ε
d
= |Sv ∩ [n− �nε�]|.

We now apply Bernstein’s inequality (see, e.g., [52], Theorem 2.8) to obtain

that for any t > 0,

P (Wn,ε ≤ E [Wn,ε]− t) ≤ exp

{
− t2

2E [Wn,ε]

}
.

We take t = E [Wn,ε]− c lnn. Since

E [Wn,ε] =
n∑

i=n−�nε�

2

i
= 2(1− ε) lnn+O(1),

setting δ = 2(1− ε)− c > 0 we have t = δ lnn+O(1), so

P (|Sv ∩ [n− �nε�]| < c lnn) = P (Wn,ε ≤ E [Wn,ε]− t) = O(1) · n−δ2/(4(1−ε)).

Choosing 0 < β < δ2/4(1− ε), the result follows.

The following lemma is the last ingredient for Proposition 6.4.2.

Lemma 6.4.6. Fix an integer k ≥ 2 and let ε ∈ (0, 1). Then, for n large

enough,

P (τk ≤ n− �nε�) ≤ 2k2

�nε� − 1
.

Proof. By the definition of τk, if τk > n − �nε� then {ai, bi} �⊂ [k] for all

1 ≤ i ≤ n− �nε�. The events that {ai, bi} �⊂ [k] are independent for distinct i
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and P ({ai, bi} ⊂ [k]) = k(k−1)
(n+1−i)(n−i) , so we have that

P (τk > n− �nε�) =
n−�nε�∏
i=1

(
1− k(k − 1)

(n+ 1− i)(n− i)

)
≥ 1−

n−�nε�∑
i=1

2k2

(n− i)2

The last inequality holds for n large enough. Since
∑∞

j=m j−2 ≤
∫∞
m−1 x

−2dx =

(m− 1)−1, we get

P (τk ≤ n− �nε�) ≤
n−�nε�∑
i=1

2k2

(n− i)2
≤

∞∑
j=�nε�

2k2

j2
=

2k2

�nε� − 1
.

We finish this section with the proof of Proposition 6.4.2.

Proof of Proposition 6.4.2. Fix c ∈ (0, 2), k ∈ N and let m1, . . . ,mk < c lnn

be positive integers. Let ε = (2 − c)/4 so that Proposition 6.4.5 holds for

some β(c) = β(c, ε) > 0. For k = 1, the result follows from the equality in

Lemma 6.4.3 and Proposition 6.4.5 since

P (|S1| < m1) ≤ P (|S1 ∩ [n− �nε�]| < c lnn) = o(n−β).

For k ≥ 2, the upper bound is likewise established immediately by Lemma 6.4.3.

For the lower bound, letting I = n − �nε�, by Lemma 6.4.6 and Proposi-

tion 6.4.5 we have

P (I < τk, |Sv ∩ [I]| ≥ mv, v ∈ [k]) ≥ 1−P (I ≥ τk)−
∑
v∈[k]

P (|Sv ∩ [I]| < mv) ≥ 1−o(n−α),

where α < min{β, ε}. By Lemma 6.4.4, it follows that

P (deg(v) ≥ mv, v ∈ [k]) = 2−
∑

v mv(1 + o(n−α)),

as required.
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6.5 Proof of Proposition 6.2.1

By Corollary 6.3.4 we can study vertex degrees in T (n) and derive conclu-

sions about the variables X
(n)
i , X

(n)
≥i , i ∈ Z. Recall that we write deg(v) =

degT (n)(v), for v ∈ [n].

Lemma 6.5.1. For any k ∈ N and integers m1, . . . ,mk,

P (deg(u) = mu, u ∈ [k]) =
k∑

j=0

∑
S⊂[k]

|S|=j

(−1)jP
(
deg(u) ≥ mu + 1[u∈S], u ∈ [k]

)
.

Furthermore, for k′ ∈ N and integers mk+1, . . .mk+k′,

P (deg(u) = mu, deg(v) ≥ mv, 1 ≤ u ≤ k < v ≤ k + k′)

=
k∑

j=0

∑
S⊂[k]

|S|=j

(−1)jP
(
deg(v) ≥ mv + 1[v∈S], v ∈ [k + k′]

)
.

Proof. The second equation follows by intersecting the event {deg(v) ≥ mv, k <

v ≤ k + k′} along all probabilities in the first equation. The first is straight-

forwardly proved using the inclusion-exclusion principle.

We are now ready to prove Proposition 6.2.1.

Proof of Proposition 6.2.1. Let c ∈ (0, 2) and K ∈ N. Let i < i′ be integers

such that 0 < i + logn < i′ + logn < c lnn and let aj, i ≤ j ≤ i′ be non-

negative integers with ai + · · · ai′ = K. We are interested in the factorial

moments E
[
(X

(n)
≥i′ )ai′

∏
i≤k<i′(X

(n)
k )ak

]
.

For i ≤ k ≤ i′, for each v with
∑k−1

l=i al < v ≤
∑k

l=i al let mv = �log n
+ k.

Let K ′ = K − ai′ , by Corollary 6.3.4 and the exchangeability of the vertex
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degrees of T (n),

E

[
(X

(n)
≥i′ )ai′

∏
i≤k<i′

(X
(n)
k )ak

]
= (n)KP (deg(u) = mu, deg(v) ≥ mv, 1 ≤ u ≤ K ′ < v ≤ K)

= (n)K

K′∑
l=0

∑
S⊂[K′]
|S|=l

(−1)lP
(
deg(v) ≥ mv + 1[v∈S], v ∈ [K]

)
,

the last equality by Lemma 6.5.1. At this point we can apply Proposition 6.4.2

to each of the terms. Since mv ≤ c lnn for v ∈ [K], there is α′ = α′(c,K) > 0

such that

K′∑
l=0

∑
S⊂[K′]
|S|=l

(−1)lP
(
deg(v) ≥ mv + 1[v∈S], v ∈ [K]

)

=
K′∑
l=0

∑
S⊂[K′]
|S|=l

(−1)l2−l−
∑

v mv(1 + o(n−α
′
))

=2−
∑

v mv(1 + o(n−α
′
))

K′∑
l=0

∑
S⊂[K′]
|S|=l

(−1)l2−l

=2−K
′−

∑
v mv(1 + o(n−α

′
)).

Using that (n)K = nK(1 + o(n−1)), we get

E

[
(X

(n)
≥i′ )ai′

∏
i≤k<i′

(X
(n)
k )ak

]
= 2K logn−K′−

∑K
v=1 mv(1 + o(n−α));

where α = min{α′, 1}. Finally, to complete the proof, note that

K log n−K ′ −
K∑
v=1

mv =
K∑

v=K′+1

(log n−mv) +
K′∑
v=1

(log n− 1−mv)

= (−i′ + εn)ai′ +
i′−1∑
k=i

(−k − 1 + εn)ak.
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6.6 Proofs of the main theorems

Proof of Theorem 6.1.2. By Theorem 11.1.VII of [25], weak convergence in

M#
Z∗ is equivalent to convergence of FDD’s, that is, convergence of every

finite family of bounded continuity sets; see Definition 11.1.IV of [25]. For any

point process ξ on Z and any i ∈ Z, we have that Z ∩ [i,∞) is a bounded

stochastic continuity set for the underlying measure of ξ in M#
Z∗ . Thus, any

FDD of ξ can be recovered from suitable marginals of the joint distribution of

(ξ(i), . . . , ξ(i− 1′), ξ[i,∞)) for some i < i′ ∈ Z.

Let ε ∈ [0, 1] and (nl)l≥1 be an increasing sequence with εnl
→ ε. The goal

then is to prove that, for any integers i < i′, the joint distribution of

X
(nl)
i , . . . , X

(nl)
i′−1, X

(nl)
≥i′

converges to the joint distribution of

Pε(i), . . . ,Pε(i′ − 1),Pε[i′,∞),

that is, to the law of independent Poisson r.v.’s with parameters 2−i−1+ε, . . . , 2−i
′−2+ε, 2−i

′+ε.

We compute the limit of the factorial moments of X
(nl)
i , . . . , X

(nl)
i′−1, X

(nl)
≥i′ .

For any non-negative integers ai, . . . , ai′ , by Proposition 6.2.1,

E

[
(X

(n)
≥i′ )ai′

∏
i≤k<i′

(X
(n)
k )ak

]
=
(
2−i

′+εn
)ai′ ∏

i≤k<i′

(
2−(k+1)+εn

)ak
(1 + o(n−α))

→
(
2−i

′+ε
)ai′ ∏

i≤k<i′

(
2−(k+1)+ε

)ak
,

as nl → ∞. The limit correspond to the factorial moment

E

[
(Pε[i′,∞))a′i

∏
i≤k<i′

(Pε(k))ak

]
.

The result follows (by, e.g. Theorem 6.10 of [52]).
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Proof of Theorem 6.1.3. Since {Δn ≥ �log n
+ i} = {X(n)
≥i > 0}, we need only

to estimate P
(
X

(n)
≥i > 0

)
. If i = O(1), then exp{−2−i+εn} = O(1) and so it

suffices to prove that

P
(
X

(n)
≥i = 0

)
− exp{−2−i+εn}) → 0,

as n → ∞. This follows from Theorem 6.1.2 and the subsubsequence prin-

ciple. Suppose that there exists δ > 0 and a subsequence nk for which

|P
(
X

(nk)
≥i = 0

)
− exp{−2−i+εnk}| > δ. Since {εnk

}k≥1 is a bounded set there

is a subsubsequence nkl such that εnkl
→ ε for some ε ∈ [0, 1]. By Theo-

rem 6.1.2, P
(
X

(nkl
)

≥i = 0
)

→ exp{−2−i+ε}; this contradicts our assumption

on the subsequence nk.

Now consider the case i → ∞ with i + logn < 2 lnn. By a standard

inclusion-exclusion argument (see, e.g., [16] Corollary 1.11),

P
(
X

(n)
≥i = 0

)
=

n∑
r=0

(−1)r
E
[
(X

(n)
≥i )r

]
r!

, (6.6)

and this sum has the so called alternating inequalities property; this means

that partial sums alternatively serve as upper and lower bounds forP
(
X

(n)
≥i = 0

)
.

Consequently 1 ,

E
[
X

(n)
≥i

]
− 1

2
E
[
(X

(n)
≥i )2

]
≤ P

(
X

(n)
≥i > 0

)
≤ E

[
X

(n)
≥i

]
. (6.7)

Using Proposition 6.2.1 and the fact that i → ∞, we have that E
[
X

(n)
≥i

]
=

2−i+εn(1 + o(1)) and

E
[
X

(n)
≥i

]
− 1

2
E
[
(X

(n)
≥i )2

]
= 2−i+εn(1 + o(1)) = (1− exp{−2−i+εn})(1 + o(1)).

1 A similar lower bound for P
(
X

(n)
≥i > 0

)
could be obtained from Paley-

Zigmund’s inequality.
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The result follows.

Proof of Theorem 6.1.4. We again use the method of moments. By Theorem

1.24 of [16], it suffices to prove that, as n → ∞

E
[
(X

(n)
i )a

]
− (2−i−1+εn)a = o(2−(i+1−εn)b), (6.8)

for all fixed 1 ≤ a ≤ b. Since i = o(lnn), we have that 2−i−1+εn = no(1). On

the other hand, by Proposition 6.2.1 there is α > 0 such that

E
[
(X

(n)
i )a

]
− (2−i−1+εn)a = o(n−α2−(i+εn)a) = n−α+o(1) = o(no(1)).

Therefore, condition (6.8) is satisfied and the proof is complete.
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CHAPTER 7
Depth of vertices with high degree in random recursive trees

Let Tn be a random recursive tree with n nodes. List vertices of Tn in

decreasing order of degree as v1, . . . , vn, and write di and hi for the degree of

vi and the distance of vi from the root, respectively. We prove that, as n → ∞

along suitable subsequences,(
di − �log2 n
,

hi − μ lnn√
σ2 lnn

)
→ ((Pi, i ≥ 1), (Ni, i ≥ 1)) ,

where μ = 1 − (log2 e)/2, σ
2 = 1 − (log2 e)/4, (Pi, i ≥ 1) is a Poisson point

process on Z and (Ni, i ≥ 1) is a vector of independent standard Gaussians.

We additionally establish joint normality for the depths of uniformly random

vertices in Tn, which extends results from [27, 59]. The joint holds even if the

random vertices are conditioned to have large degree, provided the normaliza-

tion is adjusted accordingly.

Our results are based on a simple relationship between random recursive

trees and Kingman’s n-coalescent; a utility that seems to have been largely

overlooked.

7.1 Introduction

Random recursive trees have been heavily studied since their introduction

in 1970 [67], and are closely related to binary search trees, preferential attach-

ment trees and increasing trees in general, see e.g. [10, 32]. In the current

work we obtain strong information about the joint law of degrees and depths

of maximum and near-maximum degrees and contrast our results to similar

results established for linear preferential attachment trees, see [13, 66]. We
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first recall basic notation and the standard construction of both random re-

cursive trees (RRTs) and linear preferential attachment trees. We use ln to

denote natural logarithms and log to denote logarithms with base 2.

For n ≥ 1, let Tn be a random recursive tree with vertex set [n] =

{1, . . . , n}. The standard construction of RRTs, which couples the elements of

(Tn, n ≥ 1), is the following: Let T1 be a single vertex labeled 1, which is the

root. For n ∈ N, the tree Tn+1 is obtained from Tn by adding an edge from a

new vertex n+1 to a vertex vn ∈ [n]; the choice of vn is uniformly random, and

is independent for each n ∈ N. For v ∈ [n], the depth hTn(v) is the distance

from v to the root in Tn. We write dTn(v) for the number of children of v in

Tn and call this the degree of v in Tn. A particular characteristic of RRTs,

as contrasted with other increasing trees e.g. m-ary trees, is that for each

v ∈ N, almost surely dTn(v) → ∞ as n → ∞. Let Δn = maxv∈Tn dTn(v) be

the maximum degree in Tn and let Mn be the set of vertices in Tn attaining

Δn.

Linear preferential attachment trees are also constructed recursively, except

that the parent vn of vertex n + 1 is chosen with probability proportional to

the degree of vn in the current tree. More precisely, for α > 0, the linear

preferential attachment process (Tα,n, n ≥ 1) is defined as follows. Let Tα,1 be

a single vertex labeled 1. For n ∈ N let Tα,n+1 be the tree obtained from Tα,n

by adding an edge from a new vertex n+ 1 to a vertex vn ∈ [n]. In this case,

the P (vn = v) is proportional to αdTα,n(v) + 1. Note that, in this context,

RRTs correspond to the case α = 0.

For the linear preferential attachment models, it has been proven that the

renormalized maximum degree n−1/(2+1/α)Δα,n converges a.s. and in Lp to a

positive, finite random variable with absolutely continuous distribution, [66].

64



Furthermore, the label of the vertex attaining the maximum degree is finite

a.s. [13].

For random recursive trees, the picture is quite different. Naturally, if i < j

then dTn(i) stochastically dominates dTn(j). However, it is unlikely that the

root of Tn will attain the maximum degree in Tn. By construction, dTn(i)

is distributed as
∑n

j=i+1 Bi where the summands are independent and Bj is

distributed as Bernoulli(1/j). It follows easily that dTn(1) = lnn(1 + op(1)).

However, it is known that the maximum degree satisfies Δn/ log n → 1 a.s. as

n → ∞ [31].

It is also known that the limiting distribution of Δn− log n is, up to lattice

effects, a Gumbel distribution [3, 39]. The latter can be explained since the

Gumbel distribution arises as the limiting distribution of the maximum of

independent random variables under rather general hypotheses on the laws

of such variables. The degrees of vertices in Tn are correlated and are not

identically distributed, but between pairs of vertices in Tn the correlation is

weak and the Gumbel limit still occurs. This was first shown by Goh and

Schmutz [39] using singularity analysis of generating functions. Our approach

to RRTs provides a probabilistic explanation of this phenomenon; see [3] for

more details.

In [3], Addario-Berry and the author describe the number of high-degree

vertices in Tn via the sequence (dTn(v) − �log n
, v ∈ [n]). They show that,

along suitable subsequences, this sequence converges in distribution to a Pois-

son point process N in Z with E [|N ∩ [j,∞)|] = Θ(2−j) for all j ∈ Z.

7.1.1 Statement of results

This work provides a detailed description of the degrees and depths of

high-degree vertices in Tn. In particular we show that the number of vertices
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attaining the maximum degree is random and their depths are independent

and asymptotically normal. Write μ = 1− (log e)/2 and σ2 = 1− (log e)/4.

Theorem 7.1.1. For each ε ∈ [0, 1], there exists a positive integer-valued

random variable Mε such that, for any increasing sequence of integers (nl, l ≥

1) for which log nl − �log nl
 → ε as l → ∞, then |Mnl
| converges to Mε in

distribution, and(
hTnl

(v)− μ lnnl√
σ2 lnnl

, v ∈ Mnl

)
L−→ (Ni, 1 ≤ i ≤ Mε),

where Ni are independent standard Gaussian variables.

We remark that Theorem 7.1.1 implies that maximum-degree vertices of

RRTs are constantly changing along the process (Tn, n ≥ 1).

Our main result gives a more general description of the depths of all vertices

in Tn, indexed in decreasing order of their degrees. List vertices of Tn in

decreasing order of degree as v1, . . . , vn; here we break ties between vertices

with the same degree by ordering them uniformly at random. Write di and hi

for the degree and depth of vi, respectively. Let P be a Poisson point process

in R with intensity λ(x) = 2−x ln 2. Then for i ≥ 1, let Pi be the i-th largest

point of P so |P ∩ [Pi,∞)| = i and |P ∩ (Pi,∞)| = i− 1. This ordering is well

defined as |P ∩ [0,∞)| < ∞ almost surely.

Theorem 7.1.2. Let Ni be independent standard Gaussian variables, i ∈ N.

For each ε ∈ [0, 1] and for any increasing sequence of integers (nl, l ≥ 1) for

which log nl − �log nl
 → ε as l → ∞, then(
di − �log nl
,

hi − μ lnnl√
σ2 lnnl

)
L−→ ((�Pi + ε
, i ≥ 1), (Ni, i ≥ 1)) .

The condition on the subsequence nl in Theorems 7.1.1 and 7.1.2 is due to

a lattice effect on the law of (�Pi + ε
, i ≥ 1) caused by the fact that degrees

are integer-valued.
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Our last result provides information about vertices with degree near aΔn

for fixed a ∈ [0, 1]. For a ∈ [0, 1], let μa = 1 − (a log e)/2 and σ2
a = 1 −

(a log e)/4; note that μ = μ1 and σ = σ1.

Theorem 7.1.3. Fix k ∈ N and let (ui, i ∈ [k]) be k distinct vertices in Tn

chosen uniformly at random. For every (a1, . . . , ak) ∈ [0, 1]k and (b1, . . . , bk) ∈

Z
k, the conditional law of(

hTn(ui)− μai lnn√
σ2
ai
lnn

, i ∈ [k]

)
,

given that dTn(ui) ≥ �ai log n
 + bi for all i ∈ [k], converges to the law of k

independent standard Gaussian variables.

Note that the case bi = ai = 0 for all i ∈ [k] of Theorem 7.1.3 involves

no conditioning, and thus yields the joint distribution for the depths of k

uniformly random vertices in Tn. This extends the results of the papers [27, 59]

where the case for k = 1, a1 = b1 = 0 of Theorem 7.1.3 is established. These

results were obtained in the context of analyzing the insertion depth, hTn(n)

of RRTs, important for the analysis of data structures in computer science.

Theorem 7.1.1 is a quite straightforward consequence of Theorem 7.1.2,

whose proof relies essentially on Theorem 7.1.3. The proof of Theorem 7.1.3

exploits the relation between degrees and depths of vertices in a different ran-

dom tree T (n) whose shape has the same law as that of Tn. This alternative

tree T (n) is constructed through Kingman’s coalescent, as described in Sec-

tion 7.2.1. A binary tree representation of Kingman’s coalescent had been

previously used to study a data structure known as union-find trees, [27]. Pit-

tel mentions the connection between the results of [27] and the height of RRTs

in [75]. However, although the connection between Kingman’s coalescent and

random recursive trees had been observed, prior to our previous work with
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Addario-Berry [3], its utility in studying vertex degrees seems to have gone

unremarked.

7.1.2 The point process in Theorem 7.1.2

In this section we briefly explain how we use the method of moments

(e.g., see [52] Section 6.1) to obtain the limiting distribution of a sequence

of (marked) point processes. In particular, we present an alternative charac-

terization of the processes involved in Theorem 7.1.2. Although this change

of perspective requires the introduction of further notation, the problem of

establishing Theorem 7.1.2 becomes, in fact, more tractable.

We start by considering the unmarked processes (di −�log n
, i ∈ [n]) and

P = (Pi, i ≥ 1). Define, for each n ∈ N, εn = log n − �log n
. We consider a

fixed ε ∈ [0, 1] and increasing sequence nl such that εnl
→ ε as l → ∞.

For j ∈ Z, we define the following counting measures of the sequence

Pε = (�Pi + ε
, i ≥ 1);

Xj = #{i ≥ 1 : �Pi + ε
 = j},

X≥j = #{i ≥ 1 : �Pi + ε
 ≥ j}.

Note that Xj
L
= Poi(2−j+ε−1) and X≥j

L
= Poi(2−j+ε); in particular, the number

of points of Peps on any interval [j,∞] is finite almost surely. Therefore, Peps

is characterized by the collection of joint distributions (Xj′ , . . . , Xj−1, X≥j)

for any integers j′ < j; see e.g. Section 3.1 of [24] and Section 9.2 of [25].

Similarly, the collection of the joint distribution of the variables

X
(n)
j = #{v ∈ [n] : dTn(v) = �log n
+ j},

X
(n)
≥j = #{v ∈ [n] : dTn(v) ≥ �log n
+ j}
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characterizes the law of the sequence (di − �log n
, i ≥ 1). Finally, to prove

that (di − �log nl
, i ≥ 1)
L−→ Pε it suffices to show that, for all j′ < j ∈ Z

(X
(nl)
j′ , . . . , X

(nl)
j−1 , X

(nl)
≥j )

L−→ (Xj′ , . . . , Xj−1, X≥j). (7.1)

Next, for any r ∈ R and a ∈ N, let (r)a = r(r − 1) · · · (r − a + 1) and set

(r)0 = 1. Recall that, if X
L
= Poi(λ), E [(X)a] = λa for all integers a ≥ 0.

Now, using the method of moments, the following estimates imply (7.1).

Proposition 7.1.4 (Proposition 2.1, [3]). For all c ∈ (0, 2) and A ∈ N there

is β = β(c, A) > 0 such that the following holds. If j′ = j′(n) and j = j(n) are

integer-valued functions with 0 < j′+log n < j+log n < c lnn, then uniformly

over non-negative integers aj′ , . . . , aj with aj′ + . . .+ aj = A, we have

E

[
(X

(n)
≥j )aj

∏
j′≤k<j

(X
(n)
k )ak

]
=
(
2−j+εn

)aj ∏
j′≤k<j

(
2−(k+1)+εn

)ak
(1 + o(n−β)).

Marked point processes are, in fact, point processes in a larger space; thus,

the same approach can be used when we add the information of the depths

((hi−μ lnn)/
√
σ2 lnn, i ≥ 1) and the marks (Ni, i ≥ 1). Let us define subsets

of Z×B(R) that will help us define the FDDs of our marked point processes;

see Figure 7–1 for an example. It suffices to consider the set

BI = {(−∞, b], (a, b], (a,∞); −∞ < a < b < ∞}.

Definition 7.1.5. Fix positive integers K ′ < K. If the pairs (jk, Bk) ∈ Z×BI ,

k ∈ [K], satisfy

1. j1 ≤ j2 ≤ · · · ≤ jK′ < j = jK′+1 = · · · = jK and

2. for all 1 ≤ k < l ≤ K, if jk = jl then Bk ∩Bl = ∅;

then we say that ((jk, Bk), k ∈ [K]) is a (K ′, K)-canonical FDD sequence.
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1
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Figure 7–1: An example of a (K ′, K)-canonical set. In this case, K ′ = 6,
K = 8 and j1 = −2, j8 = 2.

Also, for (j, B) ∈ Z× BI , let

Xj(B) = #{i ≥ 1 : �Pi + ε
 = j, Ni ∈ B}

X
(n)
j (B) = #

{
v ∈ [n] : dTn(v) = �log n
+ j,

hTn(v)− μ1 lnn√
σ2
1 lnn

∈ B

}
;

and let X≥j(B), X
(n)
≥j (B) be defined accordingly.

Now the convergence in distribution of point processes is equivalent to

the convergence of its finite dimensional distributions (FDD); see [25, Theo-

rem 11.1.VII]. In our case, this leads to the following lemma.

Lemma 7.1.6. The following are equivalent.

a) As l → ∞,(
di − �log nl
,

hi − μ lnnl√
σ2 lnnl

)
L−→ ((�Pi + ε
, i ≥ 1), (Ni, i ≥ 1)),

b) For every (K ′, K)-canonical FDD sequence ((jk, Bk), 1 ≤ k ≤ K) as

l → ∞,

(X
(nl)
j1

(B1), . . . , X
(nl)
jK′

(BK′), X
(nl)
≥jK′+1

(BK′+1), . . . , X
(nl)
≥jK (BK))

L−→ (Xj1(B1), . . . , XjK′ (BK′), X≥jK′+1
(BK′+1), . . . , X≥jK (BK)).
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Let Φ denote the measure of a standard Gaussian variable; that is Φ(A) =∫
A
e−x

2/2dx/
√
2π for any A ⊂ R.

Fact 7.1.7. For all j ∈ Z and B ⊂ R, Xj(B)
L
= Poi(2−j+ε−1Φ(B)) and

X≥j(B)
L
= Poi(2−j+εΦ(B)); additionally, for any (K ′, K)-canonical FDD se-

quence, the variables

(Xj1(B1), . . . , XjK′ (BK), X≥jK′+1
(BK′+1), . . . , X≥jK (BK))

are independent.

Below is the more general form of moment estimation which is required to

obtain Theorem 7.1.2.

Proposition 7.1.8. Fix c ∈ (0, 2) and M ∈ N. Let j = j(n) and j′ =

j(n) are integer-valued functions with 0 ≤ j′(n) + log n < j(n) + log n <

c lnn, and let K ∈ N and non-negative integers (ak, k ∈ [K]) K ∈ N be

such that
∑

k∈[K] ak = M . Then uniformly over (K ′, K)-canonical sequences

((jk, Bk), 1 ≤ k ≤ K) with j′ = j1 and j = jK, we have

E

[
K′∏
k=1

(
X

(n)
jk

(Bk)
)
ak

K∏
k=K′+1

(
X

(n)
≥j (Bk)

)
ak

]

=
K′∏
k=1

(
2−jk+εn−1Φ(Bk)

)ak K∏
k=K′+1

(
2−j

′+εnΦ(Bk)
)ak

(1 + o(1)).

Proof of Theorem 7.1.2 (assuming Proposition 7.1.8). Fix ε ∈ [0, 1] and let

nl be an increasing sequence with εnl
→ ε as l → ∞. Let K ′ < K and

((jk, Bk), 1 ≤ k ≤ K) be a fixed (K ′, K)-canonical FDD sequence. Set c =

3/2, which implies for n large enough that 0 ≤ j1+log n < jK +log n < c lnn.

Thus, Proposition 7.1.8 implies, by the method of moments, that the first

condition in Lemma 7.1.6 is satisfied for each (K,K ′)-canonical FDD sequence.

This completes the proof of Theorem 7.1.2.
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We briefly explain a key ingredient to proving Proposition 7.1.8. Note

that each X
(n)
j (B) and X

(n)
≥j (B) is a sum of indicator variables. Therefore, the

expectations of their factorial moments are reduced to a sum of probabilities

as follows: for each S ⊂ [n], collection Bj ⊂ BI and sequence mj < 2 lnn,

P
(
degTn

(vj) ≥ mj, hTn(vj) ∈ Bj, vj ∈ S
)

=P
(
degTn

(vj) ≥ mj, vj ∈ S
)
P
(
hTn(vj) ∈ Bj, vj ∈ S | degTn

(vj) ≥ mj, vj ∈ S
)
.

(7.2)

The first factor in (7.2) has been analyzed in [3]; the result we need from that

paper is restated below as Proposition 7.5.4. The second factor in (7.2) is

bounded in Theorem 7.2.5.

We now turn to describing Kingman’s coalescent.

7.2 A Kingman’s coalescent approach

The connection between RRTs and Kingman’s coalescent is central to un-

derstanding the close relation between degree and depth of vertices reflected

in Theorem 7.1.3, which is key to the proofs of Theorems 7.1.1 and 7.1.2.

Therefore, we briefly sketch the role that Theorem 7.1.3 plays in the proof of

Theorem 7.1.2. In the next section we define the tree T (n), after which we

discuss the contents of the remainder of the paper.

7.2.1 Kingman’s coalescent process

In this section we give a representation of Kingman’s coalescent in terms

of labeled forests and connect this with RRTs. For a general description of

Kingman’s coalescent, see [9, Chapter 2]; the construction below is based on

that given in [1]. For the remainder of the paper, all trees are rooted and we

use r(t) to denote the root of tree t. We write V (t) and E(t) for the sets of

vertices and edges of t, respectively. By convention, we assume that edges of

a tree t are directed towards r(t) and an edge directed from u to v is denoted
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by uv. If t has n vertices, we say that t has size n; we also write dt(v) and

ht(v) for the degree and depth of vertex v in t.

A rooted labeled tree t is increasing if its labels are increasing along root-

to-leaf paths. Let us write In = {t : t is increasing, V (t) = [n]} to denote the

set of increasing trees on [n]. It is not difficult to see that Tn is a uniformly

random element of In and that |In| = (n− 1)!.

A forest f is a set of trees whose vertex sets are pairwise disjoint. Denote

by V (f) and E(f), respectively, the union of the vertex and edge sets of

the trees contained in f . For each n ≥ 1, we consider the set of forests

Fn = {f : V (f) = [n]} with vertex labels [n]. An n-chain is a sequence

C = (fn, . . . , f1) of elements of Fn if for 1 < i ≤ n, fi−1 is obtained from fi by

adding an edge connecting two of the roots in fi. In particular, fn contains n

one-vertex trees, and f1 contains exactly one tree denoted by tC ∈ Fn.

For an n-chain (fn, . . . , f1) ∈ CFn and 1 ≤ i ≤ n, we write fi = {t(i)1 , . . . , t
(i)
i },

ordering of the trees is in increasing order of their smallest-labeled vertex.

Definition 7.2.1. The following constructs Kingman’s n-coalescent as a ran-

dom n-chain C = (Fn, . . . , F1).

For each 1 < i ≤ n, choose {ai, bi} ⊂ {{a, b} : 1 ≤ a < b ≤ i} inde-

pendently and uniformly at random; also let (ξi, i ∈ [n − 1]) be a sequence of

independent Bernoulli(1/2) random variables.

For 1 ≤ i < n, Fi is obtained from Fi+1 as follows. Add an edge ei between

the roots of r(T
(i+1)
ai+1 ) and r(T

(i+1)
bi+1

); direct ei towards r(T
(i+1)
ai+1 ) if ξi = 1, and

towards r(T
(i+1)
bi+1

) otherwise. Then Fi contains the new tree and the remaining

i− 1 unaltered trees from Fi+1.

For an example of the process see Figure 7–2.

Lemma 7.2.2. Kingman’s n-coalescent C is uniformly random in CFn, the

set of n-chains.
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Figure 7–2: An example of Kingman’s n-coalescentC = (Fn, . . . , F1) for n = 6.
For 1 < i ≤ n, we present the edge E(Fi−1) \ E(Fi) with a dotted line in Fi.
Edges are marked with the labels ρC ; n − ρC(e) is the first forest where e is
present. In this case, ξ6 = ξ4 = ξ3 = 1, ξ5 = ξ2 = 0 and {a5, b5} = {2, 5},
{a4, b4} = {1, 5}, {a3, b3} = {1, 4}, {a2, b2} = {2, 3}, {a1, b1} = {1, 2}.
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Proof. Any (fn, . . . , f1) ∈ CFn is determined by the order in which the edges

of tC are added. For each 2 ≤ i < n, there are (i+ 1)i possible oriented edges

between the roots in fi+1 and only one of them is e ∈ E(fi) \ E(fi+1). Thus,

P ((Fn, . . . , F1) = (fn, . . . , f1)) =
n−1∏
k=1

P (Fk = fk|Fj = fj, k < j ≤ n) [n!(n− 1)!]−1 .

This expression holds for all (fn, . . . , f1) ∈ CFn, so the result follows.

Let en−1, . . . , e1 be the edges of tC ordered as they were added to the chain

C. That is, ei ∈ E(Fi) while ei /∈ E(Fi+1) for all 1 ≤ i < n. Now, write

ei = viwi. Let σC : V (tC) → [n] be defined as σC(r(tC)) = 1 and for each

ei = viwi ∈ E(tC),

σC(vi) = i+ 1.

This is well defined as all edges are directed towards the root, so vi �= vj for

all i, j ∈ [n − 1]. Note that for each 1 ≤ i < n, ei is directed towards the

root of the new tree in fi. Thus, the labels {σC(v), v ∈ [n]} decrease along

leaf-to-root paths in tC . As a consequence, we obtain an increasing tree by

relabeling the vertices of tC using σC .

Proposition 7.2.3. For each C = (fn, . . . , f1) ∈ CFn, relabel the vertices in

tC with σC to obtain φ(C) ∈ In. Then the law of φ(C) is that of a RRT of

size n.

Proof. From the argument in the proof of Lemma 7.2.2, we have that |CFn| =

n!(n−1)!. Next, we show that φ is onto and, additionally, an n!-to-1 mapping.

Thus φ preserves the uniform measure from CFn to In.

Fix an increasing tree t ∈ In. Every vertex j > 1 has outdegree 1 in t, thus

we write uniquely define vj ∈ V (t) such that jvj ∈ E(t). For each 1 < j ≤ n,

let ej−1 = jvj. Consider an n-chain C = (fn, . . . , f1) defined as follows. Let

fn ∈ Fn have no edges, and for each 1 ≤ i < n, construct fi from fi+1 by
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adding the edge ei. It is easy to see that C satisfies σC(i) = i for all i ∈ [n]

and tC . Therefore φ(C) = t, showing that φ is onto.

Now, consider C ∈ CFn such that φ(C) = t. For each permutation π :

[n] → [n], let Cπ be the n-chain obtained from C = (fn, . . . , f1) by applying

π to each of the labels of V (fi), i ∈ [n]. The mapping φ does not depend of

the vertex labels in C, but on the order in which edges are added; therefore,

φ(C) = φ(Cπ) for all permutations π. This shows that |φ−1(t)| ≥ n! for any

t ∈ In, completing the proof.

For each n, let C be a Kingman’s n-coalescent and let T (n) = tC. Since

φ(C) only relabels vertices in TC , it follows that the shape of the tree is

preserved; and so are the degrees and depths of the vertices. That is, as

multisets,

{(degT (n)(v), hT (n)(v))}v∈[n] = {(degφ(C)(v), hφ(C)(v))}v∈[n].

Moreover, for each t ∈ In the set φ−1(t) can be indexed by permutations on

[n]. This directly implies the following key corollary of Proposition 7.2.3.

Corollary 7.2.4. For all n ∈ N,

((dT (n)(i), hT (n)(i)), i ∈ [n]) = ((dTn(σ(i)), hTn(σ(i))), i ∈ [n]);

where σ is a uniformly random permutation of [n] and is independent of Tn.

Consequently, the following equality in distribution holds jointly for all i ∈ Z

and j ∈ N,

|{v ∈ [n] : dTn(v) = i, hTn = j}| = |{v ∈ [n] : dT (n)(v) = i, hT (n)(v) = j}|

Proof. For any n ∈ N, let Pn be the set of permutations on [n]. For any

n-chain C = (fn, . . . , f1) let ϕ(C) = (φ(C), σC). Then ϕ : CFn → In × Pn is

a bijection and the result follows.
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7.2.2 Conditional depths of high-degree vertices

In this section we provide a heuristic for the approach we use to study the

conditional distributions involved in Theorem 7.2.5 below, which is equivalent

to Theorem 7.1.3, and also outline the remainder of the paper.

Fix n ∈ N and consider Kingman’s n-coalescent C = (Fn, . . . , F1). For

each vertex v ∈ [n] and 1 ≤ i ≤ n, let Ti(v) be the tree in Fi that contains v.

We use dFi
(v) and hFi

(v) to denote the degree and depth of v in Ti(v). Recall

that T (n) = tC is the unique tree in F1; for simplicity, we use dn(v) and hn(v)

for the degree and depth of vertices in T (n).

Theorem 7.2.5. Fix k ∈ N. For any (a1, . . . , ak) ∈ [0, 1]k and (b1, . . . , bk) ∈

Z
k, the conditional law of(

hn(i)− μai lnn√
σ2
ai
lnn

, i ∈ [k]

)
,

given that dn(i) ≥ �ai log n
+bi, i ∈ [k], converges to the law of k independent

standard Gaussian variables.

Remark 7.2.6 (Proof of Theorem 7.1.3). By Corollary 7.2.4, Theorem 7.1.3

follows from Theorem 7.2.5.

In this section we give a heuristic for Theorem 7.2.5, when k = 1. First, we

analyze the case m1 = m1(a1, b1, n) = �a1 log n
 + b1 ≤ 0, in which {dn(1) ≥

m1} occurs; and second m1 > 0. Finally, we discuss the obstacles in treating

several vertices, that is, when k ≥ 2.

We next define indicator functions (si,v, 2 ≤ i ≤ n) and the selection set

Sn(v) as follows, let si,v be the indicator that Ti(v) ∈ {T (i)
ai , T

(i)
bi
}; that is,

si,v = 1 when Ti(v) ∈ Fi is chosen to be merged and form a larger tree in Fi−1,

and otherwise si,v = 0. Now we set

Sn(v) = {2 ≤ i ≤ n : si,v = 1}.
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riei

Ti(v)
ri

ei

Ti(v)

Figure 7–3: For 1 < i ≤ n let ri = r(Ti(v)) and suppose i ∈ Sn(v). If ei is
directed towards ri, then the degree of ri increases by one in Fi−1. If ei is
directed outwards ri, then the depth of each u ∈ Ti(v) increases by one in
Fi−1.

The selection set Sn(v) keeps track of each time i where Ti(v) merges. The

choice of trees to be merged at each step is both independent and uniform.

Thus, for fixed v ∈ [n], the variables (si,v, 2 ≤ i ≤ n) are independent Bernoulli

random variables, with E [si,v] = 2/i. This implies that E [|Sn(v)|] =
∑n

i=1
2
i
=

2 lnn+O(1) and Var [|Sn(v)|] =
∑n

i=1

(
2
i
− 4

i2

)
= 2 lnn+O(1). It is straight-

forward to see that the Lindenberg conditions are satisfied by |Sn(v)| and thus,

the following holds for any vertex v ∈ N,

|Sn(v)| − 2 lnn√
2 lnn

L−→ N ; (7.3)

as n → ∞ and whereN is a standard Gaussian variable. Moreover, Bernstein’s

inequalities (see, e.g. [52, Theorem 2.8 and (2.9)]) yield that, for any δ > 0,

P (||Sn(v)| − E [|Sn(v)|] | > δE [|Sn(v)|]) = o(1). (7.4)

Now, consider the indicator random variables (κi,v, 2 ≤ i ≤ n) where

κi,v = 1 precisely when si,v = 1 and the edge added to Fi is directed outwards

of r(Ti(v)). The latter condition depends only on ξi and thus E [κi,v] = 1/i.

Recall that ei is the edge added to Fi+1 to obtain Fi. If ei is directed towards

r(Ti+1(v)), the degree of r(Ti+1(v)) increases by one in Fi. Otherwise, ei is

directed outwards r(Ti+1(v)) and all vertices in Ti+1(v) increase their depth
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by one in Fi. Therefore hFj
(v) =

∑n
i=j+1 κi,v, and in particular

hn(v) =
n∑

i=2

κi,v.

Similarly to (7.3), it follows that (hn(v)− lnn)/
√
lnn converges in distribution

to a standard Gaussian variable; this already solves the case when m1 ≤

0. However, such arguments cannot be directly applied to the case when

m1 > 0 or when k ≥ 2. We next describe a slightly different proof that

(hn(v)− lnn)/
√
lnn is asymptotically normal, which we later extend to cover

the general case of Theorem 7.2.5.

The direction of the edge ei is determined by a Bernoulli(1/2), independent

of the choice of trees to be merged. Thus, we have the following distributional

equality,

hn(1)
L
= Bin(|Sn(1)|, 1/2). (7.5)

Now, from (7.3), it follows that there exist random variables Xn
L−→ N

such that

Sn = |Sn(1)| = 2 lnn+Xn

√
2 lnn.

Similarly, the central limit theorem allows us to write Bin(2m, 1/2) = m +

Ym

2

√
2m with Ym

L−→ N ′, N ′ a standard Gaussian variable. We then have

Bin(Sn, 1/2) =
Sn

2
+

YSn/2

2

√
Sn =

2 lnn+Xn

√
2 lnn

2
+

YSn/2

2

√
Sn

≈ lnn+
Xn + Ylnn√

2

√
lnn;

in the last approximation, we neglect the variations of Sn around 2 lnn. The

Binomial variable is determined by the coin flips ξi which are independent of
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Sn(v). Thus their (limiting) fluctuations, N and N ′, should behave indepen-

dently. It now follows that

hn(1)− lnn√
lnn

≈ 1√
2
(Xn + Ylnn) ≈

1√
2
(N +N ′) (7.6)

where the latter expression has a standard Gaussian distribution. This gives

a heuristic of the limiting distribution of hn(1) without any conditioning.

To prepare for the proof of Theorem 7.2.5, we next state a lemma describing

the joint law of the depth and degree of a given vertex.

Lemma 7.2.7. Fix v ∈ [n], let G be Geo(1/2) independent of Sn(v) and let

D = min{G, |Sn(v)|}. Then, dn(v)
L
= D and for all k, l ∈ N,

P (dn(v) ≥ k, hn(v) ≤ l) = 2−kP (Bin(|Sn(v)| − k, 1/2) ≤ l, |Sn(v)| ≥ k) .

Proof. Any vertex starts as the root of a single-vertex tree. If |Sn(v)| = m,

then we flip a fair coin m times and set dn(v) as the length of the first streak

of heads and hn(v) as the total number of tails; this proves the distributional

identity of dn(v).

Moreover, if dn(v) ≥ k, then |Sn(v)| ≥ k and the first k coin flips are

determined to be heads, the latter event occurring with probability 2−k. The

remaining |Sn(v)| − k coin flips are independent of the previous tosses.

Using Lemma 7.2.7, we have for all k ≥ m1 = �a1 lnn
+ b1,

P (|Sn(v)| ≥ k | dn(v) ≥ m1) =
P (|Sn(v)| ≥ k)

P (|Sn(v)| ≥ m1)
= (1 + o(1))P (|Sn(v)| ≥ k) ;

the last equality by use the bounds in (7.4) and the fact that for any a1 ∈ [0, 1]

and b1 ∈ Z, we have m1 < (3/2) lnn for n large enough.

Thus, conditioning on the event {dn(1) ≥ m1} does not have a real impact

on the distribution of |Sn(1)|. Therefore, hn(1) depends essentially on (2 −

a1) lnn fair coin flips. In other words, the conditional law of hn(1), given that
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dn(1) ≥ m1 satisfies

hn(1) ≈ Bin(Sn − a�log n
 −m, 1/2) ≈ (1− (a1 log e)/2) lnn+
Xn + Ylnn√

2

√
lnn.

(7.7)

This suggests that, using a suitable choice of renormalizing constants, the

conditional law of hn(1) given that dn(1) ≥ m1 has an asymptotic normal

distribution.

To conclude the proof outline for Theorem 7.2.5, we briefly explain how

the depths of distinct vertices are correlated. For k ≥ 2, the joint distribution

of (hn(v), v ∈ [k]) does not depend only on the sizes of the selection sets

(Sn(v), v ∈ [k]), but also on their overlaps (i.e. on the sets Sn(v) ∩ Sn(w), for

v, w ∈ [k]).

For distinct vertices v, w, let λv,w = max{2 ≤ l ≤ n : l ∈ Sn(v) ∩ Sn(w)}.

Then, λv,w is the first time that both the trees containing v and w are merged

together; moreover, the merging of v, w coincide for the rest of the process. In

terms of theirs depths, this implies that κλv,w,v = 1− κλv,w,w, i.e. exactly one

of v or w increases its depth at step λv,w, and also κi,v = κi,w, for all i < λv,w.

We proceed to outline the contents of the remainder of the paper. In the

next section, Section 7.3, we make rigorous the heuristics in (7.6) and (7.7). To

do so, we express the cumulative distribution function of hn(v) as the expected

value of a function of |Sn|.

In Section 7.4, we address the correlations between (hn(v), v ∈ [k]). We

work with the coalescent process stopped at the moment where there are ln2 n

remaining trees, Fln2 n. Using Fln2 n we define, for each v ∈ [n], the truncated

selection sets

Sn,1(v) = Sn(v) \ [ln2 n]
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and a partial depth hn,1(v) = hFln2 n
(v). In Section 7.5 we show that if

hn(v) = hn,1(v) + hn,2(v),

then hn,2 is negligible for the asymptotic distribution of hn(v); this holds even

if we condition on a finite set of vertices (that includes v) to have large degree.

Stopping the process, instead, at Fln lnn would facilitate the analysis of hn,1(v)−

hFln lnn
(v), but estimates on (Sn(v)\[ln lnn], v ∈ [k]) would become much more

delicate.

In Section 7.6 we study the joint limiting distribution of (hn,1(v); v ∈ [k])

and complete the proof of Theorem 7.2.5. Finally, Sections 7.7 and 7.8 contain

the proofs of Proposition 7.1.8 and Theorem 7.1.1, respectively.

7.3 Proof of Theorem 7.2.5, case k = 1

In this section we fix a ∈ [0, 1], b ∈ Z and write m = m(a, b, n) =

�a log n
 + b. We establish the conditional limiting distribution of (hn(1) −

μa lnn)/
√

σ2
a lnn given that dn(1) ≥ m. Our approach consists on averaging

over the size of the selection set Sn(1), and applying the following straightfor-

ward lemma for the renormalized version of |Sn(1)|.

Lemma 7.3.1. Let f : R → R be a uniformly continuous bounded function,

g : R → R a continuous function and (gn : R → R, n ∈ N) be a sequence of

functions uniformly converging to g over any compact set of R. Let Xn be a

sequence of random variables which converges in distribution to X, then

lim
n→∞

E [f(gn(Xn))] = E [f(g(X))] .

We describe here a straightforward computation which arises in our proofs.

Lemma 7.3.2. Let N be a standard Gaussian variable. Then, for every x ∈ R

and b > 0,

E

[
Φ

(√
1 + b2x−N

b

)]
= Φ(x).
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Proof. Let N ′ be a standard Gaussian variable, independent of N . The result

follows since N ′b+N has a Gaussian distribution with variance 1 + b2 and so

E

[
Φ

(√
1 + b2x−N

b

)]
= P

(
N ′b+N√
1 + b2

≤ x

)
= Φ(x).

We first consider the case m ≤ 0; in other words, the limiting distribution

of hn(1) without conditioning on its degree. For any fixed x ∈ R, let Gn,x :

N → [0, 1] be defined as

Gn,x(t) = P
(
Bin(t, 1/2) < x

√
lnn+ lnn

)
. (7.8)

The motivation behind this definition is that, conditioning on |Sn(1)| and using

(7.5), we have

P
(
hn(1) < x

√
lnn+ lnn

)
= E [Gn,x(|Sn(1)|)] . (7.9)

The following result describes Gn,x(|Sn(1)|) as a function in terms of Ŝn =

|Sn(1)|−2 lnn√
2 lnn

and exploits the Gaussian limit of binomial variables Bin(m, p) as

m → ∞.

Lemma 7.3.3. Let N be a standard Gaussian variable. For any x ∈ R fixed,

lim
n→∞

E [Gn,x(|Sn(1)|)] = E
[
Φ(

√
2x−N)

]
.

Proof. For each n ∈ N, let gn,x : R → R be defined as

gn,x(r) = (
√
2x− r)

(
1 +

r√
2 lnn

)−1/2
,

for r > −
√
2 lnn, and zero otherwise. Note that gn,x converges to gx(r) =

√
2x − r, uniformly over bounded intervals as n → ∞; this is easily proven

and we omit the details. Next, we rewrite E [Gn,x(|Sn(1)|)] as function of

Ŝn; this is to exploit the fact that Ŝn converges in distribution to a standard
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Gaussian variable by (7.3). We show that

lim
n→∞

E [Gn,x(|Sn(1)|)] = lim
n→∞

E
[
Φ(gn,x(Ŝn))

]
= E

[
Φ
(√

2x−N
)]

, (7.10)

whereN is a standard Gaussian variable. The last equality follows by Lemma 7.3.1

as the necessary conditions are satisfied: Φ is uniformly continuous and bounded,

gn,x converges uniformly over bounded intervals, and Ŝn converges in distribu-

tion.

It remains to prove the first equality in (7.10). Note that

Gn,x(t) = P

(
2Bin(t, 1/2)− t√

t
≤ 2x

√
lnn+ 2 lnn− t√

t

)
;

additionally, letting t = 2 lnn+ r
√
2 lnn we have both r > −

√
2 lnn and

2x
√
lnn+ 2 lnn− t√

t
=

(√
2x− r

)√
2 lnn√

2 lnn− r
√
2 lnn

=
(√

2x− r
)(2 lnn− r

√
2 lnn

2 lnn

)−1/2
.

For t ≥ 1, let

E(t) = Gn,x(t)− Φ

(
gn,x

(
t− 2 lnn√

2 lnn

))
.

By the Berry-Essen theorem for Gaussian approximation, see e.g. [35, Theo-

rem 3.4.9], we have that |E(t)| ≤ Ct−1/2 for all t ≥ 1. Therefore, using the tail

bound in (7.4) for |Sn(1)|, we have as n → ∞,

E [E(|Sn(1)|)] ≤ E [|E(|Sn(1)|)|] ≤ P (|Sn(1)| ≤ lnn) + C(lnn)−1/2 → 0.

This completes the proof as (7.10) follows from

lim
n→∞

E [Gn,x(|Sn(1)|)] = lim
n→∞

E
[
Φ(gn,x(Ŝn))

]
+ lim

n→∞
E [E(|Sn(1)|)] ,

where both limits in the right-hand side exist and the last one vanishes.

Despite Lemma 7.3.4 below being an stronger statement than Lemma 7.3.3,

we decided to present the detailed proof of Lemma 7.3.3 as the computations
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are easier to follow. In particular, Lemmas 7.3.2 and 7.3.3 together imply that

for any x ∈ R,

lim
n→∞

P
(
hn(1) < x

√
lnn+ lnn

)
= Φ(x), (7.11)

which formalizes the heuristic in (7.6) and already yields a particular case of

Theorem 7.2.5.

We now proceed to deal with the case k = 1 and a non-trivial conditioning

in Theorem 7.2.5. For any d, l ∈ N let G̃d,l : N → [0, 1] be defined as

G̃d,l(t) = P (Bin(t− d, 1/2) < l)1[t≥d]. (7.12)

By Lemma 7.2.7 we get

P (hn(1) ≤ l, dn(1) ≥ d) = 2−d
∑
t≥d

P (hn(1) ≤ l | |Sn(1)| = t)P (|Sn(1)| = t)

(7.13)

= 2−dE
[
G̃d,l(|Sn(1)|)

]
.

Recall the next definitions given for Theorem 7.1.3; for a ∈ [0, 1], let μa =

1− (a log e)/2 and σ2
a = 1− (a log e)/4.

Lemma 7.3.4. Fix a ∈ [0, 1], b ∈ Z and let x ∈ R. Write m = m(a, b, n) =

�a log n
+ b and l = l(a, x, n) = x
√
σ2
a lnn+ μa lnn. If m ≥ 0 then

E
[
G̃m,l(|Sn(1)|)

]
= E

[
Φ

(√
2σ2

ax−N
√
μa

)]
.

Proof. The proof uses Lemma 7.3.1 and follows the same approach as in

Lemma 7.3.3. We also use the renormalization Ŝn. Fix a, b, x and set m, l

as given in the statement. For the rest of the proof, write μ = μa and σ = σa.

We show that

lim
n→∞

E
[
G̃m,l(|Sn(1)|)

]
= lim

n→∞
E
[
Φ(g̃n,a,x(Ŝn))

]
, (7.14)
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where g̃n,a,x : R → R are functions, defined below, such that g̃n,a,x(r) converges

to g̃a,x(r) =
√
2σx−t√

μ
, uniformly over bounded sets, as n → ∞. Once (7.14) is

established, the result follows by Lemma 7.3.1. To do so, we are required to

bound the error of approximating G̃m,l(|Sn(1)|) with Φ(g̃n,a,x(Ŝn)).

Now, write ε = ε(a, n) = a log n − �a log n
; then m = �a log n
 + b =

2(1− μ) lnn+ b− ε. A direct calculation shows that

g̃n,a,x(r) =

√
2σx− r
√
μ

(
1 +

r
√
2 lnn− b+ ε

2μ lnn

)−1/2
+

(
2μ lnn+ r

√
2 lnn− b+ ε

(b− ε)2

)−1/2

if r ≥ −2μ lnn+b−ε√
2 lnn

, and zero otherwise. The uniform convergence of g̃n,a,x is

straightforward, but we omit the details. For t ≥ 1, let

E(t−m) = G̃m,l(t)− Φ

(
g̃n,a,x

(
t− 2 lnn√

2 lnn

))
.

By the Berry-Essen theorem, see e.g. [35, Theorem 3.4.9], we have that

|E(t)| ≤ Ct−1/2. Finally, for n large enough, m < (3/2) lnn and so, having

Sn(1) > (7/4) lnn implies |Sn(1)| −m > (1/4) lnn. By (7.4) we get,

E [E(|Sn(1)| −m)] ≤ E [|E(|Sn(1)| −m)|] ≤ P (|Sn(1)| ≤ (2− 1/4) lnn)+2C(lnn)−1/2 = o(1).

This completes the proof as

lim
n→∞

E
[
G̃m,l(|Sn(1)|)

]
= lim

n→∞
E
[
Φ(g̃n,a,x(Ŝn))

]
= lim

n→∞
E [E(|Sn(1)| −m)] ,

and the last limit vanishes.

Proof of Theorem 7.2.5, case k = 1. Fix a ∈ [0, 1], b ∈ Z and x ∈ R. Let

m = m(a, b, n) = �a log n
 + b and l = l(a, x, n) = x
√
σ2
a lnn + μa lnn. Our

goal is to show that

lim
n→∞

P (hn(1) < l | dn(1) ≥ m) = Φ(x).

86



If m ≤ 0 then a = 0. The result then follows by (7.11) since μa = σa = 1,

and so

P (hn(1) < l | dn(1) ≥ m) = P
(
hn(1) < x

√
lnn+ lnn

)
.

Consider now the case m > 0. Note that m = �a log n
+ b ≤ 3
2
lnn for n large

enough. Therefore, by Lemma 7.2.7 and (7.4), we have

lim
n→∞

2mP (dn(1) ≥ m) = lim
n→∞

P (|Sn(1)| ≥ m) = 1. (7.15)

Using the equations (7.13), (7.15), and Lemma 7.3.4 we get that for any

x ∈ R,

lim
n→∞

P (hn(1) < l | dn(1) ≥ m) = lim
n→∞

2−m
E
[
G̃m,l(|Sn(1)|)

]
P (|Sn(1)| ≥ m)

= E

[
Φ

(√
2σax−N
√
μa

)]
.

We use the fact that 2σ2
a = 1 + μa to apply Lemma 7.3.2 to the last term

above. This yields the desired result.

In the following section we lay down the necessary approximations to obtain

a generalization of (7.13) to several vertices.

7.4 Truncated selection sets

In this section we fix k ≥ 2 and consider the depths of vertices in Fln2 n.

Recall from Section 7.2.2 that the truncated selection sets are defined by

Sn,1(v) = Sn(v) \ [ln2 n] for v ∈ [n]. Let Ω1 = P({log2 n + 1, . . . , n}). For

the remainder of the paper we use, e.g. S̄n,1 ∈ Ωk
1 to denote the vector

(Sn,1(i), i ∈ [k]).

Our main objective is showing that (Sn,1(i), i ∈ [k]) behave, asymptoti-

cally, as if they were independent sets; see Proposition 7.4.6. Also, the con-

ditional law of the depths (hn,1(i), i ∈ [k]) given the truncated selection sets

(Sn,1(i), i ∈ [k]) can be approximated by the law of k independent Binomial

variables. This holds even if we condition on the final degrees (dn(i), i ∈ [k]);
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see Proposition 7.4.2 and Remark 7.4.3. These properties are crucial to estab-

lishing Theorem 7.2.5 in full generality.

The choice of halting the process at Fln2 n, and not e.g. Fln lnn, implies

that we must also provide the limiting distribution of (hn(i) − hn,1(i))/
√
lnn

(a priori hn(i)− hn,1(i) ≤ ln2 n). Nevertheless, we use Fln2 n since it allows to

use simple arguments in the estimates of Proposition 7.4.6 below.

Note that, E [|Sn,1(v)|] = 2 lnn−2 ln lnn+o(1) = 2 lnn(1+o(1)) and thus,

similar to (7.4), we get concentration of |Sn,1(v)| around 2 lnn and a normal

asymptotic limit.

Fact 7.4.1. For any v ∈ [n] and ε > 0, P (||Sn,1(v)| − 2 lnn| > ε lnn) = o(1)

and

|Sn,1(v)− 2 lnn|√
2 lnn

L−→ N ;

where N is a standard Gaussian variable.

The following proposition is used to obtain independent limiting distribu-

tions for the depths of k vertices in the final tree T (n).

Proposition 7.4.2. Fix m̄, l̄ ∈ N
k. For all J̄ ∈ Ωk

1 such that {Ji, i ∈ [k]} are

pairwise disjoint, we have

P
(
hn,1(i) ≤ li, i ∈ [k] | S̄n,1 = J̄

)
=

k∏
i=1

P (Bin(|Ji|, 1/2) ≤ li) ,

P
(
dFln2 n

(i) ≥ mi, hn,1(i) ≤ li, i ∈ [k] | S̄n,1 = J̄
)
= 2−

∑
mi

k∏
i=1

P (Bin(|Ji| −mi, 1/2) ≤ li)1[|Ji|≥mi].

Proof. Fix m̄, l̄ ∈ N
k and J̄ ∈ Ωk

1 as given in the statement. Once the sets

(Sn,1(i), i ∈ [k]) are fixed, the depth hn,1(i) of i ∈ [k] in Fln2 n is determined

by the variables (ξj, j ∈ Sn,1(i)). Consequently, given that S̄n,1 = J̄ the

conditional law of the degrees and depths of vertices in Fln2 n depend on dis-

joint sets of independent variables. Therefore, we can decouple the event

{dFln2 n
(i) ≥ mi, hn,1(i) ≤ li}.
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The first equality in the statement corresponds to the case when mi = 0

for all i ∈ [k]. Now, for the second equality we first note that the product

of indicator functions follows since dFln2 n
(i) ≥ di for all i ∈ [k] occurs only

if |Sn,1(i)| ≥ mi for each i ∈ [k]. Then, for each i ∈ [k] we flip |Sn,1(i)|

independent fair coins. The first mi coins must be heads and this occurs with

probability 2−mi . The number of tails in the remaining coin flips determine

the depth hn,1(i); this is distributed as Bin(|Sn,1(i)| −mi, 1/2).

Remark 7.4.3. Furthermore, if J̄ ∈ Ωk
1 is such that |Ji| ≥ mi for all i ∈ [k],

then

{dn(i) ≥ mi, i ∈ [k], S̄n,1 = J̄} = {dFln2 n
(i) ≥ mi, i ∈ [k], S̄n,1 = J̄}.

Now, with high-probability, vertices in [k] still belong to distinct trees

in Fln2 n which implies that the truncated selection sets (Sn,1(i), i ∈ [k]) are

disjoint. To see this, let us define

τk = max{2 ≤ j ≤ n : sj,v = sj,w = 1 for some distinct v, w ∈ [k]}.

Recall that the trees in Fj are ordered in increasing order of their least element.

By definition of τk, |{aj, bj} ∩ [k]| ≤ 1 for j > τk. Thus, at no point j ≥ τ are

Tj(v) and Tj(w) merged, for distinct v, w ∈ [k]. In other words, Tj(i) = i for

all i ∈ [k], j ≥ τk. Therefore,

{τ ≤ ln2 n} = {(Sn,1(i), i ∈ [k]) are pairwise disjoint}. (7.16)

Fact 7.4.4. Fix an integer k ≥ 2. For n large enough,

P
(
τk > ln2 n

)
≤ 2k2 ln−2 n.
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Proof. By definition, Tj(i) = T
(j)
i for all i ∈ [k] and j ≥ τk. Therefore,

P (τk ≤ l) =
n∏

j=l+1

P (|{aj, bj} ∩ [k]| < 2) =
n∏

j=l+1

(
1− k(k − 1)

j(j − 1)

)
≥

∞∏
j=l

(
1− k2

j2

)
.

The second equality is since the pairs ({aj, bj}, 2 ≤ j ≤ n) are chosen inde-

pendently and uniformly at random. For the next approximation we use that

1 − x > e−2x for x > 0 sufficiently small and that e−x > 1 − x for all x ∈ R.

Then, letting l = ln2 n and n large enough, we have

∞∏
j=ln2 n

(
1− k2

j2

)
> 1−

∞∑
j=ln2 n

2k2

j2
> 1− 2k2

∫ ∞

ln2 n

x−2dx = 1− 2k2 ln−2 n.

Finally, we consider the following family of sets as representing the bulk of

the probability measure induced by k truncated sets. We add the parameter

δ > 0 to cover the distinct possible values of ā ∈ [0, 1]k in Theorem 7.2.5. For

δ ∈ (0, 2) let

Bn,k,δ ={J̄ ∈ Ωk
1 : (J1, . . . , Jk) are pairwise disjoint and ||Ji| − 2 lnn| ≤ δ lnn, i ∈ [k]}.

(7.17)

Lemma 7.4.5. Fix an integer k ≥ 2 and δ ∈ (0, 2). Then

P
(
S̄n,1 ∈ Bn,k,δ

)
= 1 + o(1).

Proof. This follows directly from (7.16) and Facts 7.4.1 and 7.4.4;

P
(
S̄n,1 /∈ Bn,k,δ

)
≤ P

(
τk ≥ ln2 n

)
+ kP (||Sn,1(i)| − 2 lnn| < δ lnn) = o(1).

Let (Rn(i), i ∈ [k]) be k independent copies of Sn,1(1). We use sets Bn,k,δ to

make explicit the claim that (Sn,1(i), i ∈ [k]) are asymptotically independent;

this occurs uniformly on such Bn,k,δ.
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Proposition 7.4.6. Fix an integer k ≥ 2 and δ ∈ (0, 2). Uniformly for

J̄ ∈ Bn,k,δ,

P
(
S̄n,1 = J̄

)
= (1 + o(1))P

(
R̄n = J̄

)
.

The remainder of the section is devoted to proving Proposition 7.4.6, and

to do so we fix δ ∈ (0, 2) and J̄ ∈ Bn,k,δ. The notation we define below does

not reflect the dependency on J̄ . We use the index m with ln2 n < m ≤ n

unless otherwise specified. Recall that Sn,1(i) = {m : sm,i = 1}. Similarly,

for all m and i ∈ [k], let rm,i be the random indicator of m ∈ Rn(i) and let

jm,i = 1[m∈Ji]. Also, let σm =
∑

i∈[k] jm,i and note that from the choice of J̄

we have that σm ≤ 1 for all m.

Claim 7.4.7. For each m, let Am = {sm,i = jm,i, i ∈ [k]}. Then

P (Am |Al, m < l ≤ n) =

⎧⎪⎪⎨⎪⎪⎩
(m−k)(m−k−1)

m(m−1) if σm = 0,

2(m−k)
m(m−1) if σm = 1.

(7.18)

and furthermore,

P (Sn,1(i) = Ji, i ∈ [k]) =
∏
m

P (Am |Al, m < l ≤ n) .

Proof. The second equality follows since {Sn,1(i) = Ji; i ∈ [k]} = {∩mAm}.

We proceed to prove (7.18) by induction on n −m. For m = n, the formula

is trivial. For m < n note that the condition {Al, m < l ≤ n} implies that

σl ≤ 1 for all m < l ≤ n. That is, there has been no merges of distinct trees

Tl(v), Tl(w) for v, w ∈ [k]. In particular, Tm(i) = T
(m)
i for all i ∈ [k]. If σm = 0,

then none of these trees are selected to be merged in the next step, and this

occurs with probability (m−k)(m−k−1)
m(m−1) . If σm = 1, then there is exactly one

vertex i ∈ [k] which is selected and the other tree is selected among (m − k)

trees.

Similarly, we have the following estimates for (Rn(i), i ∈ [k]).
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Claim 7.4.8. For each m, let A′m = {rm,i = jm,i, i ∈ [k]}. Then

P (A′m) =

⎧⎪⎪⎨⎪⎪⎩
(
1− 2

m

)k
if σm = 0,

2
m

(
1− 2

m

)k−1
if σm = 1.

(7.19)

and furthermore,

P (Rn(i) = Ji, i ∈ [k]) =
∏
m

P (Am) .

Proof. It is clear that {Rn(i) = Ji; i ∈ [k]} = {∩mA
′
m}. Observe that the

events A′m are independent. Also, (7.19) follows immediately from the distri-

bution of (rm,i, i ∈ [k]) and the fact that these variables are independent.

Proposition 7.4.6 is obtained by comparing the two products in the claims

above. The following claim relates each of the terms in (7.18) and (7.19). Let

pm,0 =
(m− k)(m− k − 1)

m(m− 1)
, qm,0 =

(
1− 2

m

)k

,

pm,1 =
2(m− k)

m(m− 1)
, qm,1 =

2

m

(
1− 2

m

)k−1
.

Claim 7.4.9. There exists a constant c = c(k) > 0 such that for m large

enough, we have

qm,0 > pm,0 > qm,0

(
1− c

m2

)
,

qm,1 < pm,1 < qm,1

(
1 +

c

m

)
.

Proof. First we prove the bounds on pm,0. Note that pm,0 = 1 − 2k
m

+ k(k−1)
m(m−1)

and so

0 < qm,0 − pm,0 = − k(k − 1)

m(m− 1)
+

2k(k − 1)

m2
+O(m−3) = O(m−2). (7.20)
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The upper bound on pm,0 follows from the first inequality in (7.20). For the

lower bound, use that qm,0 → 1 as m → ∞ then

qm,0 − pm,0

qm,0

=
qm,0 − pm,0

1 + o(1)
= O(m−2).

The bounds on pm,1 =
2
m
− 2(k−1)

m(m−1) are obtained similarly. We use thatmqm,1 →

2 as m → ∞ and

0 < pm,1 − qm,1 = − 2(k − 1)

m(m− 1)
+

4(k − 1)

m2
+O(m−3) = O(m−2).

Proof of Proposition 7.4.6. Fix δ ∈ (0, 2) and k ≥ 2. The bounds we give

below do not depend on the choice of J̄ ∈ Bn,k,δ and so the bounds obtained

are uniform in Bn,k,δ. By Claims 7.4.7 and 7.4.8, it suffices to prove that

∏
m

P (Am |Al, m < l ≤ n) = (1 + o(1))
∏
m

P (A′m) .

The lower bounds in Claim 7.4.9 give, for m large enough,

P
(
Am , ln2 n < m ≤ n

)
=

n∏
m=ln2 n

P (Am |Al, m < l ≤ n)

≥
n∏

m=ln2 n

P (A′m)
(
1− c

m2

)
= P

(
A′m , ln2 n < m ≤ n

) n∏
m=ln2 n

(
1− c

m2

)
≥ P

(
A′m , ln2 n < m ≤ n

)(
1− 2c

ln2 n

)
.

The last equality follows in the same manner as the bound for P
(
τk ≤ ln2 n

)
obtained in Fact 7.4.5. Now, using the upper bounds in Claim 7.4.9 we have,
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for m large enough,

P
(
Am , ln2 n < m ≤ n

)
=

n∏
m=ln2 n

P (Am |Al, m < l ≤ n)

≤
n∏

m=ln2 n

P (A′m)
(
1 +

c

m
1[σm=1]

)
= P

(
A′m , ln2 n < m ≤ n

) ∏
m:σm=1

(
1 +

c

m

)
≤ P

(
A′m , ln2 n < m ≤ n

)(
1 +

2(2 + δ)ck

lnn

)
.

In the last inequality we use that
∑

m σm ≤ (2+δ)k lnn by the second condition

on Bn,k,δ. Thus,

∏
σm=1

(
1 +

c

m

)
≤ exp

(
(2 + δ)ck lnn

ln2 n

)
< 1 +

(2 + δ)2ck

lnn
.

In the first inequality we use that m ≥ ln2 n and 1 + x ≤ ex for all x ∈ R; for

the second inequality, we use that ex < 1 + 2x for x sufficiently small.

7.5 Negligible depth increase

In this section we fix k ≥ 2 and prove that the main contribution to

(hn(i), i ∈ [k]) is already found in Fln2 n. Recall that hn,1(i) = hFln2 n
(i) and

hn,2(i) = hn(i) − hn,1(i), for i ∈ [n]. The key observation in this section is

that the coalescence after Fln2 n can be compared with an independent ln2 n-

coalescent.

Fact 7.5.1. For any v ∈ [n], hn,2(v) is stochastically dominated by |Sln2 n(v)|.

Proof. In an n-coalescent C = (Fn, . . . , F1) we have that hFi
(v) =

∑n
j=i+1 hj,v

with hj,v ≤ sj,v. Thus,

hn,2 = hn(v)− hn,1(v) =
ln2 n∑
j=2

hj,v ≤
ln2 n∑
j=2

sj,v.
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The result then follows since for any m ≤ n, we have that |Sm(v)| L=
∑m

j=2 sj,v.

Lemma 7.5.2. For any vertex i ∈ [n], we have hn,2(i)√
lnn

→ 0, in probability as

n → ∞.

Proof. By Fact 7.5.1, it suffices to prove that for every ε > 0,

P
(
|Sln2 n(i)| > ε

√
lnn

)
= o(1). (7.21)

Write m = ln2 n and note that E [|Sm(i)|] = 2 ln lnn + O(1) and so δ =

ε
√
lnn−E[|Sm(i)|]
E[|Sm(i)|] > 0 for n large enough. Therefore, Lemma 7.4.1 yields

P
(
|Sln2 n(i)| > ε

√
lnn

)
≤ P (||Sm(i)| − E [|Sm(i)|] | > δE [|Sm(i)|]) = o(1).

In fact, for i ∈ [k], hn,2(i) is also negligible when we condition on the

vertices in [k] to have large degree. Let Ω = P([n]) be the power set of [n] and

fix m̄ ∈ N
k. Let

Am̄ = {J̄ ∈ Ωk : P
(
S̄n = J̄ , dn(i) ≥ mi, i ∈ [k]

)
> 0},

Lm̄ = {J̄ ∈ Ωk : |Ji \ [ln2 n]| ≥ mi, i ∈ [k]}.

Lemma 7.5.3. Fix m̄ ∈ N
k. For any s ∈ N and i ∈ [k], if J̄ ∈ Am̄ we have

P
(
hn,2(i) ≥ s, dn(j) ≥ mj, j ∈ [k] | S̄n = J̄

)
≤ 2−

∑
j mj ;

if J̄ ∈ Am̄ ∩ Lm̄, then

P
(
hn,2(i) ≥ s, dn(j) ≥ mj, j ∈ [k] | S̄n = J̄

)
≤ 2−

∑
j mjP (Sln2 n(i) ≥ s) .

Proof. Recall that the degree of a vertex i ∈ [k] is determined by the first

streak of selection times j ∈ Sn(i) where hj,i = 0. If J̄ ∈ Am̄, then the event
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S̄n = J̄ has the property that the set of the first mi selection times in Sn(i) are

pairwise disjoint for all i ∈ [k]; otherwise P
(
S̄n = J̄ , dn(i) ≥ mi, i ∈ [k]

)
= 0.

It then follows that

P
(
dn(j) ≥ mj, j ∈ [k] | S̄n = J̄

)
= 2−

∑
j mj ,

which yields the first inequality. For the second inequality it remains to prove

that for J̄ ∈ Am̄ ∩ Lm̄,

P
(
hn,2(i) ≥ s

∣∣ dn(j) ≥ mj, j ∈ [k], S̄n = J̄
)
≤ P (Sln2 n(i) ≥ s) .

In this case, the event {dn(j) ≥ mj, j ∈ [k]} is already determined by the

forest Fln2 n. Consequently, the remaining selection times Sn(i)∩ [ln2 n], which

determine hn,2(i), are independent of the conditioning event and so the argu-

ment in Fact 7.5.1 can be applied.

The next lemma uses a result from [3], whose proof can be derived from

this work but we omit its proof for brevity.

Proposition 7.5.4 (Proposition 4.2 in [3]). Fix c ∈ (0, 2) and k ∈ N. There

exists β = β(c, k) > 0 such that uniformly over positive integers m1, . . . ,mk <

c lnn,

P (dn(j) ≥ mj, j ∈ [k]) = 2−
∑

j mj(1 + o(n−β)).

Lemma 7.5.5. Fix c ∈ (0, 2). If mj = mj(n) < c lnn for all j ∈ [k], then for

any i ∈ [k],

P
(
hn,2(i) ≥ ε

√
lnn, dn(j) ≥ mj, j ∈ [k]

)
→ 0.
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Proof. Let m̄ satisfy the conditions of the statement. By Lemma 7.5.3, we

have for any i ∈ [k] and s ∈ N,

P (hn,2(i) ≥ s, dn(j) ≥ mj, j ∈ [k]) =
∑
J̄∈Am̄

P
(
S̄n = J̄ , hn,2(i) ≥ s, dn(j) ≥ mj, j ∈ [k]

)
≤ 2−d[P (|Sln2 n(i)| ≥ s) +P

(
S̄n /∈ Lm̄

)
].

If s = ε
√
lnn, the first probability in the last line vanishes as n → ∞ by

(7.21). Also, by (7.4) we get

P
(
S̄n /∈ Lm̄

)
≤ kP (|Sn(1)| < c lnn) = o(1).

Therefore

P
(
hn,2(i) ≥ ε

√
lnn

∣∣∣ dn(j) ≥ mj, j ∈ [k]
)
=

2−
∑

j mjo(1)

P (dn(j) ≥ mj, j ∈ [k])
;

and the proof is completed since P (dn(j) ≥ mj, j ∈ [k]) = 2−
∑

j mj(1 + o(1))

by Proposition 7.5.4.

7.6 Proof of Theorem 7.2.5, case k ≥ 2

Fix an integer k ≥ 2. We would like to expressP
(
hn(i) < xi

√
lnn+ lnn, i ∈ [k]

)
as a product of expectations of the form in (7.9) since this would yield the

independence of the limiting variables. However we have seen previously that

this is not possible largely due to the correlations between the selection sets

of vertices i ∈ [k]. Instead we consider the depths (hn,1(i), i ∈ [k]) and ex-

ploit the fact that (Sn,1(v), v ∈ [k]) are asymptotically independent. Given a

measure μ, we write Eμ for expectations with respect to μ.

Lemma 7.6.1. For each n ∈ N, let μn and νn be probability measures in a

space Ωn. Let Bn ⊂ Ωn be such that, uniformly for each ω ∈ Bn, μn(ω) =

(1− o(1))νn(ω); and μn(Bn) = 1 + o(1) = νn(Bn).
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If fn, gn ∈ Ωn → R are bounded and fn(ω) = gn(ω) for all ω ∈ Bn; then

Eμn [fn] = (1 + o(1))Eνn [gn] + o(1).

Proof. In the subspace Bn we can interchange fn and gn; and since the ap-

proximation μn(ω) = (1 + o(1))νn(ω) is uniform over ω ∈ Bn we have that

Eμn

[
fn1[Bn]

]
= (1 + o(1))Eνn

[
fn1[Bn]

]
= (1 + o(1))Eνn

[
gn1[Bn]

]
.

The result follows by noting that

Eμn

[
fn1[Ωn\Bn]

]
− (1 + o(1))Eμn

[
gn1[Ωn\Bn]

]
= o(1);

which is a straightforward consequence of fn and gn being bounded and that

the measure of Ωn \Bn vanishes for both measures as n → ∞.

Similar to Section 7.3 above, we will start with the unconditional case; that

is, the limiting distribution of (hn,1(i), i ∈ [k]).

Proposition 7.6.2. Fix an integer k ≥ 2. For any x̄ ∈ R
k,

lim
n→∞

P
(
hn,1(i) ≤ xi

√
lnn+ lnn, i ∈ [k]

)
=

k∏
i=1

Φ(xi).

Proof. Recall the definition of Gn,x in (7.8). We claim that for any x̄ ∈ R
k,

P
(
hn,1(i) ≤ xi

√
lnn+ lnn, i ∈ [k]

)
= (1 + o(1))

k∏
i=1

E [Gn,xi
(|Sn,1(i)|)] + o(1).

(7.22)

To see this, let μn denote the law of (Sn,1(i), i ∈ [k]) and νn denote the law

of (Rn(i), i ∈ [k]); recall that the latter are k independent copies of Sn,1(1).
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Let Bn,k,1/2 be as defined in (7.17) and set

fn(J̄) = P
(
hn,1(i) ≤ xi

√
lnn+ lnn, i ∈ [k] | S̄n,1 = J̄

)
,

gn(J̄) =
k∏

i=1

Gn,xi
(|Ji|).

From the first equation in Proposition 7.4.2, it follows that fn(J̄) = gn(J̄)

for all J̄ ∈ Bn,k,1/2. Therefore, the conditions on Lemma 7.6.1 for μn, νn and

Bn,k,1/2 are satisfied by Lemma 7.4.5 and Proposition 7.4.6, establishing (7.22).

Finally, it suffices to verify that, for all i ∈ [k],

lim
n→∞

E [Gn,xi
(|Sn,1(i)|)] = E

[
Φ(

√
2xi −N))

]
= Φ(xi);

where N is a standard Gaussian variable. The proof of this follows with the

same argument as that for Lemma 7.3.3 with the main difference being that,

instead of using |Sn(i)|, we use |Sn,1(i)|. By Lemma 7.4.1, the renormalization

|Sn,1(i)|−2 lnn√
2 lnn

also converges to a standard Gaussian distribution.

We now proceed to treat the case with nontrivial conditioning.

Proposition 7.6.3. Fix an integer k ≥ 2 and vectors ā ∈ [0, 1]k, b̄ ∈ Z
k and

x̄ ∈ R
k; we have

lim
n→∞

P (hn,1(i) ≤ li, i ∈ [k] | dn(i) ≥ mi, i ∈ [k]) =
k∏

i=1

Φ(xi),

where mi = mi(ai, bi, n) = �ai log n
 + bi and li = li(ai, xi, n) = xi

√
σ2
ai
lnn +

μai lnn.

Proof. Recall the definition of G̃m,l in (7.12). In what follows, we assume,

without lose of generality, that mi ≥ 0 (if mi < 0 then dn(i) ≥ mi a.s., so we
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set mi = 0). Now, we first show that

P (hn,1(i) ≤ li, dn(i) ≥ mi, i ∈ [k]) = (1 + o(1))2−
∑

i mi

k∏
i=1

E
[
G̃mi,li(|Sn,1(i)|)

]
+ o(1).

(7.23)

To see this, let μn denote the law of (Sn,1(i), i ∈ [k]) and νn denote the law

of (Rn(i), i ∈ [k]); recall that the latter are k independent copies of Sn,1(1).

Also, write

fn(J̄) = P
(
hn,1(i) ≤ li, dn(i) ≥ mi, i ∈ [k] | S̄n,1 = J̄

)
gn(J̄) = 2−

∑
i mi

k∏
i=1

G̃mi,li(|Ji|).

Let α = max{ai : i ∈ [k]} and set 0 < δ < 2 − α. Note that δ is chosen

so that, for n large enough, fn(J̄) = gn(J̄) for all J̄ ∈ Bn,k,δ; this follows from

Remark 7.4.3 and the second equation in Proposition 7.4.2. Lemma 7.4.5 and

Proposition 7.4.6 yield the remaining conditions on μn, νn and Bn,k,δ, which

applying Lemma 7.6.1 gives (7.23).

Next, let N be a variable with standard Gaussian distribution. For each

i ∈ [k],

lim
n→∞

E
[
G̃mi,li(|Sn,1(i)|)

]
= E

[
Φ

(√
1 + μaixi −N

√
μai

)]
= Φ(xi). (7.24)

The last equality follows by Lemma 7.3.2 and the proof of the first equality

follows similar to Lemma 7.3.3 when replacing the variables |Sn(i)| to |Sn,1(i)|,

which have the same limiting distribution.

Finally, it follows from (7.23) and (7.24) that

lim
n→∞

P (hn,1(i) ≤ li, dn(i) ≥ mi, i ∈ [k]) = 2−
∑

i mi

k∏
i=1

Φ(xi);
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The result now follows by Proposition 7.5.4, since P (dn(i) ≥ mi, i ∈ [k]) con-

verges to 2−
∑

i mi .

Proof of Theorem 7.2.5, case k ≥ 2. Let ā ∈ [0, 1]k and m̄ ∈ Z
k be fixed and

set mi = �ai log n
 + bi. If mi ≤ 0 for all i ∈ [k], the result follows from

Proposition 7.6.2 and Lemma 7.5.2. Otherwise, the result follows from Propo-

sition 7.6.3 and Lemma 7.5.5.

7.7 Proof of Proposition 7.1.8

The next lemma appeared in [3]; we include its short proof for complete-

ness.

Lemma 7.7.1. For any k′ ∈ N and integers (mi, i ∈ [k′]),

P (dn(i) = mi, i ∈ [k′]) =
k′∑
l=0

∑
S⊂[k′]
|S|=l

(−1)lP
(
d(i) ≥ mi + 1[i∈S], i ∈ [k′]

)
.

Furthermore, for fixed c ∈ (0, 2); if mi < c lnn for i ∈ [k] and k′ < k ∈ N,

then

P (dn(i) = mi, dn(j) ≥ mj, 1 ≤ i ≤ k′ < j ≤ k)

=
k′∑
l=0

∑
S⊂[k′]
|S|=l

(−1)lP
(
dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)

=2−k
′−

∑
i mi(1 + o(1)).

Proof. The first part is proven directly proved using the inclusion-exclusion

principle. The second equation follows by intersecting the event {dn(j) ≥

mj, k
′ < j ≤ k} along all probabilities in the first equation; then applying

Proposition 7.5.4 to each term:

k′∑
l=0

∑
S⊂[k′]
|S|=l

(−1)lP
(
dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)
= (1+o(1))2−

∑
i mi

k′∑
l=0

∑
S⊂[k′]
|S|=l

(−1)l2−l.
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Corollary 7.7.2. Let k′ < k ∈ N and fix (ai, Ai) ∈ Z × BI for 1 ≤ i ≤ k.

Write mi = �log n
+ ai and

Dm̄ = {dn(i) = mi, 1 ≤ i ≤ k′} ∪ {dn(i) ≥ mi, k
′ < i ≤ k},

HĀ =

{
hn(i)− μ lnn√

σ2 lnn
∈ Ai, i ∈ [k]

}
.

Then

P (Dm̄, HĀ) =
(
2−k

′−
∑

i di
) k∏

i=1

Φ(Ai)(1 + o(1)).

Proof. We start by intersecting the event HĀ along all probabilities in the sec-

ond expression of Lemma 7.7.1; then we use the approximation by independent

Gaussian variables given in Theorem 7.2.5. This gives

P (Dm̄, HĀ) =
k′∑
l=0

∑
S⊂[k′]
|S|=l

(−1)lP
(
HĀ, dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)

=
k′∑
l=0

∑
S⊂[k′]
|S|=l

(−1)lP
(
HĀ

∣∣ dn(i) ≥ mi + 1[i∈S], i ∈ [k]
)
P
(
dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)

=(1 + o(1)
k∏

i=1

Φ(Ai)
k′∑
l=0

∑
S⊂[k′]
|S|=l

(−1)lP
(
dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)

=(1 + o(1))
(
2−k

′−
∑

i mi

) k∏
i=1

Φ(Ai).

Proof of Proposition 7.1.8. Fix c ∈ (0, 2) and M ∈ N. Let j = j(n) and

j′ = j(n) be integer-valued functions with 0 ≤ j′(n) + log n < j(n) + log n <

c lnn; let K ′ < K ∈ N and (ak, k ∈ [K]) be non-negative integers such that∑
k∈[K] ak = M and set M ′ =

∑
k∈[K′] ak. Consider an arbitrary (K ′, K)-

canonical sequence ((jk, Bk), 1 ≤ k ≤ K) with j′ = j1 and j = jK .
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We define mi ∈ N and Ai ⊂ R as follows. For each k ∈ [K], if
∑k−1

l=1 al <

i ≤
∑k

l=1 then set mi = �log n
 + jk and let Ai = Bjk . In this case, consider

the sets

Dm̄ = {dn(i) = mi, 1 ≤ i ≤ M ′} ∪ {dn(i) ≥ mi, M
′ < i ≤ M},

HĀ =

{
hn(i)− μ lnn√

σ2 lnn
∈ Ai, i ∈ [M ]

}
.

By Corollary 7.2.4 and the exchangeability of the vertex degrees of T (n),

E

[
K′∏
k=1

(
X

(n)
jk

(Bk)
)
ak

K∏
k=K′+1

(
X

(n)
≥j (Bk)

)
ak

]

= (n)MP (Dm̄, HĀ)

= (1 + o(1))
(
2M logn−M ′−

∑
i mi

) M∏
i=1

Φ(Ai),

the last equality holding by Corollary 7.7.2 and since (n)M = nM(1+ o(n−1)).

Finally, note that

M log n−M ′ −
M∑
i=1

mi =
K′∑
k=1

(−jk − 1 + εn)ak +
K∑

k=K′+1

(−j′ + εn)ak,

and so

(
2A logn−A′−

∑
i mi

)
=

K′∏
k=1

(
2−jk−1+εn

)ak K∏
k=K′+1

(
2−j

′−εn
)ak

.

Similarly,
∏M

i=1 Φ(Ai) =
∏K

k=1 Φ(Bk)
ak ; which completes the proof.

7.8 Proof of Theorem 7.1.1

Recall that Mn is the set of vertices in tn attaining the maximum degree.

In light of Theorem 7.1.2, to prove Theorem 7.1.1 it suffices to prove the

convergence of |Mn| over suitable subsequences.
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Proposition 7.8.1. Let ε ∈ [0, 1]. If nl is an increasing sequence such that

εnl
→ ε as l → ∞, then Mnl

converges in distribution to Mε, where Mε is

defined by

P (Mε = k) =
∑
m∈Z

e−2
−m+ε 2−(m+1−ε)k

k!

for each integer k ≥ 1.

Proof. The formula for P (Mε = k) may be seen using the following heuristic.

Each of the terms in the sum represent the limit of the probability that; given

that the maximum degree in Tn equals �log n
 + m, there exist precisely k

vertices attaining such degree.

We first verify that
∑

k≥1 P (Mε = k) = 1; this follows from a telescopic

analysis of the sum.

∑
k≥1

P (Mε = k) = lim
M→∞

M∑
m=−M

∑
k≥1

e−2
−m+ε 2−(m+1−ε)k

k!

= lim
M→∞

M∑
m=−M

e−2
−m+ε

(
e2
−(m+1−ε) − 1

)
= lim

M→∞

M∑
m=−M

(
e−2

−(m+1−ε) − e−2
−m+ε

)
= lim

M→∞

(
e−2

−(M+1−ε) − e−2
M+ε

)
= 1

We now proceed to the proof of the theorem; we abuse notation by writing,

e.g. Xj = Xj(R). Consider ε ∈ [0, 1] fixed and nl an increasing sequence for

which εnl
→ ε as l → ∞. We assume ε = 0 for simplicity of the formulas

below. Fixing k,M ≥ 1 we have

P (Mnl
= k) ≤ P

(
X

(nl)
≥−M = 0

)
+

M−1∑
j=−M

P
(
X

(nl)
j = k,X

(nl)
≥j+1 = 0

)
+P

(
X

(nl)
≥M > 0

)
.

By Lemma 7.1.6 and Theorem 7.1.2 we have that for each m ∈ N,

(X
(nl)
−m , . . . X

(nl)
m−1, . . . , X

(nl)
≥m )

L−→ (X−m, . . . , Xm−1, X≥m)
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and that the limit is a vector of independent vector of Poisson variables. In

particular,

P (Xj = k,X≥j+1 = 0) = P (Xj = k)P (X≥j+1 = 0) =
e−2

−j
2−(j+1)k

k!
;

also X
(nl)
≥−M = X

(nl)
≥M +

∑M−1
j=−M X

(nl)
j , and X

(nl)
≥−M

L−→ X≥−M
L
= Poi(2M). Thus,

in the limit

lim sup
nl→∞

P (Mnl
= k) ≤ P (X≥−M = 0) +

M−1∑
j=−M

P (Xj = k,X≥j+1 = 0) +P (X≥M > 0) .

= e−2
M

+
1

k!

M∑
j=−M

(
e−2

−j

2−(j+1)k
)
+
(
1− e−2

−M
)
;

This holds for arbitrary M ∈ N, hence

lim sup
nl→∞

P (Mnl
= k) ≤ lim inf

M

{
e−2

−(−M)

+
1

k!

M−1∑
j=−M

(
e−2

−j

2−(j+1)k
)
+
(
1− e−2

−M
)}

=
1

k!

∑
j∈Z

e−2
−j

2−(j+1)k.

Similarly,

lim inf
nl→∞

P (Mnl
= k) ≥ lim sup

M

{
1

k!

M−1∑
j=−M

(
e−2

−j

2−(j+1)k
)}

=
1

k!

∑
j∈Z

e−2
−j

2−(j+1)k.
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CHAPTER 8
Extremal values in recursive trees via a new tree growth process

We give convergence rates on the number of vertices with degree at least

c lnn, c ∈ (1, 2), in random recursive trees on n vertices. This allows us to

extend the range for which the distribution of the number of vertices of a given

degree is well understood.

Conceptually, the key innovation of our work lies in a new tree growth

process ((Tn,σn), n ≥ 1) where Tn is a rooted labeled tree on n vertices and σn

is a permutation of the vertex labels. The shape of Tn has the same law as that

of a random recursive tree. Interesting on its own right, this process obtains

Tn from Tn−1 by a procedure we call Robin-Hood pruning, which attaches a

vertex labeled n to Tn−1 and rewires some of the edges in Tn−1 towards the

newly added vertex. Additionally, ((Tn,σn), n ≥ 1) can be understood as a

new coupling of all finite Kingman’s coalescents.

8.1 Introduction

In a paper of 1970 [67], Na and Rapoport presented the problem of mod-

eling how the structure of networks (as sociograms, communication and ac-

quaintance networks) emerge through time. They considered two cases. First,

a class of ‘growing’ trees whose construction corresponds to the standard con-

struction of random recursive trees (RRTs). These are constructed by sequen-

tially adding new vertices, which are attached to a uniformly random vertex

in the previous tree. Second, a class of ‘static’ trees formed via a coalescent

process beginning with n isolated nodes. They described the construction of

a ‘static’ tree with n vertices as follows.
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“Initially, single elements move about at random. Each collision

forms a couple. A collision of a couple with a single element forms

a triple, a collision of an s-tuple with a t-tuple forms an (s + t)-

tuple, and so on. At each collision a link is established between an

element of one X-tuple and an element of another, the links being

rigid so that the elements of the same k-tuple cannot collide. The

process goes on until the entire set of n elements has been joined

into an n-tuple.”

The term ‘static’ was motivated by the fact that this construction starts

with the n vertices the tree is aimed to have at the end of the process. This

is a description, in fact, of a discrete multiplicative coalescent which is linked

to Kruskal’s algorithm for the minimum weighted spanning tree problem [1]

1 . A growing process of such coalescent was not foreseen; however, it is now

known that, for some coalescent procedures (e.g. additive and Kingman’s),

the resulting tree can also be constructed by a growth process [1, 58, 73].

In particular, Kingman’s coalescents correspond to RRTs; see e.g. [1], or

Propositions 8.1.1 and 8.5.3 below.

The key conceptual contribution of this work is what we call the Robin-

Hood pruning procedure. This is a random construction which, given a King-

man’s coalescent on n vertices, produces a Kingman’s coalescent on n + 1

vertices. The benefits of such construction are twofolded.

First, Kingman’s coalescent had already been exploited by Addario-Berry

and the author to describe near-maximum degrees in RRTs, [3, 36]. With the

new procedure, we are able to extract finer information about extreme degree

1 Unfortunately, it was incorrectly presumed in [67] to build uniformly ran-
dom unrooted labeled trees.
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values in RRTs. Second, growth procedures naturally couple families of trees

as the size varies. However, typically there is no simple coupling of finite n-

coalescent processes as n varies. The introduction of the Robin-Hood pruning

provides, to the best of our knowledge, a novel tree growth procedure which

is interesting on its own; thereby, opening a wide range of further avenues of

research.

The Robin-Hood pruning is best described through an auxiliary tree struc-

ture that relates to both Kingman’s coalescent and RRTs. We proceed to its

description, then we present the results obtained in this work.

8.1.1 Notation

We denote natural logarithms by ln(·) and logarithms with base 2 by log(·).

For n ∈ N, we write [n] = {1, . . . , n} and let Sn be the set of permutations on

[n].

Given a rooted labeled tree t = (V (t), E(t)), write |t| = |V (t)| and call

|t| the size of t. We write Tn for the set of rooted trees t with vertex set

V (t) = [n]. By convention, we direct all edges toward the root r(t) and write

e = uv for an edge with tail u and head v. For u ∈ V (t) \ {r(t)} we write

pt(u) for the parent of u, that is, the unique vertex v with uv in E(t). Finally,

write dt(v) for the number of edges directed toward v in t, and call dt(v) the

degree of v. Note that dt(v) = #{u : pt(u) = v}.

We say t ∈ Tn is increasing if its vertex labels increase along root-to-leaf

paths; in other words, if t ∈ Tn and pt(v) < v for all v ∈ [n] \ {r(t)} (in

particular, r(t) = 1). We write In ⊂ Tn for the set of increasing trees of size n.

It is easy to see that |In| = (n− 1)! for all n. Next, a tree growth process is a

sequence (tn, n ≥ 1) of trees with tn ∈ Tn for each n. The process is increasing

if tn is a subtree of tn+1 for all n; this implies that tn ∈ In for all n.
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Tree growth processes select a tree from Tn for each n ≥ 1 usually with

the characteristic that new vertices attach to some vertex in the previous tree,

giving rise to increasing trees.

8.1.2 Recursively decorated trees

We begin with the standard construction of a RRT of size n ≥ 1, which

we denote by Rn. Start with R1 as a single node with label 1. For each

1 < j ≤ n, Rj is obtained from Rj−1 by adding a new vertex j and connecting

it to vj ∈ [j − 1]; the choice of vj is uniformly random and independent for

each 1 < j ≤ n. The process (Rn, n ≥ 1) is a random increasing tree growth

process. Moreover, it is readily seen that Rn is a random increasing tree

uniformly chosen from In.

Recursively decorated trees extend the concept of increasing trees. If t ∈ Tn

and σ ∈ Sn then σ(t) is the tree t′ ∈ Tn with edges {σ(u)σ(v) : uv ∈ E(t)}.

We say σ is an addition history for t if σ(t) is increasing. If σ is an addition

history for t then we say that the pair (t, σ) is a recursively decorated tree

or decorated tree, and that vertex v has addition time σ(v), for all v ∈ V (t).

Write

RDn = {(t, σ) : t ∈ Tn, σ is an addition history of t},

for the set of recursively decorated trees of size n. See Figure 8–1 for an

example.

For each n ≥ 1 let RTn = (Tn,σn) be a uniformly chosen decorated tree in

RDn. We remark now that σn encodes the evolution of Kingman’s coalescent

on n vertices; the details on such correspondance are given in Section 8.5. The

next, straightforward proposition shows that the shape of Tn has the same law

as that of Rn.
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Figure 8–1: A decorated tree (t, σ) ∈ RD6 on the left; the permutation σ is
depicted with bold numbers next to the vertices in t (so for example σ(1) = 5
and σ(6) = 2). On the right, the increasing tree σ(t).

Proposition 8.1.1. For each n ∈ N, |RDn| = n!(n − 1)! and if RTn =

(Tn,σn) ∈ RDn is chosen uniformly at random then σn(Tn) is a random

recursive tree of size n and σn is a uniformly chosen permutation in Sn.

Proof. By definition, if (t, σ) ∈ RDn, then σ(t) ∈ In. Let ϕ : RDn → In ×Sn

be defined such that ϕ(t, σ) = (σ(t), σ). For an increasing tree t and σ ∈ Sn, let

t′ = σ−1(t) then ϕ(t′, σ) = (t, σ), it is also straightforward that ϕ is injective.

Thus |RDn| = |In| · |Sn| = n!(n − 1)!. The result follows since bijections

preserve the uniform measure on finite probability spaces.

Corollary 8.1.2. For all n ∈ N, the following distributional identity holds.

(dRTn(σ
−1
n (v)); v ∈ [n])

L
= (dRn(v); v ∈ [n]).

8.1.3 Statement of results

The Robin-Hood pruning RHn : RDn−1 → RDn is a random procedure

that allows us to construct RTn from RTn−1 while preserving most of the edges

in RTn−1.

Broadly speaking, RHn(t, σ) is obtained from (t, σ) by pruning some sub-

trees of t and placing them as subtrees of a new vertex labeled n; additionally,

vertex n attaches to a random vertex or becomes the root of the new tree.
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The addition history in RHn(t, σ) is adjusted from σ such that vertex n has a

uniformly random addition time. Heuristically, the random procedure follows

a ‘steal from the old to give to the new’ scheme; that is, once the addition time

of n has been determined, vertices which had been added earlier (according to

σ) have larger probability of being reattached to vertex n.

We will write RH = RHn when the size of the input is clear from the

context. The exact definition of RHn will be given in the next section along

with the proof of the following result.

Theorem 8.1.3. For each n ≥ 1 let RTn = (Tn,σn) be a uniformly random el-

ement in RDn. The Robin-Hood pruning provides a coupling for ((Tn,σn), n ≥

1) by setting (Tn,σn) = RH(Tn−1,σn−1) for each n ≥ 2.

As we will establish in Proposition 8.5.3, RTn is a representation of King-

man’s coalescent on [n]. Therefore, we have the following corollary.

Corollary 8.1.4. The construction of ((Tn,σn), n ≥ 1) in Theorem 8.1.3

gives an explicit coupling of all finite Kingman’s coalescents.

A remarkable property of the coupling in Theorem 8.1.3 is that, it yields a

tree growth process where all the trees are distributed as RRTs, however the

process itself is not increasing. To the best of our knowledge, this is a novel

evolution of random networks. Potential applications and open problems are

discussed in Section 8.6.

Turning to extreme values in the degree sequence of RRTs, consider the

following variables. For integers 0 < m ≤ n, let

X(n)
m = #{v ∈ [n] : dRn(v) = m};

Janson established the joint limiting distribution of (X
(n)
m , m ≥ 1) in [50]; for

previous results on the degree distribution of RRTs see the survey [77]. In

terms of capturing the degree sequence around the maximum degree range,
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Addario-Berry and the author provide all the possible limiting distributions

of (X
(n)
�logn�+k, k ∈ Z) in [3].

In this work we are concerned with high-degree vertices in a broader sense;

that is, we consider the variables

Z(n)
m = #{v ∈ [n] : dRn(v) ≥ m},

with m ∼ c lnn and provide results on convergence rates toward their limiting

distributions. Throughout the paper, we write λn,m = E
[
Z

(n)
m

]
and record

the following estimate.

Lemma 8.1.5 (Lemma 4.3 in [3]). First, λn,m ≤ 2−m+logn, and for each

c ∈ (0, 2), there is γ(c) such that, uniformly over m < c lnn,

λn,m = nP (dRTn(1) ≥ m) = 2−m+logn(1 + o(n−γ)).

Our first result on high-degree vertices is obtained by applying the Chen-

Stein method.

Theorem 8.1.6. Fix 1 < c < c′ < 2. There are constants α = α(c′) ∈ (0, 1)

and β = β(c) > 0 such that uniformly for m = m(n) satisfying c lnn < m <

c′ lnn,

dTV

(
Z(n)

m ,Poi(λn,m)
)
≤ O(2−m+(1−α) logn) +O(n−β).

The exponent −m+ (1− α) log n in Theorem 8.1.6 is negative when (1−

α) log e < c. A detailed but simple track of the conditions on α, see Proposi-

tion 8.3.2, shows that there is a non-empty interval Ic′ = ((1−α) log e, c′) such

that if c ∈ Ic′ ∩ (1, 2), then the bounds in Theorem 8.1.6 are, in fact, tending

to zero. Moreover, by Lemma 8.1.5, if c < log e, then λn,c lnn → ∞ as n → ∞.

This fact, together with Theorem 8.1.6 yields the next corollary.
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Corollary 8.1.7. For each c′ ∈ (1, log e) there exists c ∈ (1, c′) such that if

c lnn < m < c′ lnn, then

Z
(n)
m − λn,m√

λn,m

L−→ N(0, 1).

Corollary 8.1.7 extends the range of m = m(n) for which a central limit

theorem exists for Z
(n)
m ; previous results were given for m constant [50] and

for m = log n− d with d = d(n) slowly tending to infinity [3].

We opted to state Theorem 8.1.6 and Corollary 8.1.7 separately to clarify

where the bounds on m are limiting the convergence rates. In Section 8.3,

we explain how previous results in [3] determine the exponent α, while the

exponent β depends on an auxiliary coupling based on the Robin-Hood prun-

ing. The details of such coupling are given in Section 8.4; for the moment we

remark that, by Corollary 8.1.2, for all m ≤ n,

Z(n)
m

L
= #{v ∈ [n] : dRTn(v) ≥ m}; (8.1)

when there is no ambiguity, we write RTn to refer only to its tree coordinate.

The pruning procedure provides a key description of (dRTn(i), i ∈ [n]) in terms

of both (dRTn−1(i), i ∈ [n−1]) and dRTn(n), which is independent of the former

vector. This allows us to analyze the conditional law of (dRTn(i), i ∈ [n− 1])

given that dRTn(n) ≥ m.

Our last result concerns the maximum degree Δn of Rn, which by Corol-

lary 8.1.2 satisfies Δn
L
= max{dRTn(v) : v ∈ [n]}.

Theorem 8.1.8. There exists C > 0 such that uniformly over 0 < i = i(n) <

log e ln lnn− C,

P (Δn < �log n
 − i) = exp{−2i+εn}(1 + o(1)),

where εn = log n− �log n
.
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The first bounds of this type, for P (Δn < �log n
+ j) with j ∈ Z, were

given in [39]. An extension to j < 2 lnn− log n was obtained in [3]. Goh and

Schmutz provide a heuristic of how the Gumbel, or double-exponential, distri-

bution arises for Δn [39]. They do so by looking at the limiting distribution

of dRn(i) with i → ∞ slowly. Below we present a distinct heuristic in terms

of the degree distribution of RTn.

The maximum of i.i.d. random variables is, under rather general condi-

tions, distributed in the limit as the Gumbel distribution [42]. Lattice distri-

butions are excluded from this regime and, instead, Anderson gives analogous

conditions under which the Gumbel distribution serves as an approximation

for their maximum [4]. In the case of (degRTn
(v), v ∈ [n]), their limiting dis-

tributions are geometric, a distribution which satisfies the conditions given in

[4]. Although, the degrees of a tree are not independent, their correlations are

weak and the Gumbel-type approximation still arises for the distribution of

Δn.

Outline

The remainder of the paper is organized as follows. The proof of Theo-

rem 8.1.3 is given in the next section, and its connection to Kignman’s coales-

cent in Section 8.5. In Section 8.3, we explain how we apply the Chen-Stein

method to Z
(n)
m by constructing an auxiliary coupling; the proofs of Theorems

8.1.6 and 8.1.8 and Corollary 8.1.7 are provided in Section 8.3 under the as-

sumption of the existence of such coupling. The auxiliary coupling is based

on the Robin-Hood pruning and is defined in Section 8.4. To close this work,

we briefly discuss further avenues of research in Section 8.6.

8.2 The Robin-Hood pruning

For each n ≥ 2, the Robin-Hood pruning RHn is a random procedure

that takes a decorated tree (t, σ) ∈ RDn−1 and outputs a decorated tree
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RHn(t, σ) ∈ RDn. We first define a deterministic pruning, which is illustrated

in Figure 8–2.

8.2.1 A deterministic process

For d ≥ 1, we write x = (x1, . . . , xd) ∈ {0, 1}d. Let n > 1 and set

Cn = {(k, l, x) : 1 ≤ l < k ≤ n, x ∈ {0, 1}n−1}∪{(1, 0, x) : x ∈ {0, 1}n−1, x1 = 1};

additionally, for (k, l, x) ∈ Cn and a permutation σ ∈ Sn−1, let

Vn(k, l, x, σ) = Vn(k, x, σ) = {v ∈ [n− 1] : xσ(v) = 1, σ(v) ≥ k}.

Note that the definition of Cn is such that σ−1(1) ∈ Vn if and only if k = 1. The

set Vn corresponds to the vertices to be pruned and rewired in the following

deterministic pruning.

Definition 8.2.1. For n ≥ 2, (t, σ) ∈ RDn−1 and (k, l, x) ∈ Cn define (t′, σ′) ∈

Tn × Sn as follows.

First, t′ is obtained from t as follows. Let V = Vn(k, x, σ). For each

v ∈ V \ {r(t)}, replace the edge vpt(v) with an edge connecting v to a new

vertex labeled n. Now, if k = 1 then attach r(t) to n; otherwise, attach vertex

n to σ−1(l). In other words, the edges of t′ are given by

E(t′) =

⎧⎪⎪⎨⎪⎪⎩
(E(t) ∪ {vn; v ∈ V}) \ {vpt(v); v ∈ V} if k = 1,

{nσ−1(l)} ∪ (E(t) ∪ {vn; v ∈ V}) \ {vpt(v); v ∈ V} if k > 1.

Second, let σ′ : [n] → [n] be defined by σ′(n) = k and for v < n,

σ′(v) = σ(v) + 1[σ(v)≥k].

We write rhn((t, σ), (k, l, x)) = (t′, σ′).
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Lemma 8.2.2. Fix n ≥ 2. For any (t, σ) ∈ RDn−1 and (k, l, x) ∈ Cn,

rhn((t, σ), (k, l, x)) ∈ RDn.

Proof. Write rhn((t, σ), (k, l, x)) = (t′σ′). When k = 1, it is clear that t′

is a tree. When k > 1, let w = σ−1(l) be the parent of n in t′ and let

(w = v1, . . . , vj = r(t)) be the path from w to the root of t. Since σ is an

addition history of t,

l = σ(v1) > σ(v2) > · · · > σ(vj) = 1;

moreover, l < k. It follows that vi /∈ V(k, l, x, σ) for i ∈ [j] and consequently,

no edges in the path from n to the root in t′ closes a cycle by connecting to n.

Now, we show that σ′ is an addition history for t′. It is clear that σ′ is

a permutation of [n], so it suffices to prove that σ′(v) > σ′(pt′(v)), for all

v ∈ V (t) \ {r(t′)}. First, for vertices v with pt′(v) = n we have σ(v) ≥ k and

consequently

σ′(v) = σ(v) + 1 > k = σ′(n).

Second, consider v, w < n with pt′(v) = w. It follows that vw ∈ E(t) and thus

σ(v) > σ(w). Consequently, 1[σ(v)≥k] ≥ 1[σ(w)≥k] and so σ′(v) > σ′(w). The

last case occurs when k > 1 and pt′(n) = w = σ−1(l). We then have

σ′(n) = k > l = σ(w) = σ′(w).

We note here a property of this pruning procedure that will be useful in

the proof of Proposition 8.1.6; or more precisely, Proposition 8.4.3.

Fact 8.2.3. Fix n ≥ 2. For any (t, σ) ∈ RDn−1 and (k, l, x) ∈ Cn, write

(t′, σ′) = rhn((t, σ), (k, l, x)) ∈ RDn.
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Then dt′(n) =
∑n−1

i=k xi, and for v ∈ [n− 1],

dt′(v) = dt(v) + 1[l=σ(v)] −
n−1∑
i=k

xi1[v=pt(σ−1(i))].

8.2.2 The random process

The Robin-Hood pruning is defined, for each (t, σ) ∈ RDn, by

RHn(t, σ) = rhn((t, σ), (K,L,X));

where the element (K,L,X) ∈ Cn is an RHn set of random variables defined

as follows.

Definition 8.2.4. Fix n ≥ 1. Let K
L
= Unif(1, 2, . . . , n); if K = 1 let

L = 0, and if K > 1 let L = Unif(1, 2, . . . K − 1). Independently, let

Xi = Bernoulli(1/i) be independent variables for i ∈ [n − 1] and write X =

(X1, . . . , Xn−1). An RHn-set is a triple of random variables with the same law

as (K,L,X).

The law of RHn(t, σ) depends on the initial input (t, σ); however, the dis-

tribution of the RHn-set of variables is defined so that RHn(RTn−1) preserves

the uniform measure in decorated trees. To verify this claim, we require the

following characterization of RTn.

Lemma 8.2.5. Let n ≥ 1 be an integer. A random decorated tree (T,σ) ∈

RDn is uniformly random if and only if the following properties are satisfied.

i) The permutation σ is uniformly random on Sn.

ii) The vertices

(pT (v), v ∈ V (T ) \ {r(T )}) = (pσ(T )(σ
−1(v)), v ∈ V (T ) \ {r(T )})

are, conditionally given σ, independent.
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(a) A tree (t, σ) in RD9. The permutation σ is depicted with bold numbers.
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(b) In this case, k = 6, l = 5 and x1 = x2 = x7 = x8 = 1; all other xi = 0. Vertices
in gray satisfy Xσ(v) = 1 and underlined are addition times σ(i) ≥ k.
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(d) The resulting tree rh10((t, σ), (k, l, x)) ∈ RD10.

Figure 8–2: An example of the Robin-Hood pruning for n = 10.
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iii) For all vertices v, w ∈ [n] and indices i, j ∈ [n],

P (pT (v) = w, σ(v) = j, σ(w) = i) =
1

n(n− 1)(j − 1)
1[j>i]. (8.2)

Proof. Let (T,σ) be uniformly random on RDn. Then by Proposition 8.1.1,

σ is a uniformly random permutation and σ(T ) has the law of Rn. Therefore,

as multisets,

{pT (v), v ∈ V (T ) \ {r(T )}} L
= {pσ(T )(v), 1 < v ≤ n};

and parents in RRTs are chosen independently for each of the vertices. The

third condition follows immediately: For all v, w, i, j ∈ [n], we obtain

P (pT (v) = w, σ(v) = j, σ(w) = i) =
1

n(n− 1)
P (pT (v) = w |σ(v) = j, σ(w) = i)

=
1

n(n− 1)
P
(
pσ(T )(j) = i

)
=

1

n(n− 1)(j − 1)
1[j>i].

Now consider a random decorated tree (T,σ) ∈ RDn satisfying conditions

i)-iii). Fix a decorated tree (t, π) ∈ RDn, and for v ∈ V (t) \ {r(t)}, let

wv = pt(v), then

P (pT (v) = wv|σ = π) =P (pT (v) = wv |σ(v) = π(v), σ(wv) = π(wv))

=
1

π(wv)− 1
. (8.3)

The first equality holds by condition ii) and the second by both i) and iii)

since π(v) > π(wv).
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Now, by definition, π(t) ∈ In. The increasing tree t′ is determined by the

set of parents {pt′(v), 1 < v ≤ n}. Therefore,

P (σ(T ) = π(t) |σ = π) = P
(
pσ(T )(v) = pπ(t)(v), 1 < v ≤ n |σ = π

)
= P (pT (v) = pt(v), v ∈ V (t) \ {r(t)} |σ = π)

=
∏

v∈V (t)\r(T )

P (pT (v) = pt(v) |σ = π)

= [(n− 1)!]−1.

Condition ii) gives the third equality; the last equality holds by (8.3) since

{π(wv), v ∈ V (t) \ {r(t)}} = {2, . . . , n}.

Finally condition i) and the computations above show that, regardless of the

choice of (t, π) ∈ RDn, we have

P ((T,σ) = (t, π)) = P (σ(T ) = π(t) |σ = π)P (σ = π)

=
1

n!
P (σ(T ) = π(t) |σ = π) = [n!(n− 1)!]−1.

We are now ready to prove Theorem 8.1.3.

Proof of Theorem 8.1.3. Let (T,σ) ∈ RDn−1 be a uniformly random deco-

rated tree. Let (K,L,X) be an RHn set and let (T ′,π) = rh((T,σ), (K,L,X)).

It suffices to show that (T ′,π) satisfies the properties in Lemma 8.2.5.

First, condition i) follows from the construction of π and the distributions

of both K and σ. Second, once conditioning on π, which is equivalent to
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conditioning on both σ and K, we get

{pT ′(v), v ∈ V (T ′) \ {r(T ′)}} ={pT ′(v), 1 < π(v) < π(n)}

∪ {pT ′(v), π(n) ≤ π(v) ≤ n}

={pT (v), v ∈ 1 < σ(v) < K}

∪ {pT ′(v), (2 ∨K) ≤ π(v) ≤ n},

where the last two sets are conditionally independent given π. Now, since

(T,σ) is uniformly random in RDn−1, the parents {pT (v), v ∈ 1 < σ(v) < K}

are independent, conditionally given σ (and thus, also conditionally given π).

On the other hand, for v with π(v) ≥ K,

pT ′(v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n if Xπ(v)−1 = 1,

pT (v) if Xπ(v) = 0,

π−1(L) if π(v) = K.

Note that pT ′(v) is determined independently from other vertices, thus {pT ′(v), K ≤

π(v) ≤ n} are also independent, conditionally given π. This implies that con-

dition ii) is satisfied.

Third, fix 1 ≤ i < j ≤ n and fix distinct v, w ∈ [n]. We consider three

cases; namely v = n, w = n, and v, w ∈ [n− 1]. Let

A1 = {pT ′(n) = w, π(n) = j, π(w) = i},

A2 = {pT ′(v) = n, π(v) = j, π(n) = i},

A3 = {pT ′(v) = w, π(v) = j, π(w) = i}.

It remains to show that the probabilities of A1, A2, A3 are given by (8.2) for

all i, j ∈ [n]. The event pT ′(n) = w implies that σ(w) = L < K. Therefore,
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A1 occurs precisely when K = j, L = i, and σ(w) = i. Then,

P (A1) = P (K = j, L = i)P (σ(w) = i) =
1

n(j − 1)(n− 1)
.

Next, pT ′(v) = n implies that σ(v) ≥ K and thus π(v) = σ(v) + 1. It then

follows that A2 occurs when K = i, σ(v) = j − 1, and Xj−1 = 1. Therefore,

P (A2) = P (K = i, Xj−1 = 1)P (σ(v) = j − 1) =
1

n(j − 1)(n− 1)
.

For the last case, since u, v < n, it follows that K /∈ {i, j}. For each k ∈

[n] \ {i, j} let

A3,k = {pT ′(v) = w, π(v) = j, π(w) = i, K = k}.

In computing the probabilities P (A3,k) we use that (T,σ) is uniformly random

in RDn−1. If K > j, then both σ(v) = π(v) and σ(w) = π(w); in addition,

pT ′(v) = w only if pT (v) = w. Therefore, if k > j, then

P (A3,k) = P (K = k)P (pT (v) = w, σ(v) = j, σ(w) = i)

=
1

n(n− 1)(n− 2)(j − 1)
.

Similarly, if K < j, then σ(v) = π(v) − 1, σ(w) = π(w) − 1[K<i], and

additionally Xj−1 = 0. It then follows that, if k < j,

P (A3,k) = P (K = k, Xj−1 = 0)P
(
pT (v) = w, σ(v) = j − 1, σ(w) = i− 1[K<i]

)
=

1

n
· j − 2

j − 1
· 1

(n− 1)(n− 2)(j − 2)
.

We have shown that P (A3,k) is uniform for all k ∈ [n] \ {i, j}, and we get

P (A3) =
∑
k �=i,j

P (A3,k) =
1

n(n− 1)(j − 1)
.

Altogether, we have shown that condition iii) is satisfied and so the proof is

complete.
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8.3 Large degrees in RRTs

The aim in this section is to bound the convergence rate of the law of 2

Z(n)
m

L
= #{v ∈ [n] : dRTn(v) ≥ m}

to a suitable Poisson random variable. Our tool in this section is the Chen-

Stein method as stated in Proposition 8.3.1 below. Given probability measures

μ and ν, a coupling of μ and ν is a pair (X, Y ) of random variables (either

real or vector-valued) with X ∼ μ and Y ∼ ν.

Let I = (Ia, a ∈ A) be a collection of {0, 1}-valued random variables. Let

μ be the law of W =
∑

a∈A Ia and for a ∈ A let νa be the conditional law of

W given that Ia = 1, so

νa(B) = P (W ∈ B | Ia = 1) .

Proposition 8.3.1 ([40, Theorem 3.7]). Let I = (Ia, a ∈ A) be a collection

of {0, 1}-valued random variables. For each a ∈ A fix a coupling (W,Wa) of μ

and νa. Then with λ = E [W ], we have

dTV(W,Poi(λ)) ≤ min{λ−1, 1}
∑
a∈A

E [Ia]E [|W − (Wa − 1)|] .

If the variables I = (Ia, a ∈ A) are exchangeable, then for any fixed a ∈ A

and coupling (W,Wa) of μ and νa. Then

dTV(W,Poi(λ)) ≤ E [|W − (Wa − 1)|] . (8.4)

2 By Fact 8.1.2, considering either Rn or RTn in the definition of Z
(n)
m is

equivalent.
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Now, for the remainder of the section, fix m and let I = (Iv, v ∈ [n])

have Iv = 1[dRTn (v)≥m]; in that case, W =
∑

i∈[n] Iv = Z
(n)
m . The next proposi-

tion, which states that the random variables (I1, . . . , In) are ‘nearly’ negatively

correlated, is an important input to the proof of Theorem 8.1.6.

Proposition 8.3.2. For any c ∈ (0, 2) there exists α = α(c) > 0 such that

uniformly for m = m(n) < c lnn and distinct v, w ∈ [n],

E [IvIw]− E [Iv]E [Iw] ≤ O(2−2m−α logn).

Moreover, α < 1
4
(1− c+

√
1 + 2c− c2) < 1.

The proof of Proposition 8.3.2 appears in Appendix A; we make precise the

upper bound for α in Proposition 8.3.2 as this is crucial to Corollary 8.1.7. We

note that a weaker version of Proposition 8.3.2, without explicit error bounds,

was proved in [3, Proposition 4.2].

Additionally, we note in passing that the degree sequence of RRTs (dRn(v), v ∈

[n]) is negative orthant dependent; for a definition see [34]. This fact can be

proven by induction from the two-vertex case (dRn(v), dRn(w)), which, in turn,

follows essentially from the negative orthant dependency of multinomial dis-

tributions, see e.g. [31, Lemma 1]. As a consequence, for all v, w ∈ [n],

P (dRn(v) ≥ m, dRn(w) ≥ m)−P (dRn(v) ≥ m)P (dRn(w) ≥ m) ≤ 0. (8.5)

In a slight abuse of notation let us denote by μ the law of (I1, . . . , In) and

denote by ν = νn the conditional law of (I1, . . . , In) given that In = 1. Now,

let (I, J) = ((Iv, v ∈ [n]), (Jv, v ∈ [n]) be a coupling of μ and ν = νn and

write Wn =
∑

v∈[n] Jv, we get

E [|W − (Wn − 1)|] ≤ E [In] +
∑

v∈[n−1]

E [|Iv − Jv|] . (8.6)
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To apply Proposition 8.3.1 with as tight as possible bounds, one has to ana-

lyze couplings of μ and ν. For example, suppose one can provide an explicit

coupling such that Jv − Iv ≤ 0 almost surely, for all v ∈ [n− 1]. It would then

follow that

E [InIv]− E [In]E [Iv] = −E [In]E [|Jv − Iv|] ≤ 0;

which would be the corresponding inequality to (8.5). Although we do not

claim the bounds in Proposition 8.3.2 are optimal, it seems that the property

in (8.5) is lost when randomizing the vertex labels of Rn to obtain RTn.

Nevertheless, Proposition 8.3.2 suggests we can provide couplings of μ and

ν for which Iv − Jv ≥ 0 for all v ∈ [n − 1] with high probability. The next

proposition is the key ingredient in using Proposition 8.3.1 to prove Theo-

rem 8.1.6.

Proposition 8.3.3. Let c ∈ (1, 2). There is β = β(c) > 0 such that for any

m = m(n) > c lnn there exists a coupling (I, J) = ((I1, . . . , In), (J1, . . . , Jn))

of μ and ν, in which for all v ∈ [n− 1],

P (Iv < Jv) ≤ O(n−1−β).

The coupling of Proposition 8.3.3 is based on the Robin-Hood pruning and

its proof is the content of Section 8.4. Next, we provide the proofs of Theorem

8.1.6 (assuming Proposition 8.3.3), followed by the proofs of Corollary 8.1.7

and Theorem 8.1.8.

Proof of Theorem 8.1.6 assuming Proposition 8.3.3

Fix 1 < c < c′ < 2 and let c lnn < m = m(n) < c′ lnn. We apply the

Chen-Stein method to Z
(n)
m

L
=

∑
v∈[n] Iv. First, we use the coupling (I, J) =

((I1, . . . , In), (J1, . . . , Jn)) of μ and ν given in Proposition 8.3.3. By (8.4) and
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(8.6), we have

dTV

(
Z(n)

m ,Poi(E [λn,m])
)
≤ E [In] +

∑
v∈[n−1]

E [|Iv − Jv|] .

It thus remains to show that the terms in the bound above areO(2−m+(1−α) logn)+

O(n−β), where α = α(c′) ∈ (0, 1) and β = β(c) > 0 are defined as in Proposi-

tions 8.3.2 and 8.3.3. First, by Lemma 8.1.5 and the fact that α < 1 gives

E [In] = 2−m(1 + o(1)) = O(2−m+(1−α) logn).

Second, for any v ∈ [n− 1],

E [In]E [|Jv − Iv|] =E [In]E [Iv − Jv] + 2E [In]E
[
(Jv − Iv)1[Iv<Jv ]

]
=(E [In]E [Iv]− E [InIv]) + 2E [In]P (Iv < Jv) .

The terms in the last line are bounded by Proposition 8.3.2 and Proposi-

tion 8.3.3, respectively; giving

∑
v �=n

E [|Iv − Jv|] =
n− 1

E [In]
((E [In]E [Iv]− E [InIv]) + 2E [In]P (Iv < Jv))

≤ n

E [In]
(O(2−2m−α logn) + E [In]O(n−1−β))

= O(2−m+(1−α) logn) +O(n−β).

In the last line we also use that Lemma 8.1.5 implies that E [In]
−1 = O(2m).

�

Proof of Corollary 8.1.7

Fix c′ ∈ (1, log e) and let α = α(c′) be as in Theorem 8.1.6. Simple

computations using the upper bound in Proposition 8.3.2 for α show that

(1− α) log e < c′. Thus, we can chose c ∈ ((1− α) log e, c′).
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Let m = m(n) be such that c lnn < m < c′ lnn. By the choice of c and c′,

we have that, as n → ∞, (1− α) log n−m < 0; while by Lemma 8.1.5,

E
[
Z(n)

m

]
= 2−m+logn(1 + o(1)) → ∞.

The result then follows by Theorem 8.1.6 and the central limit theorem of

Poisson variables, see e.g. [35, Exercise 3.4.4].
�

Proof of Theorem 8.1.8

Recall that εn = log n−�log n
. Let i = i(n) satisfy 0 < i < log e ln lnn−C,

where C > 0 is a constant to be determined below, and note that 2i+εn ≤

2i+1 < 2−C+1 lnn. Let m = �log n
 − i and Z
L
= Poi(λm,n).

We have that {Δn < �log n
 − i} if and only if {Z(n)
m = 0}. Therefore,

P (Δn < �log n
 − i) = P
(
Z(n)

m = 0
)
≤ P (Z = 0) + dTV(Z

(n)
m , Z). (8.7)

We deal with the two terms on the right-hand side of (8.7) separately. First,

using the lower bound on i, there is a constant c ∈ (log e, 2) such that for n

large enough, m − i < c lnn. Therefore, Lemma 8.1.5 gives γ > 0 such that

λn,m = 2i+εn + o(n−γ lnn). Consequently,

P (Z = 0) = exp {−λn,m} = exp{−2i+εn}(1 + o(1)).

For the second term in (8.7), Theorem 8.1.6 gives α, β > 0 such that

dTV(Z
(n)
m , Z) = O(2−m+(1−α) logn) +O(n−β).

It remains to deal with these error terms. Note that exp{2i+εn} ≤ exp{2−C+1 lnn}.

Therefore, if C > 1 + log(1/β) then

exp{2i+εn}O(n−β) = O(exp{(2−C+1 − β) lnn}) → 0;
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similarly, for C large enough,

exp{2i+εn}O(2−m+(1−α) logn) = exp{2i+εn}O(2i−α logn) → 0.

The two limits above imply that dTV(Z
(n)
m , Z) = o(exp{−2i+εn}), completing

the proof.
�

8.4 Proof of Proposition 8.3.3: An auxiliary coupling

In this section we fix n ∈ N, c ∈ (1, 2) and m = m(n) > c lnn. Let

(T,σ) be uniformly random in RDn−1. Consider (K,L,X) an RHn-set and let

(K ′, L′, X ′) be distributed as an RHn-set conditioned to satisfy
∑n−1

i=K X ′
i ≥ m.

Now, write

(T ′,π) = rh((T,σ), (K,L,X)) = RH(T,σ), (8.8)

(T ′m,π) = rh((T,σ), (K ′, L′, X ′)). (8.9)

By Fact 8.2.3, (T ′m,π) is a conditional version of RHn(T,σ) given that dRHn(T,σ)(n) ≥

m. Consequently, any coupling of (K,L,X) and (K ′, L′, X ′) yields a coupling

of the measures μ and ν, defined in Section 8.3, by setting Iv = 1[dT ′ (v)≥m]

and Jv = 1[dT ′m
(v)≥m] for all v ∈ [n]. With this notation, our goal is to couple

(K,L,X) and (K ′, L′, X ′) in such a way that for some β = β(c) > 0,

P
(
dT ′(v) < m ≤ dT ′m(v)

)
= O(n−1−β). (8.10)

We start with some straightforward lemmas. For any integer n − m ≤

k < n, let Xk = (Xk
i , i ∈ [n − 1]) be a conditional version of X given that∑n−1

i=k Xi ≥ m. The following observation is quite standard but we include a

proof for completeness. For a = (a1, . . . , ad) and b = (b1, . . . , bd) ∈ {0, 1}d,

a ≤ b only if ai ≤ bi for all i ∈ [d]. We say that S ⊂ {0, 1}d is monotone if

a ≤ b and a ∈ S implies b ∈ S.
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Lemma 8.4.1. For each k < n, there exists a coupling of Xk and X such that

Xi ≤ Xk
i for all i ∈ [n− 1].

Proof. By Strassen’s theorem [57], it suffices to prove that Xk dominates

stochastically X. That is, for all monotone subsets S ∈ {0, 1}n−1,

P
(
Xk ∈ S

)
≥ P (X ∈ S) . (8.11)

Note that Sk = {a ∈ {0, 1}n−1 : a1 + . . . + ak ≥ m} is a monotone subset of

{0, 1}n−1. By Harris inequality, for any monotone subset S ∈ {0, 1}n−1,

P (X ∈ S ∩ Sk) ≥ P (X ∈ Sk)P (X ∈ S) .

Dividing the above inequality by P (X ∈ Sk) yields (8.11); thus, completing

the proof.

Lemma 8.4.2. There exists a coupling of (K,L) and (K ′, L′) such that K ′ ≤

K and L′ ≤ L.

Proof. Let U1, U2 have uniform distributions on [0, 1]. Set K = �nU1�, and

L = �(K − 1)U2�. Independently of U1 and U2, let X = (X1, . . . , Xn−1) be

independent with Xi
L
= Bernoulli(1/i). Then (K,L,X) is an RHn-set.

Next, for each k ∈ [n], let pk = P
(
K = k |

∑n−1
i=k Xi ≥ m

)
and set

K ′ = max

{
k : U1 >

k−1∑
j=1

pj

}

and L′ = �(K ′ − 1)U2�.

The random variable K ′ has the correct law by construction. Moreover,

conditionally given K ′ = k,

L′
L
=

⎧⎪⎪⎨⎪⎪⎩
Unif(k − 1) if k > 1,

0 if k = 1;
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note that the distribution of L conditionally given K = k has the same ex-

pression. Therefore, for all l ≤ k − 1 we have

P (K ′ = k, L′ = l) = P (L′ = l|K ′ = k)P (K ′ = k)

=
P (L = l, K = k)P

(
K = k,

∑n−1
i=k Xi ≥ m

)
P (K = k)P

(∑n−1
i=k Xi ≥ m

)
=

P
(
K = k, L = l,

∑n−1
i=K Xi ≥ m

)
P
(∑n−1

i=K Xi ≥ m
)

= P

(
K = k, L = l

∣∣∣∣∣
n−1∑
i=K

Xi ≥ m

)
;

the third equality holds by the independence between X and (K,L). It follows

that (K ′, L′) has the correct law.

Finally, since X is independent of K, for each k ∈ [n],

P (K ′ = k) =
P
(
K = k,

∑n−1
i=k Xi ≥ m

)
P
(∑n−1

i=K Xi ≥ m
) =

[
nP

(
n−1∑
i=K

Xi ≥ m

)]−1
P

(
n−1∑
i=k

Xi ≥ m

)
.

This chain of equalities show that pk is proportional to P
(∑n−1

i=k Xi ≥ m
)
,

which is decreasing in k. Consequently, if K ′ = j then

U1 >

j−1∑
i=1

pi ≥
j − 1

n
,

in other words, K ≥ j = K ′. In turn, L = �(K − 1)U2� ≥ �(K ′ − 1)U2� =

L′.

Proposition 8.4.3. There exists a coupling of (K,L,X) and (K ′, L′, X ′) such

that K ≥ K ′, L ≥ L′ and Xi ≤ X ′
i for all i ∈ [n− 1].

Proof. First, couple ((K,L), (K ′, L′)) as in Lemma 8.4.2 and also let X =

(X1, . . . Xn−1) be as in the proof of that lemma. For each 1 ≤ k < n fix a

vector Xk coupled with X according to Lemma 8.4.1.

The dependence structure ofX1, . . . , Xn−1 is unimportant to the argument,

but for concreteness we may, e.g., take them to be conditionally independent
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given X. On the other hand, it is important to insist that the X i are inde-

pendent of (K ′, L′). Since (K ′, L′) are determined by uniform variables U1, U2

independent of X, the existence of such joint coupling is straightforward.

Next, for each i ∈ [n − 1] write X ′
i = XK′

i and let X ′ = (X ′
1, . . . , X

′
n−1).

Now it remains to show that, (K ′, L′, X ′) has the correct law.

For any (k, l, x) ∈ Cn and j ≤ n− 1, we use the independence of Xj from

(K ′, L′) to obtain,

P (X ′ = x,K ′ = k, L′ = l) = P
(
Xk = x

)
P (K ′ = k, L′ = l)

=
P
(
X = x,

∑n−1
i=k xi ≥ m

)
P
(∑n−1

i=k xi ≥ m
) ·

P
(
K = k, L = l,

∑n−1
i=k xi ≥ m

)
P
(∑n−1

i=k xi ≥ m
)

=
P
(
X = x, K = k, L = l,

∑n−1
i=k xi ≥ m

)
P
(∑n−1

i=k xi ≥ m
)

= P

(
X = x, K = k, L = l

∣∣∣∣∣
n−1∑
i=k

xi ≥ m

)
.

That the coupling ((K,L,X), (K ′, L′, X ′)) has the desired properties fol-

lows from Lemmas 8.4.1 and 8.4.2.

Under the coupling of Proposition 8.4.3 we obtain necessary conditions for

dT ′(v) < m ≤ dT ′m(v) to hold.

Lemma 8.4.4. Using variables as in Proposition 8.4.3 and the trees defined

in (8.8) and (8.9). For any v ∈ [n− 1],

{dT ′(v) < m ≤ dT ′m(v)} ⊂ {L′ = σ(v)} ∩ {dT (v) ≥ m− 1}.

Proof. From the properties of the coupling in Proposition 8.4.3,

n−1∑
i=K

Xi 1[v=pT (σ−1(i))] ≤
n−1∑
i=K′

X ′
i 1[v=pT (σ−1(i))]. (8.12)
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Consequently, using Fact 8.2.3 we have that dT ′m(v) − dT ′(v) ≤ 1[L′=σ(v)].

On the other hand, if {dT ′(v) < m ≤ dT ′m(v)} holds, then it follows that

dT ′m(v)− dT ′(v) > 0 and so it is necessary that {L′ = σ(v)} holds.

Finally, {dT ′(v) < m ≤ dT ′m(v)} implies that

m ≤ dT ′m(v) = dT (v) + 1[L′=σ(v)] −
n−1∑
i=K′

X ′
i 1[v=pT (σ−1(i))] ≤ dT (v) + 1;

or equivalently, that {dT (v) ≥ m− 1}.

The next tail bounds the degree of vertices in RRTs are obtained using

standard estimates for binomial variables.

Lemma 8.4.5. Fix c > 1. There exists β = β(c) > 0 such that uniformly

over m > c lnn, and for each i ∈ [n],

P (dRn(i) > m) = O(n−β).

Proof. Let (Bk, k ≥ 1) be independent Bernoulli variables with mean 1/k

respectively. By the construction of Rn we have that dRn(i)
L
=

∑n
k=i Bk ≤∑n

k=1 Bk. Therefore,

P (dRn(i) > m) ≤ P (dRn(1) > m) ≤ P

(
n∑

k=1

Bk > c lnn

)
.

We use the following version of Bernstein inequalities (see, e.g. [52] Theo-

rem 2.8, (2.5)). For a sum S of {0, 1}-valued variables and ε > 0,

P (S − E [S] > εE [S]) ≤ exp

{
− 3ε2

2(3 + ε)
E [S]

}
.

Since E [
∑n

k=1 Bk] = lnn+O(1) < c lnn, we can use the above inequality with

ε = c− 1 + o(1) and set β = 3ε2

2(3+ε)
.

Proof of Proposition 8.3.3. Fix c ∈ (1, 2). Let m = m(n) > c lnn and β =

β(c) > 0 be as in Lemma 8.4.5. Let us use (T ′, T ′m) as defined in (8.8) and
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(8.9) with ((K,L,X), (K ′, L′, X ′)) coupled as in Proposition 8.4.3. Set Iv =

1[dT ′ (v)≥m] and Jv = 1[dT ′m
(v)≥m] for all v ∈ [n]. We now show that (I, J) =

((I1, . . . , In), (J1, . . . Jn)) is a coupling of the measures μ and ν which satisfies

P (In < Jn) = P
(
dT ′(v) < m ≤ dT ′m(v)

)
= O(n−1−β).

First, using Lemma 8.4.4, we have

P
(
dT ′(v) < m ≤ dT ′m(v)

)
≤

n−1∑
j=1

P (σ(v) = j, L′ = j, dT (v) ≥ m− 1) .

On the other hand, σ is uniformly random in Sn−1 and L′ is indpendent of σ.

Therefore, uniformly for each j ∈ [n− 1],

P (σ(v) = j, L′ = j, dT (v) ≥ m− 1) =
1

n− 1
P (dT (v) ≥ m− 1 |σ(v) = j)P (L′ = j)

=
1

n− 1
P
(
dRn−1(j) ≥ m− 1

)
P (L′ = j)

≤ P (L′ = j)O(n−1−β);

the second inequality, since σ(T )
L
= Rn−1 and the last one by Lemma 8.4.5.

Therefore, we get for all v ∈ [n− 1],

P (Iv < Jv) ≤
n−1∑
j=1

P (σ(v) = j, L′ = j, dT (v) ≥ m− 1)

= O(n−1−β)
n−1∑
j=1

P (L′ = j) = O(n−1−β).

8.5 Coalescents as recursively decorated trees

Coalescent processes are essentially defined as Na and Rapoport described

‘static’ trees. We will first explain the definition of coalescents using chains

of forests and decorated trees. Following, we define Kingman’s coalescent in

terms of such chains and briefly note its connection with increasing binary

trees.
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Figure 8–3: An example of an n-chain with n = 6. The edge labelling ρn is
presented with numbers in bold.
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A forest f is a set of trees with pairwise disjoint vertex sets. Denote by

V (f) and E(f), respectively, the union of the vertex and edge sets of the trees

in f . For n ≥ 1, an n-chain is a sequence C = (fn, . . . , f1) of elements of

Fn = {f : V (f) = [n]} such that, for 1 < i ≤ n, fi−1 is obtained from fi

by adding a directed edge between the roots of some pair of trees in fi. In

particular, fn consists of n one-vertex trees and f1 consists of a single tree on

n vertices denoted by tC . For an example see Figure 8–3.

The relation of n-chains with coalescents is the following. For an n-chain

(fn, . . . , f1), each of the trees of fi correspond to a set of coalesced elements

after n − i + 1 steps of the process. At each step, two sets (represented by

their roots) coalesce and a new representative is chosen.

To link n-chains with decorated trees, we first define a natural edge labeling

that tracks the number of trees left in the forest when a give edge comes along.

Fix C = (fn, . . . , f1), for each e ∈ E(tC), let

ρC(e) = max{i ∈ [n− 1] : e ∈ E(fi)}.

We next define a vertex labeling σC : V (tC) → [n]. For each uv ∈ E(tC), let

σC(u) = ρC(uv) + 1;

and let σC(r(tC)) = 1. The pair (tC , σC) ∈ RDn contains all the information

to recover the original n-chain C.

Proposition 8.5.1. Let CFn be the set of n-chains and Υ : CFn → RDn

be defined as follows. For an n-chain C = (fn, . . . , f1), let Υ(C) = (tC , σC).

Then Υ is a bijection.

Proof. First, we show that CFn and RDn have the same cardinality and that

Υ is well defined.
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To count the number of n-chains, consider constructing (fn, . . . , f1) by

deciding which edge to add from fk to fk−1. Since there are k trees in fk,

when we have chosen (f1, . . . , fk), there are k(k − 1) possible directed edges

to add. Therefore, |CFn| = n!(n− 1)!.

Next, let C = (fn, . . . , f1) be an n-chain. For each 1 ≤ i < n, the new

edge in fi joins the roots of two trees in fi+1 and is directed towards the root

of the resulting tree. Thus, the labels {ρC(e), e ∈ E(tC)} decrease along all

paths in tC towards the root r(tC). Consequently, the labels {σC(v), v ∈ [n]}

are, indeed, an addition history of tC .

Now we show that Υ is injective and, thus it is a bijection between CFn and

RDn. Consider two distinct n-chains C = (fn, . . . , f1) and C ′ = (f ′n, . . . , f
′
1),

then k = min{i : fi �= f ′i} is well defined. If k = 1 then tC �= tC′ and

clearly, Υ(C) �= Υ(C ′). Otherwise, the edges e ∈ E(fk−1) \ E(fk) and e′ ∈

E(f ′k−1)\E(f ′k) are distinct. However tC = tC′ , it thus follows that e = uv ∈ f ′k

and so σC(u) = k > σC′(u). This shows that Υ is injective, completing the

proof.

Kingman’s coalescent is characterized by the property that the merging

probability of any pair of components is independent of the components’ sizes.

The following definition describes Kingman’s n-coalescent as a random n-chain

C = (Fn, . . . , F1). This construction has been previously exploited to study

high-degree vertices in RRTs [3] and is closely related to the ‘union-find’ al-

gorithm used in computer science (see e.g. [78]).

For an n-chain (fn, . . . , f1) and 1 ≤ i ≤ n, list the trees of fi in increasing

order of their smallest-labeled vertex as t
(i)
1 , . . . , t

(i)
i . Independently for each

1 < i ≤ n let {ai, bi} ⊂ {{a, b} : 1 ≤ a < b ≤ i} be uniformly chosen at

random; in addition, let ξi be independent Bernoulli random variables with

mean 1/2.
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Definition 8.5.2. Kingman’s n-coalescent is defined as C = (Fn, . . . , F1) con-

structed as follows. For 1 < i ≤ n, Fi−1 is obtained from Fi by adding an edge

between r(T
(i)
ai ) and r(T

(i)
bi
). If ξi = 1 then direct the edge towards r(T

(i)
ai );

otherwise direct it towards r(T
(i)
bi
). The forest Fi−1 consists of the new tree

and the remaining i− 2 unaltered trees from Fi.

Proposition 8.5.3. Let C = (Fn, . . . , F1) be a Kingman’s coalescent and let

RTn ∈ RDn be uniformly random. Then TC
L
= RTn.

Proof. Let C = (Fn, . . . , F1) be a Kingsman’s coalescent. Then for any fixed

(fn, . . . , f1) ∈ CFn,

P ((Fn, . . . , F1) = (fn, . . . , f1)) =
n−1∏
k=1

P (Fk = fk|(Fn, . . . , Fk+1) = (fn, . . . , fk+1)) .

Among the k(k + 1) possible oriented edges connecting roots of fk+1, exactly

one of them can be added to fk+1 to yield fk. Thus, regardless of the sequence

(fn, . . . , f1),

P ((Fn, . . . , F1) = (fn, . . . , f1)) = [(n− 1)!n!]−1.

By Proposition 8.5.1, TC ∈ RDn and it has a uniform distribution, since the

bijection preserves the uniform measure of C.

Kingman’s n-coalescent is usually represented by extended binary trees

with n external vertices and an increasing labeling on the n− 1 internal ver-

tices. The role of internal vertices is as follows. For each k ∈ [n− 1], consider

the two sets of leaves in the subtrees of internal vertex labeled k; these two

sets are merged at the (n − k)-th step of the coalescent. The labeling of the

external vertices represent the same elements as the vertex set of tC . The cor-

respondence between recursive trees and increasing binary trees is mentioned,

e.g., in [37, exercise II.33].
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8.6 Futher research on the tree growth process

The Robin-Hood pruning yields an interesting process ((Tn,σn), n ≥ 1)

which has connections to mathematical models of social and economic net-

works and raises challenging theoretical questions.

By Theorem 8.1.3 and Proposition 8.1.1, σ(Tn)
L
= Rn for all n ≥ 1. The

novelty of this process is that Tn is not necessarily obtained from Tn−1 by a

simple addition of a new edge and vertex. Rather, the Robin-Hood pruning

is a fairly complex dynamic of trees. About half of the time the newly added

vertex will simply attach to a uniformly random vertex, as in the standard

construction of RRTs. While from time to time, a large proportion of edges

will be rewired towards the newly added vertex, drastically reshaping the

structure of the tree.

Note, for example, by Fact 8.2.3,

E [dTn(n)] = E
[
E
[∑n−1

i=k Xi |M = k
]]

=
n∑

k=1

n−1∑
i=k

1

n · i =
n−1∑
i=1

i∑
k=1

1

n · i = 1− 1

n
;

while, for any a ∈ [0, 1),

E [dTn |M ≤ na] ≥ E

[
n∑

i=na

Xi

]
= (1− a) lnn.

In the context of random networks, the Robin-Hood pruning has an in-

terpretation in terms of ‘trends’. That is, a new vertex brings in a new idea

to the network and that rewires the interests or connections of established

individuals in the network. The decoration σn gives a ranking between the

elements of Tn that determines the susceptibility of changing parents in the

tree. Preferential attachment models are considered better models for real-

world networks. It would be interesting to devise a similar pruning procedure

that, acting on preferential attachment trees, preserves their scale-free degree

distribution.
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In the context of biology, Kingman’s coalescent is usually represented with

increasing binary trees and, although there exists a bijection between these

binary trees and n-chains, it is not clear how the Robin-Hood pruning process

would have a significant interpretation in terms of the genealogical informa-

tion.

Regardless of the perspective we use to motivate the process ((Tn,σn), n ≥

1), there are many interesting theoretical questions that would be worth pur-

suing. To name just a few:

1. Understand the process describing how the parent and descendants of a

given vertex change with time.

• Describe how the size of the subtree rooted at a fixed node j evolves.

• How does maximum size of such subtree grow?

2. Understand the maximum degree in both (Rn, n ≥ 1) and (Tn, n ≥ 1).

• How often does the maximum degree change?

• Is this the same in both processes?

Appendix A: Proof of Proposition 8.3.2

The proof mimics that of [3, Proposition 4.2], but requires little more care

as we wish to obtain explicit error bounds. By Proposition 8.5.3 we can work

with the tree T (n) constructed from Kingman’s coalescent in Section 8.5.

Recall that Kingman’s coalescent consists of a chain C = (Fn, . . . , F1) and

that T (n) is the unique tree contained in F1. For each v, j ∈ [n] let Tj(v)

denote the tree in Fj that contains vertex v. For each v ∈ [n], the selection

set of v is defined as

Sn(v) = {2 ≤ j ≤ n : Tj(v) ∈ {T (j)
aj

, T
(j)
bj

}};
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this set keeps record of the times when the tree containing v merges. Finally,

for each 2 ≤ j ≤ n, we say that ξj is favourable for vertices in T
(j)
aj (resp.

vertices in T
(j)
bj

) if ξj = 1 (resp. ξj = 0).

The key property of Kingman’s coalescent is the following. For each j ∈

Sn(v), if ξj favours v, then r(Tj(v)) increases its degree by one in the process;

otherwise r(Tj(v)) attaches to the root of the other merging tree and the degree

of r(Tj(v)) remains unchanged for the rest of the process. Since all vertices

start the process as roots, dT (n)(v) is equal to the length of the first streak

of favourable times for v. Moreover, (ξj, j ∈ [n − 1]) are independent and

distributed as Bernoulli(1/2). Therefore we have the following distributional

equivalence.

Fact 8.6.1. Let D be a random variable with distribution Geo(1/2) indepen-

dent of Sn(v), then

dT (n)(v)
L
= min{D, |Sn(v)|}.

This fact, together with the next lemma, allow us to get estimates for the

tails of dT (n)(v).

Lemma 8.6.2. If c ∈ (0, 2) and 0 < ε ≤ 1 − c/2. Writing a = 1 − ε − c/2,

we have

P (|Sn(v) \ [na]| > c lnn) ≤ O(1)n−ε
2/(ε+c/2).

Proof. First, there are j(j − 1) distinct pair of trees in Fj, exactly j − 1 of

such pairs contains Tj(v); thus P (j ∈ Sn(v)) = 2/j. Since the merging trees

are chosen independently at each time, we have that for any a ∈ [0, 1) we have

|Sn(v) \ [na]| L=
n∑

j=na+1

Bj,

where the variablesB1, . . . Bn are independent Bernoulli variables withE [Bi] =

2/i, respectively. The desired bound is then a straightforward application of

140



Bernstein’s inequalities (see, e.g. [52], Theorem 2.8 and (2.6)). For a sum S

of {0, 1}-valued variables, we have P (S ≤ E [S]− t) ≤ exp{−t2/2E [S]}. In

this case, S =
∑n

i=na Bi and

E [S] =
n∑

i=na

2

i
= 2(1− a) lnn+O(1) = (c+ 2ε) lnn+O(1).

The result follows by setting t = 2ε lnn+O(1).

Proposition 8.6.3. If c ∈ (0, 2) and m < c lnn, then for ε = (2− c)2/4,

2−m(1− o(n−ε)) ≤ P (dT (n)(1) ≥ m) ≤ 2−m.

Proof of Proposition 8.6.3. It follows from Lemma 8.6.1 that

P (dT (n)(v) ≥ m) = P (D ≥ m)P (|Sn(v)| ≥ m) .

The upper bound on P (dT (n)(1) ≥ m) is then trivial, while the lower bound

follows by Lemma 8.6.2 using ε = 1− c/2 and that Sn(v) = Sn(v) \ [1].

Now, consider two distinct vertices v, w ∈ [n]. For m ∈ N, let Gm ∈

{2, . . . , n}2 contain all pairs of selection sets that enable vertices v and w to

have degree at least m; that is, (A,B) ∈ Gm only if

P (dT (n)(v) ≥ m, dT (n)(w) ≥ m, (Sn(v),Sn(w)) = (A,B)) > 0.

Since the ξj are independent of the selection times, we have that

P (dT (n)(v) ≥ m, dT (n)(w) ≥ m) ≥ 2−2mP ((Sn(v),Sn(w)) ∈ Gm) . (8.13)

To estimate P ((Sn(v),Sn(w)) ∈ Gm) we need more details on the dynamics

of the model. We start with a simple tail bound for the following random

variable; let

τ = max{j : j ∈ Sn(v) ∩ Sn(w)}.
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Lemma 8.6.4. For a ∈ (0, 1), P (τ > na) ≤ 4n−a.

Proof. Vertices in T (n) are exchangeable, so we can take v = 1, w = 2; these

vertices belong to distinct trees in Fj for all j ≥ τ . Additionally, by the

ordering convention of trees in Fj, it follows that Tj(1) = 1 and Tj(2) = 2 for

all j ≥ τ .

We claim that for all 2 < k ≤ n,

P (τ ≤ k) =
n∏

j=k+1

(
1− 2

j(j − 1)

)
.

This follows by induction on n − k. Clearly, τ = n only if {an, bn} = {1, 2}

which occurs with probability 2
n(n−1) , thus P (τ ≤ n− 1) satisfies the equation

above. For k < n, we have

P (τ ≤ k)

P (τ ≤ k + 1)
= P (τ ≤ k|τ ≤ k + 1) = P ({ak+1, bk+1} �= {1, 2}) = 1− 2

(k + 1)k
.

Next, for k larger enough,

n∏
j=k+1

(
1− 2

j(j − 1)

)
≥

n−1∏
j=k

(
1− 2

j2

)
> 1−

∞∑
j=k

2

j2
> 1− 4

∫ ∞

k

x−2dx = 1− 4/k.

The second inequality uses that 1 − x > e−2x for x > 0 sufficiently small,

followed by the fact that e−
∑

2xj > 1 −
∑

2xj. The result follows with k =

na.

Lemma 8.6.5. If c ∈ (0, 2) and m < c lnn, then for any γ < 1
4
(1 − c +

√
1 + 2c− c2),

P ((Sn(v),Sn(w)) ∈ Gm) ≥ 1− o(n−γ).

Proof. For each ε ∈ (0, 1− c/2] write a = a(ε) = 1− ε− c/2, then

P ((Sn(v),Sn(w)) /∈ Gm) ≤ P (τ > na) + 2P (|Sn(v) \ [na]| < c lnn) . (8.14)
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Before, establishing (8.14), we note that the terms in the right-hand side of

(8.14) are bounded by Lemmas 8.6.4 and 8.6.2, respectively. Since such bounds

depend on the choice of ε, we can use

γ < max
0<ε≤1−c/2

{
min

(
1− ε− c

2
,

ε2

ε+ c
2

)}
=

1

4

(
1− c+

√
1 + 2c− c2

)
.

The last equality since the functions to be minimized are decreasing and in-

creasing, respectively, on the (0, 1) interval. It then follows that the maximum

is attained when 0 < ε < 1− c/2 satisfies 1− ε− c/2 = ε2/(ε+ c
2
).

We now proceed to establish equation (8.14). At step τ , exactly one of v

and w is favoured by ξτ . Thus, at least one of v or w gets its degree fixed for

the remainder of the process. Therefore,

{(Sn(v),Sn(w)) ∈ Gm} ⊂ {|Sn(v) \ [τ ]| ≥ m} ∪ {|Sn(w) \ [τ ]| ≥ m} .

By intersecting with the event τ > na, and the exchangeability of vertices in

T (n) we get,

P ((Sn(v),Sn(w)) /∈ Gm) ≤ P (τ > na) + 2P ((Sn(v),Sn(w)) /∈ Gm, τ ≤ na)

≤ P (τ > na) + 2P (|Sn(v) \ [τ ]| < m, τ ≤ na)

≤ P (τ > na) + 2P (|Sn(v) \ [na]| < m, τ ≤ na) ;

from which (8.14) follows.

Proof of Proposition 8.3.2. Fix c ∈ (0, 2), m = m(n) < c lnn and let Iv, Jv be

defined as in Proposition 8.3.2. By Proposition 8.5.3, if follows that E [Iv] =

P (dT (n)(v) ≥ m) and

E [Iv]E [Jv] = E [IvIn] = P (dT (n)(v) ≥ m, dT (n)(n) ≥ m)

= 2−2mP ((Sn(v),Sn(n)) ∈ Gm) ;
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the last equality by (8.13). Lemmas 8.6.5 and 8.6.3 then gives that for α <

1
4
(1− c+

√
1 + 2c− c2),

E [Iv]E [In]− E [Iv]E [Jvn] ≤ 2−2m − 2−2m(1 + o(n−α)) = 2−2mo(n−α).

144



Part III

Conclusions and further

research

145



CHAPTER 9
Application to network connectivity

In this section we present the problem of cutting down trees, also known as

tree destruction: given a rooted tree, find the minimum number of uniformly

random edge removals required to disconnect the root from the rest of the

graph. More formally, cutting down a rooted tree t is performed as follows.

Start with t0 = t, select a uniformly random edge in E(t) and deleted it from

t. This yields a graph with two components, let t1 be the tree component

that contains the root. Sequentially, for i ≥ 1, let ti be the tree component

containing the root, after deleting a uniformly chosen random edge in ti−1,

until the remaining tree consists only of the root.

Cutting processes on Cayley and recursive trees were first studied by Meir

and Moon in the 1970s [63, 65], and a deeper study for recursive trees emerged

in the early 2000s [69]. Surprisingly, the process of cutting recursive trees

is associated with the Bolthausen-Sznitman coalescent in 2005 [41]. Since

then, destruction of a wide range of random trees has been studied; such as,

recursive trees [47, 33], deterministic trees [51], ‘very simple’ trees [70], Galton-

Watson trees [2], binary search trees and split trees in general [46, 45]. For a

general class of random trees, [12] describes the tree destuction process using

an auxiliary ‘cut-tree’. More recently, the same process has been analysed

through the lens of percolation, and additionally, sizes of clusters have been

studied [11, 54, 8].

For a recursive tree Tn, let Jn be the number of edges that we need to

remove to disconnect the root in the cutting process described above. Meir and
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Moon were the first to analyze the mean of Jn, showing that E [Jn] ∼ n/ lnn

[65]; Panholzer obtained a law of large numbers.

Proposition 9.0.1 ([69]). In probability, lnn
n
Jn → 1.

In [69], Panholzer notes that, using the method of moments, it is not possi-

ble to obtain a limiting distribution of a centered, scaled version of Jn. Instead,

Drmota, Iksanov, Moehle and Roesler proved the following convergence in dis-

tribution.

Theorem 9.0.2 ([33]). The sequence

Yn =
(lnn)2

n
Jn − lnn− ln lnn,

converges weakly to a stable random variable Y with characteristic function

ϕY (λ) = exp{iλ ln |λ| − π|λ|/2}.

The proof of Theorem 9.0.2 in [33] uses an analytic combinatorics approach,

and [47] gives a probabilistic proof. Finally, Holmgren generalizes this result

to split trees, and in particular, to linear PA trees [45].

9.1 Targeted cutting down

A natural extension of the destruction of trees to targeted cuttings would

be the following. For a rooted tree t on n vertices, list vertices (wi, ∈ [n])

such that dt(w1) ≥ · · · ≥ dt(wn), and break ties among same-degree vertices

uniformly at random. The targeted cutting down process is performed as

follows. Sequentially remove vertices w1, w2, . . ., each time keeping only the

tree containing the root. Continue such pruning until the root is selected to

be removed. At this point, we say that the tree has been destroyed.

For a recursive trees Tn, let Kn be the number of vertices we need to remove

in order to destroy Tn using targeted cuttings and let D = D(n) = dTn(1) be
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the degree of the root in Tn. Then, Kn is upper-bounded by

Z
(n)
≥D := #{v ∈ [n], dTn(v) ≥ dTn(1)}.

The methodology developed in this manuscript allows us to obtain concen-

tration of Z
(n)
≥D around n1−ln 2, up to the exponent term, and convergence of

its mean value.

Proposition 9.1.1. Let γ = 1− ln 2. Then, in probability

lnZ
(n)
≥D

lnn
→ γ.

Proof. To simplify notation, let Ya = Z
(n)
≥(ln 2+a) logn for any constant a ≥ − ln 2.

Note that if
∣∣ D
lnn

− 1
∣∣ ≤ ε/2 ln 2, then Yε/2 ≤ Z

(n)
D ≤ Y−ε/2. Since D is concen-

trated around lnn (see (4.1) and the remarks afterwards), it follows that the

proof is complete if we show that, for all ε > 0 sufficiently small,

P
(
Z

(n)
≥D /∈ (nγ−ε, nγ+ε), D

lnn
∈ (1− ε

2 ln 2
, 1 + ε

2 ln 2
)
)

≤P
(
Yε/2 ≤ nγ−ε)+P

(
Y−ε/2 ≥ nγ+ε

)
→ 0. (9.1)

Now, write μa = E [Ya] and let θa such that μaθa = nγ−2a. By Proposi-

tion 6.2.1, θa = n−a(1 + o(1)), and if a < γ, then μa → ∞ and E [Y 2
a ] =

E [Ya]
2 (1 + o(1)) and consequently, Var [Ya] = o(E [Ya]

2). The last two obser-

vations yield the following. First, if a < 0, then for n large enough, θa ≥ 1

and by Chebyshev,

P
(
Ya ≥ nγ−2a) ≤ Var [Ya]

μ2
a(θa − 1)2

→ 0; (9.2)

while if a ∈ (0, γ), we have θa → 0 and in particular, we can apply Paley-

Zygmund’s inequality to obtain,

P
(
Ya ≥ nγ−2a) ≥ (1− θa)

2E [Ya]
2

E [Y 2
a ]

→ 1. (9.3)
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Together, (9.2) for a = −ε/2 and (9.3) for a = ε/2 yield (9.1).

The usual cutting process and the targeted cutting process are not directly

comparable. However, Proposition 9.1.1 shows that far fewer deletions are

needed when targeting the deletions to the highest-degree vertices, contrary to

random edge-deletions. This phenomenon resembles that observed in previous

studies on preferential attachment models and scale-free networks [22, 23, 17].

It would be interesting to perform a thorough analysis between the qualitative

differences between the two cutting down processes.
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CHAPTER 10
Conclusions

Our findings filled a gap in the knowledge of recursive trees, comparatively

with linear PA trees. In contrast to linear PA trees, at no point a vertex with

maximum degree is established for the rest of the process. Instead, the vertices

attaining the maximum degree change as the tree growth process evolves and

at no stage there is deterministically a unique vertex with maximum degree.

More precisely, we highlight two of our results. First, we provide all the

possible limiting distributions of the number of vertices attaining maximum

degree (along distinct subsequences), see Proposition 5.1.3. Second, we de-

scribe the joint law of vertices listed in decreasing order of degrees using a

marked point process where the marks provide the (scaled) depths of such

vertices, see Theorem 5.1.2.

Recursive trees, and increasing trees in general, can be studied through a

wide range of probabilistic and analytic tools, several of which were reviewed

in Chapter 3. However, our results are obtained by exploiting two distinct

approaches to their construction; namely, Kingman’s coalescent and what we

call the Robin-Hood pruning; see Sections 4.1 and 8.2, respectively. It is worth

noting that the Robin-Hood pruning presents a novel growing procedure for

growing networks; a discussion about the lines of research that this new process

opens is given in Section 8.6.

Recursive trees, having the uniform distribution on increasing trees, lend

themselves to the alternative constructions exploited in this manuscript. It

remains a challenge to adapt these techniques to a broader class of increasing

tree distributions.
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Finally, Chapter 9 present a problem on targeted attacks on recursive trees.

Much about this targeted attack process is left unknown. In particular, we

would like to obtain better estimates on the distribution of Kn, and it would

also be interesting to study the process that keeps track of the sizes of the

trees pruned out during such deletion process, in the same spirit of the works

in [11, 12].
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[80] Jerzy Szymański. On the maximum degree and the height of a random
recursive tree. In Random graphs ’87 (Poznań, 1987), pages 313–324.
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