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04510 México D.F., Mexico

ramses@sigma.iimas.unam.mx

AND IGOR PRÜNSTER
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SUMMARY

We consider the problem of evaluating the probability of discovering a certain number of new
species in a new sample of population units, conditional on the number of species recorded in
a basic sample. We use a Bayesian nonparametric approach. The different species proportions
are assumed to be random and the observations from the population exchangeable. We provide
a Bayesian estimator, under quadratic loss, for the probability of discovering new species which
can be compared with well-known frequentist estimators. The results we obtain are illustrated
through a numerical example and an application to a genomic dataset concerning the discovery
of new genes by sequencing additional single-read sequences of cDNA fragments.

Some key words: Bayesian nonparametrics; Gibbs-type random partition; Posterior probability of discovering a new
species; Sample coverage; Species sampling.

1. INTRODUCTION

In biological and ecological studies, given that a sample of size n has been observed and j
different species have been recorded, one is usually interested in the following statistical issues:
(a) making inference about the number of unseen species; (b) estimating the probability that a
further draw of m units from the population yields k new distinct species.

With reference to the problem of estimating the number of unobserved species, nonparametric
approaches include those of Chao & Lee (1992), Shen et al. (2003) and Chao & Bunge (2002).
A Bayesian approach is undertaken in Hill (1979), Boender & Rinnoy Kan (1987), Gandolfi &
Sastri (2004) and Zhang & Stern (2005), whereas an empirical Bayes model is exploited in Efron
& Thisted (1976). A sequential procedure for the determination of an optimal stopping of the
sampling process is provided in Christen & Nakamura (2003). A very rich review, even though
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now more than ten years old, can be found in Bunge & Fitzpatrick (1993). The subject is also
closely connected to occupancy theory in probability and some nice examples can be found in
Charalambides (2005).

As for issue (b), namely the estimation of the probability of discovering a new species, important
references are Good (1953), Good & Toulmin (1956), Robbins (1968), Starr (1979), Chao (1981),
Clayton & Frees (1987), Boneh et al. (1998) and Chao & Shen (2004). The determination of the
discovery probability is intimately related to the classical problem of determining the optimal
sample size in a species-sampling framework. The latter is typically faced by setting a threshold
τ and making inference about the sample size m for which the probability of discovering a new
species falls below τ . It is clear that the decay of the discovery probability as a function of m
provides also a solution to the sample size problem, for which the Good–Toulmin estimator was
designed. Recently, Mao (2004) has shown that the Good–Toulmin estimator can be seen as a
nonparametric empirical Bayes estimator of the expected value of the discovery probability and
can also be obtained as a moment-based estimator. Moreover, he proposes a likelihood-based
estimator. In the present paper we focus on this problem and derive a closed-form expression
for a nonparametric Bayes estimator of the probability of discovering a new species. A first
attempt in this direction, based on the use of the Dirichlet process, is present in Tiwari &
Tripathi (1989). The estimator we obtain is applied to a genomics dataset and is compared
with previously known frequentist and empirical Bayes estimators. In this respect, it is worth
mentioning that there have recently been contributions providing genuine nonparametric Bayesian
counterparts to well-known empirical Bayes estimators for applied genetic problems; for example,
see Do et al. (2005) who deal with the problem of estimating gene intensities in a mixture
context.

The formal setting we deal with can be described as follows. Consider a population of indi-
viduals that can be grouped in different classes or species. If N is the total number of species,
we denote by pi the unknown proportion of individuals in the population belonging to species i .
Suppose a sample of size n is drawn, and the number of distinct species being detected is equal to
j ∈ {1, . . . , N }. Moreover, Ni,n represents the number of population units from the i th species.
One might be then interested in making inference about N − j , i.e. the number of unseen species,
or on

1 − Un =
∑

{i :Ni,n=0}
pi , (1)

which is the proportion of unobserved species, where Un is known in the literature as the sample
coverage. The interest in (1) can be motivated by concrete applied problems where the sampling
procedure is expensive and further draws can only be motivated by the possibility of recording a
new unobserved species. Hence, one can fix a possibly small threshold τ such that the sampling
procedure takes place until the estimate of (1) becomes for the first time smaller than τ . This
introduces a criterion for evaluating the effectiveness of further sampling. Moreover, it can provide
a tool for assessing survey completeness. We will make these issues clearer when we consider
applications in § 4.

The starting point of our approach is the randomization of the probabilities pi . Next, we
suppose that the observations Xi from the population are independent and identically distributed
given a discrete random probability measure P̃ = ∑

piδXi . The law of P̃ plays the role of a
nonparametric prior for Bayesian inference. When N is finite, the prior is a probability distribution
on the (N − 1)-dimensional simplex �N−1 = {(p1, . . . , pN−1) : pi � 0,

∑N−1
i=1 pi � 1}. A well-

known example is the Dirichlet distribution. If N is large, it is reasonable to assume N to be
infinite: this seems appropriate in many applications including those related to genomics. In such
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a case a discrete nonparametric prior should be introduced. The most popular prior in Bayesian
nonparametrics is the Dirichlet process, which has been introduced by Ferguson (1973); see
Müller & Quintana (2004) for a review of the various uses of the Dirichlet process. Some of
the drawbacks of the Dirichlet process have stimulated researchers to look for wide classes of
random probabilities to be used as priors. Most of the proposals present in the literature, such
as neutral to the right processes (Doksum, 1974), species-sampling models (Pitman, 1996) and
normalized random measures with independent increments (Regazzini et al., 2003), contain the
Dirichlet process as a special case and are almost surely discrete.

In the following sections we develop a Bayesian nonparametric treatment for species sampling
problems by considering a class of priors which induce a random partition structure, for the
observations, of Gibbs type. The notion of random exchangeable Gibbs partition is due to Pitman
(2006) and is further considered, for different purposes, in recent papers by Gnedin & Pitman
(2005), Berstycki & Pitman (2007) and in an International Center of Economic Research working
paper by L.F. James, A. Lijoi and I. Prünster. The connection between random partition models
and Bayesian nonparametric statistics is investigated in Quintana (2005).

2. GIBBS-TYPE PRIORS

Consider the following set-up. Let (Xn)n � 1 be a sequence of exchangeable observations each
taking values in some set X. In other words, we suppose that there exists some random probability
measure, P̃ , whose probability distribution plays the role of a nonparametric prior and such that

pr (X1 ∈ A1, . . . , Xn ∈ An|P̃) =
n∏

i=1

P̃(Ai )

for any n � 1 and any subsets A1, . . . , An of X. We assume that P̃ is discrete with probability
one and that E{P̃( · )} = P0( · ), where P0 is nonatomic, i.e. P0({x}) = 0 for any x in X. Hence,
the ties in the data X1, . . . , Xn are explained by the discrete nature of P̃: the number of distinct
observations, Kn , is an integer less than or equal to n. Such distinct observations identify the Kn

different species being recorded. When Kn = k different species are observed, we label them as
X∗

1, . . . , X∗
k , and N j,n represents the number of individuals in the n-sample (X1, . . . , Xn) that

belong to the j th species. The priors we will consider induce a joint distribution of Kn and of
(N1,n, . . . , NKn,n) of the form

pr [{Kn = k} ∩ {N j,n = n j , j = 1, . . . , k}] = Vn,k

k∏
j=1

(1 − σ )n j −1 (2)

for some σ ∈ (0, 1), for some set of nonnegative weights {Vn,k : n � 1, 1 � k � n} and where
(a)n = a(a + 1) · · · (a + n − 1) for any n � 1, and (a)0 = 1. Note that the distribution is invariant
with respect to permutations of (n1, . . . , nk). The random partitions of the observations identified
by (2) are known as Gibbs-type random partitions; see Pitman (2006) and Gnedin & Pitman
(2005). The distribution in (2) leads to predictive distributions for the observations that admit the
representation

pr (Xn+1 ∈ A|X1, . . . , Xn) = Vn+1,k+1

Vn,k
P0(A) + Vn+1,k

Vn,k

k∑
j=1

(n j − σ )δX∗
j
(A),

given that (X1, . . . , Xn) is a sample of size n featuring Kn = k different observations X∗
1, . . . ,

X∗
k with frequencies n1, . . . , nk , respectively. The predictive distribution provides some insight
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into the inferential implications associated with the specification in (2). The sampling scheme is
such that the probability of sampling a new species depends solely on n and k: given that a new
species will be observed, its label is generated according to P0, whereas, if an ‘old’ species is
observed, the probability of observing the j th depends on the frequency n j and the parameter σ .
It is worth recalling that each Gibbs-type partition uniquely determines a discrete nonparametric
prior: for this reason, we also speak of Gibbs-type priors. Various noteworthy priors fall within
this class, namely the Dirichlet process, the two-parameter Poisson–Dirichlet process and the
normalized inverse Gaussian process.

Remark 1. Whenever the joint distribution of Kn and of (N1,n, . . . , NKn,n) computed at
some point (k, n1, . . . , nk) is invariant with respect to permutations of (n1, . . . , nk), then such
a distribution is known in the probability literature as an exchangeable partition probability
function, extensively studied in Pitman (1995, 2006). An exchangeable partition probability
function identifies the law of an exchangeable random partition P̃ of the set of integers N. The
most celebrated example of an exchangeable partition probability function is the Ewens sampling
formula (Ewens, 1972), a cornerstone of population genetics.

We shall assume that the species proportions pi (i = 1, 2, . . .) within the population are
random and give rise to a discrete random probability measure P̃ = ∑

piδXi of Gibbs type. In
the following section we assume that a sample X (n) of size n has been drawn from the population
and, given the number of species recorded among the Xi ’s, we evaluate the probability that a
certain number of new species will be observed in the sample (Xn+1, . . . , Xn+m).

3. ESTIMATING THE PROBABILITY OF DISCOVERING A NEW SPECIES

Consider a population which is composed of an ideally infinite number of species. Let
X1, . . . , Xn be a sample of size n, also called the ‘basic sample’. The distribution of the num-
ber of species Kn present in the sample, under the assumption that the Xi ’s are generated by a
Gibbs-type prior,

pr (Kn = k) = Vn,k

σ k
C (n, k; σ ), (3)

(Gnedin & Pitman, 2005) where C (n, k; σ ) is a generalized factorial coefficient. Such coefficients
are easily computable and a short account is provided in the Appendix. The quantity in (3) is
interpreted as the prior distribution on the number of species in the sample, of size n, to be
observed. Next, a further sample of m individuals is selected thus giving rise to the ‘enlarged
sample’ of size n + m. If one knows the number of species observed in the first n samples and the
frequency with which each species has been recorded, it would be interesting to determine both
(i) the probability distribution of the number of new species observed among the Xn+1, . . . , Xn+m ,
and (ii) the probability of observing a new species at the (n + m + 1)th draw, without actually
observing the intermediate m-sample Xn+1, . . . , Xn+m : this automatically provides a solution to
the important problem of determining the sample size such that the probability of discovering
a new species falls below a given threshold. We first illustrate some notation we are going to
use throughout. We denote by X (1,n)

j = (X1, . . . , Xn) a basic sample of size n containing j
distinct species, with j ∈ {1, . . . , n}. Analogously, X (2,m) = (Xn+1, . . . , Xn+m) is the second,
unobserved, sample of size m. Moreover, let K (n)

m = Kn+m − Kn be the number of new species
in X (2,m) and denote by X (2,m)

k the new m-sample featuring K (n)
m = k. Evaluating the probability

in (i) is equivalent to determining pr (K (n)
m = k|X (1,n)

j ), for any k = 0, 1, . . . , m and for any
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j = 1, . . . , n, which can be interpreted as the posterior probability distribution of the number of
species to be observed in a sample of size m.

PROPOSITION 1. Let (Xn)n � 1 be a sequence of exchangeable observations governed by a
Gibbs-type prior. Then, for any k ∈ {0, 1, . . . , m},

pr
(
K (n)

m = k|X (1,n)
j

) = Vn+m, j+k

Vn, j

1

σ k
C (m, k; σ,−n + jσ ) (4)

for any j ∈ {1, . . . , n}. This also implies that Kn is sufficient for predicting the number of new
distinct observations.

The coefficient C (m, k; σ,−n + jσ ) on the right-hand side of (4) is the so-called noncentral
generalized factorial coefficient; see the Appendix and references therein. Note that the sufficiency
of Kn leads to a simple interpretation of the Gibbs structure in statistical terms: Gibbs priors
are priors which lead to prediction of the number of new species based only on the number of
distinct observations in the sample. This structural assumption underlies various priors such as
the two-parameter Poisson–Dirichlet process and the normalized inverse Gaussian prior.

Turning to problem (ii), we now derive a Bayesian estimator for the probability of discovering
a new species at the (n + m + 1)th draw, given the basic sample X (1,n)

j . If we suppose, for the
moment, that we have observed both the basic sample and the second sample, the discovery
probability is given by pr (K (n+m)

1 = 1|X (1,n)
j , X (2,m)

k ). By virtue of the highlighted sufficiency
of the number of distinct species, the discovery probability is also equal to pr (K (n+m)

1 = 1|Kn =
j, K (n)

m = k). However, our estimate is obtained without observing the outcome of the second
sample X (2,m) and, hence, we have to estimate the random probability

D(n: j)
m := pr

(
K (n+m)

1 = 1
∣∣Kn = j, K (n)

m

)
, (5)

where the randomness in the above expression is due to the randomness of K (n)
m . Bayesian infer-

ence on (5) is based on the posterior distribution of K (n)
m given Kn = j provided in Proposition 1.

Thus, the Bayesian estimator of (5), with respect to a squared loss function, is given by its ex-
pected value with respect to the posterior distribution of the number of species. This represents
a Bayesian counterpart of the celebrated Good–Toulmin estimator. In other words, we provide
a Bayesian nonparametric estimator for Un+m = ∑

i � 1 piI{0}(Ni,n+m), where IA denotes the
indicator function of set A.

PROPOSITION 2. Let (Xn)n � 1 be a sequence of exchangeable random variables governed by a
Gibbs-type prior. Then the Bayes estimate, under a squared loss function, of the probability of
observing a new species at the (n + m + 1)th draw, conditional on the basic sample X (1,n)

j with
j distinct species, is given by

D̂(n: j)
m =

m∑
k=0

Vn+m+1, j+k+1

Vn, j

1

σ k
C (m, k; σ,−n + jσ ). (6)

Remark 2. An important feature of the distribution given in (4) and of the estimator given
in (6) is that they can be computed exactly with little computational effort once a closed-form ex-
pression for the Vn,k’s is available. Hence, we now provide some specific examples of Gibbs-type
priors where this is the case, allowing an immediate exact implementation of (4) and (6).

Example 1: The Dirichlet process. The Dirichlet process can be seen to be a Gibbs-type prior
by letting σ → 0. If P̃ is a Dirichlet process with parameter measure α such that α(X) = θ ∈
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(0,+∞), then Vn,k = θ k/(θ)n . In this case, the prior distribution on the number Kn of distinct
species in the sample X (n) has been derived in Ewens (1972) and Antoniak (1974). In the Gibbs
setting such a distribution can be easily recovered by (3), giving rise to θ k |s(n, k)|/(θ)n which
is a version of the celebrated Ewens sampling formula. Here, |s(n, k)| stands for the sign-less
Stirling number of the first kind. The relationships between generalized factorial coefficients and
Stirling numbers are recalled in the Appendix. In the specific case of the Dirichlet process, an
attempt at deriving a closed-form expression for the discovery probability can be found in Tiwari
& Tripathi (1989): their result is not of immediate application since the exact evaluation of the
estimator they obtain requires a heavy computational burden. Here, the additional assumption of
α being nonatomic together with Proposition 1 lead to an easy expression. The assumption of α

being nonatomic does not cause a loss of generality since it just serves as a labelling procedure
for the different species.

We now derive the quantities of interest. Proposition 1 yields an expression for the posterior
distribution of the number of distinct species to be observed in the enlarged sample X (2,n), which
coincides with

pr
(
K (n)

m = k
∣∣X (1,n)

j

) = θ k(θ)n

(θ)n+m

m∑
l=k

(
m

l

)
|s(l, k)|(n)m−l

for any k ∈ {0, 1, . . . , m}. Hence, the probability of discovering a certain number of new species
does not depend on the number j of species recorded in the basic sample. This particular feature
of the Dirichlet process is clearly undesirable from an inferential point of view since inference
about the number of distinct species in a future sample would not depend on the number of
distinct species present in the basic sample. This is reflected in the discovery estimator,

D̂(n: j)
m = θ

(θ + n)m+1

m∑
k=0

θ k
m∑

l=k

(
m

l

)
|s(l, k)|(n)m−l,

which does not depend on j . It is easy to see that this property characterizes the Dirichlet process
within the class of Gibbs priors. Thus, any other Gibbs-type prior makes use of the information
about the number of distinct species in the basic sample and is suitable for our purposes.

Example 2: The two-parameter Poisson–Dirichlet process. This family of random probability
measures has been introduced in Pitman (1995). It is a very popular class of models which has
found applications in various areas including excursion theory, combinatorics, Bayesian mixture
models and population genetics, in particular fragmentations and coalescents; see Pitman (2006)
and references therein. The joint distribution of Kn and of (N1,n, . . . , NKn,n) for a (σ, θ)-parameter
Poisson–Dirichlet process is

∏k−1
i=1 (θ + iσ )

(θ + 1)n−1

k∏
j=1

(1 − σ )n j −1, (7)

which is known as Pitman’s sampling formula. In the above we set
∏0

i=1(θ + iσ ) = 1. The
distribution of the number of distinct observations, within a sample of size n, coincides with

pr (Kn = k) =
∏k−1

i=1 (θ + iσ )

σ k(θ + 1)n−1
C (n, k; σ ).
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As far as the posterior distribution is concerned, one applies Proposition 1 to obtain

pr
(
K (n)

m = k
∣∣X (1,n)

j

) = (θ + 1)n−1

(θ + 1)n+m−1

∏ j+k−1
i= j (θ + iσ )

σ k
C (m, k; σ,−n + jσ ) (8)

for all k ∈ {0, 1, . . . , m}. A straightforward application of Proposition 2 yields the corresponding
discovery estimator,

D̂(n: j)
m = (θ + 1)n−1

(θ + 1)n+m

m∑
k=0

∏ j+k
i= j (θ + iσ )

σ k
C (m, k; σ,−n + jσ ). (9)

Unlike the Dirichlet case, such an estimator depends on the number of distinct observations j
present in the basic sample.

Example 3: The normalized inverse Gaussian process. The normalized inverse Gaussian
process has been recently studied in Lijoi et al. (2005). The corresponding joint distribution of
Kn and of (N1,n, . . . , NKn,n) is given in equation (A1) of the above paper and one immediately
sees that the normalized inverse Gaussian process prior is a Gibbs-type random probability
measure, with σ = 1/2 and

Vn,k = eθ (−θ2)n−1

�(n)2k−1

n−1∑
i=0

(
n − 1

i

)
(−θ2)−i�(k + 2 + 2i − 2n; θ),

where θ is some positive constant and �(ν, x) = ∫ +∞
x tν−1e−t dt is the incomplete gamma func-

tion. The prior distribution for Kn is provided in Proposition 4 of Lijoi et al. (2005). As for
the determination of the posterior distribution, application of Proposition 1 together with some
algebra yields

pr
(
K (n)

m = k
∣∣X (1,n)

j

) = (−θ2)m2k

(n)m�(k)

∑n+m−1
i=0

(
n+m−1

i

)
(−θ2)−i�{ j + k + 2 + 2i − 2(m + n); θ}∑n−1

i=0

(
n−1

i

)
(−θ2)−i�( j + 2 + 2i − 2n; θ)

×
m∑

s=k

(
m

s

) (
2s − k − 1

s − 1

)
�(s)

22s

(
n − j

2

)
m−s

,

for each k = 1, . . . , m. Finally, our Bayesian estimator for the discovery probability is

D̂(n: j)
m = (−θ2)m+1

(n)m+1

m∑
k=0

∑n+m
i=0

(
n+m

i

)
(−θ2)−i�{ j + k + 1 + 2i − 2(m + n); θ}∑n−1

i=0

(
n−1

i

)
(−θ2)−i�( j + 2 + 2i − 2n; θ)

×
m∑

s=k

(
m

s

) (
2s − k − 1

s − 1

)
2k−2s�(s)

�(k)

(
n − j

2

)
m−s

.

4. ILLUSTRATIONS

4·1. A simple numerical example

Suppose a dataset of n observations is to be collected. Once the n observations are collected, the
number of distinct ones j is recorded, and a prediction of the number of new distinct observations
within another dataset of m observations has to be provided.
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Fig. 1. Synthetic example. Prior probabilities for K50 corresponding to the Dirichlet process, the two choices of
Poisson–Dirichlet process and the normalized inverse Gaussian process such that E(K50) = 25.

We will compare the behaviour of the Dirichlet, the two-parameter Poisson–Dirichlet process
and the normalized inverse Gaussian process. Suppose the number of observations to be collected
at the first stage is n = 50 and the prior guess of the number of distinct ones is j = 25. Translating
this prior guess into a prior specification results in a choice of parameters such that E(K50) = 25.
For the Dirichlet process this is achieved by setting θ = 19·233, while for the normalized inverse
Gaussian process one needs to set θ = 11·074. For the Poisson–Dirichlet process, with two free
parameters, there are many possible choices of (σ, θ) for which E(K50) = 25. For comparison
purposes, we choose σ = 0·25 and σ = 0·75, which lead to (σ, θ) = (0·25, 12·216) and (σ, θ) =
(0·75, 0·698). Figure 1 displays the four corresponding prior distributions of K50. The Dirichlet
process is the one most concentrated around 25 and the Poisson–Dirichlet process with parameter
(σ, θ) = (0·75, 0·698) represents the least informative prior. Note that θ controls the location of
the prior distribution of Kn . Hence, a low value of σ , combined with a small θ , concentrates the
distribution on small numbers of species, whereas large values for both σ and θ shift the mass
towards large numbers of species.

Given that a sample of size n = 50 has been collected and the number j of distinct observations
has been recorded, one can compute the posterior distribution of the number of new distinct
observations in an additional dataset of size m = 50. The posterior distributions of (K (50)

50 |K50 =
j) corresponding to j ∈ {5, 25, 45} are depicted in Fig. 2, and the corresponding Bayes estimates,
together with their 95% highest posterior density intervals, are provided in Table 1.

The behaviour of the various random probability measures does not change significantly if the
sample sizes n and m are modified and hence some structural conclusions can be derived. First, the
inadequacy of the Dirichlet process is apparent, since the distribution of (K (n)

m |Kn = j) does not
depend on j . Secondly, both the Poisson–Dirichlet process and the normalized inverse Gaussian
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Fig. 2. Synthetic example. Posterior probability distributions of (K (50)
50 |K50 = j)

for (a) j = 5, (b) j = 25, (c) j = 45 corresponding to the Dirichlet process, the
two choices of the Poisson–Dirichlet process and the normalized inverse Gaussian

process.
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Table 1. Synthetic example. Posterior expected number of new observations E(K (50)
50 |K50 = j)

and 95% highest posterior density intervals corresponding to the Dirichlet process, the two
choices of Poisson–Dirichlet process and the normalized inverse Gaussian process.

m = n = 50 j = 5 j = 25 j = 45
Dirichlet process θ = 19·233 10·51 ∈ (4, 16) 10·51 ∈ (4, 16) 10·51 ∈ (4, 16)
PD process (σ, θ ) = (0·25, 12·216) 8·6 ∈ (2, 14) 11·79 ∈ (4, 18) 14·99 ∈ (8, 22)
N-IG process θ = 11·074 9·4 ∈ (3, 15) 13·7 ∈ (6, 20) 20·03 ∈ (12, 28)
PD process (σ, θ ) = (0·75, 0·698) 4 ∈ (0, 11) 17·49 ∈ (8, 26) 30·99 ∈ (22, 40)

PD process, Poisson–Dirichlet process; N–IG process, normalized inverse Gaussian process.

process lead sensibly to posterior inferences monotone in j . With the fairly noninformative
Poisson–Dirichlet process prior with parameters (σ, θ) = (0·75, 0·698) the posterior distribution
unsurprisingly adheres very closely to the structure of the observed data.

4·2. Analysis of a dataset from genomics

An important area of application of the results in Propositions 1 and 2 concerns the analysis of
expressed sequence tags in genomics. Expressed sequence tags are single-read sequences of cDNA

fragments obtained by sequencing randomly selected cDNA clones from a cDNA library. Since a
cDNA library consists of millions of cDNA clones, only a small fraction is usually sequenced
because of cost constraints; see Mao (2004) for further references and details. This is a natural
setting in which the estimation of the probability of discovering a new species is relevant:
knowledge of the costs associated with sampling might suggest a threshold τ below which it is
not convenient to proceed with sampling. Using the same expressed sequence tags dataset as in
Mao (2004) allows us to draw a comparison with the frequentist estimators. The dataset concerns
a cDNA library made from the 0 mm to 3 mm buds of tomato flowers (Mao & Lindsay, 2002; Mao,
2004). The basic sample consists of n = 2586 expressed sequence tags and this gives j = 1825
different cDNA fragments each of which represents a unique gene. If ri denotes the number of
clusters of size i , then the dataset gives ri = 1434, 253, 71, 33, 11, 6, 2, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1
with i ∈ {1, 2, . . . , 14} ∪ {16, 23, 27}. This means we are observing 1434 clusters of size 1, 253
clusters of size 2, and so on. In order to make direct comparison with the results summarized
in Table 1 of Mao (2004), we choose m ∈ {517, 1034, 1552, 2069, 2586}, which correspond to
20%, 40%, 60%, 80% and 100% of the size of the basic sample.

As a prior distribution we use a two-parameter Poisson–Dirichlet process. A sensible strategy
for selecting the values of θ and σ might rely upon empirical considerations. Indeed, we
suggest a maximum likelihood procedure: consider the joint distribution, φn1,...,n j (σ, θ), of
Kn and (N1,n, . . . , NKn,n), given in (7), evaluated at ( j, n1, . . . , n j ) as a function of σ and
θ . In our case j = 1825 and the ni ’s can be recovered from the ri ’s, i.e. n1 = · · · = n1434 = 1,
n1435 = · · · = n1687 = 2 and so on. As a result of exchangeability, the ordering of the ni ’s has no
influence. Hence, we choose θ = θ∗ and σ = σ ∗ such that

φn1,...,n j (σ
∗, θ∗) = max

σ,θ
φn1,...,n j (σ, θ)·

In our case the likelihood is unimodal with maximum at (σ ∗, θ∗) = (0·612, 741). It is interesting
to note that, if we fix σ = 0·612, the value of θ which yields E(K2586) = 1825, a common choice
in Bayesian prior specification, is exactly θ = 741.

We will also consider a less elaborate prior specification with an intermediate choice of σ =
0·5 combined with θ such that E(K2586) = 1825. This gives (σ, θ) = (0·5, 1093·313). Indeed,
empirical investigations with simulated data seem to suggest that σ = 0·5 is always a good
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Table 2. Genomics example. Posterior expected number of new genes
E(K (2586)

m |K2586 = 1825) and 95% highest posterior density intervals for
m ∈ {517, 1034, 1552, 2069, 2586}.

m Poisson–Dirichlet process Poisson–Dirichlet process
(σ, θ ) = (0·612, 741) (σ, θ ) = (0·5, 1093·313)

517 280·59 ∈ (257, 305) 272·58 ∈ (249, 297 )
1034 546·87 ∈ (512, 582) 528·83 ∈ (495, 563 )
1552 801·62 ∈ (758, 846) 771·83 ∈ (729, 815 )
2069 1045·6 ∈ (994, 1098) 1002·6 ∈ (953, 1053)
2586 1280·6 ∈ (1221, 1341) 1223·2 ∈ (1166, 1280)

Fig. 3. Genomics example. The figure shows 95% highest posterior density intervals for the
relative proportion of new genes in a sample of size m = 517, 1034, 1552, 2069 and 2586

based on the two choices of the Poisson–Dirichlet process.

choice when no precise prior information is available. Note, however, that this procedure does
not incorporate information about the number of clusters of a given size, ri .

Finally, one could also specify a prior for (σ, θ), implementation of which would be straight-
forward. However, the size of the dataset and the fact that the parameters directly describe the
distribution of the observables suggested the use of an ‘empirical Bayes’ estimate of (σ, θ) for
the present application.

First we consider the posterior distribution of Kn given the basic sample, namely the distribution
of (K (2586)

m |K2586 = 1825) for m ∈ {517, 1034, 1552, 2069, 2586}. The expected number of new
genes together with the corresponding 95% highest posterior density intervals are displayed in
Table 2 for the two different parameter specifications. In Fig. 3, instead of the absolute numbers,
the relative proportions of new genes for samples of size m ∈ {517, 1034, 1552, 2069, 2586} are
depicted.

Overall, the specification (0·612, 741) leads us to predict a slightly larger proportion of new
genes, as can be explained as follows. In choosing (σ, θ) = (0·612, 741) we made explicit use
of the frequency of clusters of a given size. Indeed, the requirement K2586 = 1825 allows for a
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Table 3. Genomics example. Estimates in percentages for m ∈ {517, 1034, 1552, 2069, 2586}
obtained with the estimator D̂(2586:1825)

m arising from the two choices of the Poisson–Dirichlet
process, from the moment–based estimator Ûe and from the likelihood–based estimator Ũe. For

the Poisson–Dirichlet processes, the 95% highest posterior density intervals are also shown.

m Poisson–Dirichlet process Poisson–Dirichlet process Ûe Ũe

(σ, θ ) = (0·612, 741) (σ, θ ) = (0·5, 1093·313)
0 55·84 54·52 55·46 55·45

517 52·80 ∈ (52·42, 53·19) 51·04 ∈ (50·76, 51·33) 51·86 51·83
1034 50·28 ∈ (49·79, 50·77) 48·17 ∈ (47·80, 48·53) 48·74 48·66
1552 48·14 ∈ (47·59, 48·69) 45·72 ∈ (45·31, 46·13) 45·99 45·74
2069 46·30 ∈ (45·70, 46·88) 43·62 ∈ (43·18, 44·05) 43·51 42·80
2586 44·68 ∈ (44·06, 45·30) 41·78 ∈ (41·32, 42·23) 41·24 39·98

number of clusters of size 1 in the range [1064, 1824], where the most realistic configurations are
not close to the upper bound; for example r1 = 1824 would imply that r762 = 1 and ri = 0 for all
other i . The actual number of clusters of size 1, namely 1434, is relatively high and this naturally
leads to expect a similar configuration in the new sample which is tantamount of expecting a
relatively high number of new genes. This is in accordance with the behaviour of the estimator
Ûn = 1 − (r1/n) attributed to Turing: the higher the r1 is the higher the probability of discovering
a new species in further sampling; see Good (1953). Indeed, the choice (0·5, 1093·313) would
correspond to the maximum likelihood choice for a basic sample less peaked in r1. The maximum
likelihood choice of (σ, θ) is to be rejected only if there is an expert opinion about the balancedness
of the configuration of the enlarged sample X (2,m) that leads to a different pair (σ, θ).

We now consider the problem of estimating D(2586:1825)
m , namely the probability of observing

a new gene at the (n + m + 1)th draw, corresponding to sizes of the enlarged sample m ∈
{517, 1034, 1552, 2069, 2586}. This is the same set-up as in Mao (2004), where a moment-based
estimator Ûe, which coincides with the Good–Toulmin estimator, and a likelihood-based estimator
Ũe are considered. Table 3 illustrates the results provided by our Bayesian estimator D̂(2586:1825)

m ,
together with the results of Mao (2004).

We have also considered a measure of uncertainty about the evaluation of D(2586:1825)
m . Let

[a, b] be a 95% highest posterior density interval for (K (n)
m | Kn = j) and note that the predictive

probability pr (K (m+n)
1 = 1 | Kn = j, K (n)

m ) is monotone increasing with respect to the number

K (n)
m of new different species to be observed in X (2,m). Hence,

t1 := pr
(
K (m+n)

1 = 1
∣∣ Kn = j, K (n)

m = a
)

< pr
(
K (m+n)

1 = 1
∣∣ Kn,= j, K (n)

m = b
) =: t2,

and we have pr (t1 � D(n: j)
m � t2) � 0·95. Consequently, [t1, t2] is the 95% highest posterior density

interval for the probability of discovering a new species at the (n + m + 1)th draw, given that
Kn = j is the number of different species observed in the basic sample. These resulting intervals
are reported in Table 3. Figure 4 displays the decay of the probability of discovering a new gene
as m increases.

Note that the parameter choice of (0·5, 1093·313) for our estimator mimics very closely the
frequentist estimates for the discovery probability, whereas the pair (0·612, 741) provides slightly
larger estimates. As previously mentioned, unless an expert suggests a more balanced configu-
ration of the m-sample, the Bayesian answer to the problem should be the one corresponding to
(0·612, 741), thus predicting a somewhat higher discovery probability.
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Fig. 4. Genomics example. Decay of the estimate D̂(2586:1825)
m as m increases corresponding to the two choices of the

Poisson–Dirichlet process, the moment-based estimator Ûe and the likelihood-based estimator Ũe.
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México, México.

APPENDIX

Technical details

Generalized factorial coefficients. The results in § 3 rely on the use of generalized factorial coefficients,
both central and noncentral. Here we provide exact definitions for them and formulae for their evaluation;
for further details and pointers to the literature, see Singh & Charalambides (1988) and Charalambides
(2005). For any n � 1 and k = 0, . . . , n, the generalized factorial coefficient C (n, k; σ ) coincides with the
coefficient of the kth-order factorial of t in the expansion of the nth-order generalized factorial of t with
scale parameter σ , i.e.

(σ t)n =
n∑

k=0

C (n, k; σ )(t)k ·
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In order to determine the distribution of the number Kn of different species appearing in a sample of size
n, we use the representation

C (n, k; σ ) = 1

k!

k∑
j=0

(−1) j

(
k

j

)
(− jσ )n,

with the proviso that C (0, 0; σ ) = 1 and C (n, 0; σ ) = 0 for all n � 1. Note that C differs slightly from the
definition of generalized factorial coefficient C(n, k; σ ) as given for example in Charalambides & Singh
(1988) and Charalambides (2005). Indeed, C (n, k; σ ) = (−1)n−kC(n, k; σ ). Moreover, for the special case
σ = 1/2, one has the simplification

C (n, k, 1/2) = 2k−2n

(
2n − k − 1

n − 1

)
�(n)

�(k)
·

Along with C (n, k; σ ) we consider the noncentral generalized factorial coefficient, C (n, k; σ, γ ). It
is defined as the coefficient of the kth-order factorial of t in the expansion of the nth-order noncentral
generalized factorial of t , with scale parameter σ and noncentrality parameter γ , i.e.

(σ t − γ )n =
n∑

k=0

C (n, k; σ, γ ) (t)k ·

From equation (2·60) in Charalambides (2005),

C (n, k; σ, γ ) = 1

k!

k∑
j=0

(−1) j

(
k

j

)
(−σ j − γ )n (A1)

and this representation can be used to evaluate the probability of discovering a new species. Moreover,
from equation (2·56) in Charalambides (2005) it is possible to relate noncentral and central generalized
factorial coefficients, through

C (n, k; σ, γ ) =
n∑

s=k

(n

s

)
C (s, k; σ )(−γ )n−s · (A2)

Finally we briefly recall the relationship to Stirling numbers, namely that

lim
σ→0

C (n, k; σ )

σ k
= |s(n, k)|,

where, as before, |s(n, k)| is the sign-less Stirling number of the first kind. Moreover, we have

lim
σ→0

C (n, k; σ, γ )

σ k
=

n∑
i=k

(n

i

)
|s(i, k)|(−γ )n−i ·

Proof of Proposition 1. The proof will consist of two steps: first we derive a combinatorial result,
which appears to be the key to the results of the present paper and then we exploit it in the context of
Proposition 1. An alternative proof, based on Bayes’ theorem, uses the prior distribution of Kn and the
expression for pr (Kn = k|Kn+m = j) as given in Gnedin & Pitman (2005).

LEMMA A1. For each ν � 1 and j � 1, let A j,ν = {(ν1, . . . , ν j ) : νi � 0,
∑ j

i=1 νi = ν}. Then

∑
(ν1,...,ν j )∈A j,ν

(
ν

ν1 · · · ν j

) j∏
i=1

(1 − σ )ni +νi −1 = (n − jσ )ν

j∏
i=1

(1 − σ )ni −1,
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where (n1, . . . , nk) is such that ni > 0, for i = 1, . . . k, and
∑k

i=1 ni = n.

Proof of Lemma A1. First recall that

∑
(ν1,...,ν j )∈A j,ν

(
ν

ν1 · · · ν j

) j∏
i=1

(1 − σ )ni +νi −1 =
∑

(ν1,...,ν j )∈A j,ν

(
ν

ν1 · · · ν j

)∏ j
i=1 �(ni + νi − σ )

�(1 − σ ) j
·

Rewrite
∏ j

i=1 �(ni + νi − σ ) as a multiple gamma integral and exploit the multinomial formula, obtaining

1

{�(1 − σ )} j

∑
(ν1,...,ν j )∈A j,ν

(
ν

ν1 · · · ν j

)∫
(R+) j

e−
∑ j

i=1
ui

{
j∏

i=1

uni +νi −σ−1
i

}
du1 · · · du j

= 1

{�(1 − σ )} j

∫
(R+) j

e−
∑ j

i=1
ui (u1 + · · · + u j )

ν

{
j∏

i=1

uni −σ−1
i

}
du1 · · · du j ·

We change the variables to yi = ui for i ∈ {1, . . . , j − 1} and y j = ∑ j
i=1 ui to obtain

1

{�(1 − σ )} j

∫ +∞

0
e−y j yν

j

⎧⎨
⎩

∫
B(y j )

yn1−σ−1
1 · · · y

n j−1−σ−1
j−1

(
j∑

i=1

yi

)n j −σ−1

dy1 . . . dy j−1

⎫⎬
⎭ dy j ,

where B(y j ) = {(y1, . . . , y j−1) : yi � 0,
∑ j−1

i=1 yi � y j }. A further change of variables to
(z1, . . . , z j−1, z j ) = (y1/y j , . . . , y j−1/y j , y j ) yields

1

{�(1 − σ )} j

∫ +∞

0
e−z j zν+n− jσ

j

×
⎧⎨
⎩

∫
� j−1

zn1−σ−1
1 · · · z

n j−1−σ−1
j−1

(
1 −

j−1∑
i=1

zi

)n j −σ−1

dz1 . . . dz j−1

⎫⎬
⎭ dz j ,

where � j−1 := {(z1, . . . , z j−1) : zi � 0,
∑ j−1

i=1 zi � 1} is the ( j − 1)-dimensional simplex. Then the above
integral reduces to∏ j

i=1 �(ni − σ )

{�(1 − σ )} j�(n − jσ )

∫ +∞

0
e−z j zν+n− jσ−1

j dz j =
{∏ j

i=1 �(ni − σ )

(�(1 − σ )) j

}
(n − jσ )ν

and the result follows. The lemma can also be proved by induction from the classical Chu–Vandermonde
identity, but the direct proof outlined above seems neater. �

We can now proceed with the proof of Proposition 1. In order to determine the conditional distribution
of K (n)

m given a sample X (n)
j , we make use of the exchangeable partition probability function as follows:

pr

(
K (n)

m = k

∣∣∣∣ X (1,n)
j

)

=
∑

π∈Pm, j+k
�

(n+m)
j+k {n1 + m1(π ), . . . , n j + m j (π ), m j+1(π ), . . . , m j+k(π )}

�
(n)
j (n1, . . . , n j )

, (A3)

where Pm, j+k denotes the set of all partitions of m observations into q � m classes, with q ∈ {k, . . . , k +
j}. Of the q classes into which the observations Xn+1, . . . , Xn+m are partitioned, k are new and q − k � j
coincide with some of those already observed in the conditioning sample X (1,n)

j . If we make use of the
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hypothesized Gibbs structure (2), the numerator in (A3) becomes

∑
π∈Pm, j+k

�
(n+m)
j+k {n1 + m1(π ), . . . , n j + m j (π ), m j+1(π ), . . . , m j+k(π )}

= Vn+m, j+k

∑
π∈Pm, j+k

j∏
i=1

(1 − σ )ni +mi (π)−1

k∏
r=1

(1 − σ )m j+r (π)−1·

In order to evaluate this sum, we split the new m observations into two groups: s of them will generate the
new k classes and the remaining m − s will be spread among the j old groups of distinct observations.
Hence, considering just the sum, we have

∑
π∈Pm, j+k

j∏
i=1

(1 − σ )ni +mi (π)−1

k∏
r=1

(1 − σ )m j+r (π)−1

=
m∑

s=k

(
m

s

)⎧⎨
⎩

∑
(∗∗)

(
m − s

m1 · · · m j

) j∏
i=1

(1 − σ )ni +mi −1

⎫⎬
⎭

⎧⎨
⎩ 1

k!

∑
(∗∗∗)

(
s

m j+1 · · · m j+k

) k∏
r=1

(1 − σ )m j+r −1

⎫⎬
⎭ ,

where (∗∗) means that the sum runs through the set of nonnegative integers

{
(m1, . . . , m j ) : mi � 0 for i = 1, . . . , j,

j∑
i=1

mi = m − s

}
,

and (∗ ∗ ∗) = {(m j+1, . . . , m j+k) : m j+i � 1 for i = 1, . . . , k,
∑k

i=1 m j+i = s}. Considering the second
factor within the sum, as has been already observed, we have

1

k!

∑
(∗∗∗)

(
s

m j+1 · · · m j+k

) k∏
r=1

(1 − σ )m j+r −1 = C (s, k, σ )

σ k
·

This, combined with a straightforward application of Lemma A1 with ν = m − s, gives

∑
π∈Pm, j+k

j∏
i=1

(1 − σ )ni +mi (π)−1

k∏
r=1

(1 − σ )m j+r (π)−1

=
∏ j

i=1(1 − σ )ni −1

σ k

m∑
s=k

(
m

s

)
C (s, k, σ )(n − jσ )m−s,

and the last sum is seen to be a noncentral generalized factorial coefficient because of (A2). Now, if we
specify the form of the denominator in (A3) according to (2), the expression in (4) follows. Finally note
that, when k = 0, the expression in (4) reduces to

pr
(

K (n)
m = j

∣∣ X (1,n)
j

) = Vn+m, j

Vn, j
(n − jσ )m

because of the definition of the generalized factorial coefficient. �

Proof of Proposition 2. In order to obtain the estimator, one can make use of (4) in Proposition 1.
First note that the Bayes estimate of D(n: j)

m = pr (K (n+m)
1 = 1 | X (n)

j , K (n)
m ), with respect to a squared loss
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function, is given by its expected value

D̂(n: j)
m =

m∑
k=0

pr
(

K (n+m)
1 = 1

∣∣ X (n)
j , K (n)

m = k
)
pr

(
K (n)

m = k
∣∣ Kn = j

)·
The second factor in each summand above is determined via Proposition 1, whereas

pr
(

K (n+m)
1 = 1

∣∣ X (n)
j , K (n)

m = k
)

is just the one-step prediction, since it coincides with the probability of drawing a new species given that
the first (n + m) individuals observed come from ( j + k) distinct species. Hence

pr
(

K (n+m)
1 = 1

∣∣ X (n)
j , K (n)

m = k
) = Vn+m+1, j+k+1

Vn+m, j+k

and the result is proved. �
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REGAZZINI, E., LIJOI, A. & PRÜNSTER, I. (2003). Distributional results for means of random measures with independent

increments. Ann. Statist. 31, 560–85.
ROBBINS, H. E. (1968). Estimating the total probability of the unobserved outcomes of an experiment. Ann. Math.

Statist. 39, 256–7.
STARR, N. (1979). Linear estimation of the probability of discovering a new species. Ann. Statist. 7, 644–52.
SHEN, T.-J., CHAO, A. & LIN, C.-F. (2003). Predicting the number of new species in further taxonomic sampling.

Ecology 84, 798–804.
TIWARI, R. C. & TRIPATHI, R. C. (1989). Nonparametric Bayes estimation of the probability of discovering a new

species. Commun. Statist. A 18, 877–95.
ZHANG, H. & STERN, H. (2005). Investigation of a generalised multinomial model for species data. J. Statist. Comp.

Simul. 75, 347–62.

[Received June 2006. Revised February 2007]


	Introduction
	Gibbs-type priors
	Estimating the probability of discovering a new species
	Illustrations
	A simple numerical example
	Analysis of a dataset from genomics


