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Summary. The paper deals with the problem of determining the number of components in a
mixture model. We take a Bayesian non-parametric approach and adopt a hierarchical model
with a suitable non-parametric prior for the latent structure. A commonly used model for such a
problem is the mixture of Dirichlet process model. Here, we replace the Dirichlet process with
a more general non-parametric prior obtained from a generalized gamma process. The basic
feature of this model is that it yields a partition structure for the latent variables which is of Gibbs
type. This relates to the well-known (exchangeable) product partition models. If compared with
the usual mixture of Dirichlet process model the advantage of the generalization that we are
examining relies on the availability of an additional parameter σ belonging to the interval (0,1):
it is shown that such a parameter greatly influences the clustering behaviour of the model. A
value of σ that is close to 1 generates a large number of clusters, most of which are of small
size. Then, a reinforcement mechanism which is driven by σ acts on the mass allocation by
penalizing clusters of small size and favouring those few groups containing a large number of
elements. These features turn out to be very useful in the context of mixture modelling. Since
it is difficult to specify a priori the reinforcement rate, it is reasonable to specify a prior for σ.
Hence, the strength of the reinforcement mechanism is controlled by the data.

Keywords: Bayesian clustering; Bayesian non-parametric inference; Dirichlet process;
Mixture model; Predictive distribution; Product partition model

1. Introduction

In Bayesian hierarchical mixture models with an unknown number of components, the analysis
of the distributional properties of the number of clusters in the data is a key issue. Taking a
non-parametric approach implies assuming a potentially infinite number of clusters in an infi-
nite sequence of exchangeable observations and this yields greater modelling flexibility. A recent
interesting review concerning the potential of the Bayesian approach in mixture modelling is pro-
vided in Marin et al. (2005). The most widely used non-parametric hierarchical mixture model
is the mixture of Dirichlet process (MDP) model that was introduced by Lo (1984). A random
discrete probability distribution, such as the Dirichlet process, exploited as a mixing measure in
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the model is an essential tool for modelling the clustering behaviour. Indeed, the occurrence of
ties at the higher level of the hierarchy induces a clustering structure within the observed data.
One might wonder how a specific choice of the driving random discrete distribution affects the
clustering mechanism. In this respect, it is worth mentioning that various new classes of discrete
priors generalizing the Dirichlet process have been introduced recently. Among them we recall
species sampling models (Pitman, 1996), dependent Dirichlet processes (MacEachern, 1999),
generalized stick breaking priors (Hjort, 2000; Ishwaran and James, 2001), Poisson–Kingman
models (Pitman, 2003), normalized random measures with independent increments (Regazzini
et al., 2003) and spatial neutral to the right models (James, 2006). Hence, a natural exten-
sion of the MDP model is obtained by replacing the Dirichlet process with specific priors that
are contained in the classes that were listed above. For example, Ishwaran and James (2001,
2003) investigated formal properties of mixture models based on species sampling priors and
specifically examined the mixture of the two-parameter Poisson–Dirichlet process due to Pitman
(1995). In Lijoi et al. (2005) a mixture model based on the normalization of an inverse Gaussian
process was considered and a comparison with the clustering structure that is induced by the
MDP was drawn. Mixtures based on spatial neutral to the right processes were dealt with in
James (2007). Another extension of the MDP was also provided in De Iorio et al. (2004), who
made use of the dependent Dirichlet process.

The clustering structure that is induced by these classes of models has not been deeply inves-
tigated. An exception is represented by the MDP model for which the partitions generated
have been studied in Petrone and Raftery (1997) and Green and Richardson (2001). Indeed,
in the Dirichlet case the only free parameter which can be used to tune the distribution of the
number of distinct components is the total mass of the base-line measure. Typically a prior
distribution is specified for such a parameter to smooth the highly peaked distribution of the
number Kn of clusters in a sample of size n. Otherwise the clustering behaviour is fixed and
cannot be controlled. Here we propose an alternative mixture model with a generalized gamma
prior as a mixing measure. Such a random-probability measure P̃ is a species sampling model
obtained by normalizing the jumps of the generalized gamma process that was introduced by
Brix (1999). The distribution of P̃ and, hence, the distribution of Kn depend on two free param-
eters β ∈ .0, ∞/ and σ∈ .0, 1/. The first plays the same role as the total mass in the MDP model,
whereas σ influences the grouping of the observations in distinct clusters. Since σ directly affects
the way that clusters are formed, it is apparent that having gained 1 degree of freedom is of great
importance. It should be mentioned that the Dirichlet and the normalized inverse Gaussian
processes are special cases of this wide family of priors. However, the value of σ in these two
models is fixed and cannot be tuned. In the model that we shall illustrate we can either fix σ at
a suitable value that is suggested by one’s prior information or assign a prior distribution to it.
Clearly, owing to the availability of the additional parameter σ, there is no need to place a prior
on β in our treatment.

The formal set-up can be described as follows. Let .Yi/i�1 be a sequence of observable random
variables with values in Y, whereas .Xi/i�1 is a sequence of latent random variables with values
in X. We assume a mixture model for the observations, namely

Yi|Xi
ind∼ f.·|Xi/,

Xi|P̃ IID∼ P̃ ,

P̃ ∼�β,σ

⎫⎪⎬
⎪⎭ .1/

where f.·|Xi/ is a density function and �β,σ stands for the distribution of a generalized gamma
process with parameters β and σ. This is the same as assuming that, given P̃ , the observations
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Yi are independent and identically distributed with density

f.y/≡
∫

X
f.y|x/ P̃.dx/:

If P̃ coincides with the Dirichlet process, we have the MDP model of Lo (1984). Indeed, an
early use of the MDP model is also present in Berry and Christensen (1979), who provided an
alternative empirical Bayes estimator for the probability of success in a Bernoulli model.

The outline of the paper is as follows. In Section 2 we describe a general framework for studying
the clustering behaviour that is generated by random-probability measures inducing Gibbs-type
random partitions. These are linked to the theory of (exchangeable) product partition models
and an important result which characterizes the so-called cohesion functions is reformulated
in this context. Having connected exchangeable product partition models and mixture models
with Gibbs-type driving measure, in Section 3 we focus attention on a special subclass which
stands out for tractability and is of particular appeal for modelling. We essentially propose to
use mixture models which exploit at the higher stage of the hierarchy a non-parametric prior
that is derived from a generalized gamma process. We first derive an explicit expression for
the prior distribution of the number of components in the mixture. Moreover, the predictive
distributions, a key ingredient for simulation algorithms, are given. The asymptotic behaviour
of the distribution of the number of clusters Kn in a sample of size n is studied in detail: we have
that Kn increases as nσ, and thus is much quicker than the well-known logarithmic rate of the
Dirichlet process. The asymptotic proportion of the clusters of a given size is derived as well.
The limiting behaviour is greatly influenced by the parameter σ: a value of σ that is close to 1
yields a partition structure with a large number of clusters whose size tends to be small. The
analysis of the distribution of the number of clusters is completed with some qualitative study.
Indeed, it is seen that the two free parameters β and σ can be used to tune the location and the
flatness respectively of the prior distribution of Kn. The parameter σ turns out to control an
interesting reinforcement mechanism: the sampling procedure tends to reinforce significantly,
among the old clusters, those having higher frequencies. This is a very appealing feature for
inferential purposes and is illustrated by means of a simulated data example. The analytical and
qualitative study of the distribution of the number of clusters highlights a trade-off which must
be faced: a large value of σ favours strong reinforcement but at the same time prevents us from
tuning the prior expected number of clusters on a small number, which is typically the case.
The best way to circumvent this problem is to elicit a prior for σ and to let the data choose the
appropriate reinforcement rate. Section 3 is completed with the derivation of the exact expres-
sion for the posterior distribution of the number of clusters. Unfortunately such an expression
is not of immediate use and hence suitable simulation algorithms must be exploited. In Section
4 we consider a slightly more complicated mixture model in which, owing to its importance for
inferential purposes, a prior distribution is assigned to the parameter σ. The modified Markov
chain Monte Carlo (MCMC) algorithm is described in detail and the numerical issues that are
related to the use of a GG.β, σ/ mixture model are discussed. The model is applied to the same
simulated data set as is considered in Section 3: the performance, with an additional hierarchy
on σ, turns out to be significantly better. Finally, we consider data that are generated from a
complex mixture of normal distributions with different weights and variances.

2. A general model for clustering behaviour

An important issue that is addressed within mixture models concerns the clustering behaviour
that is induced by the latent variables Xi at the higher level of the hierarchy in model (1). In what
follows we suppose that the Xis take values in a complete and separable metric space X and
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denote by � the corresponding Borel σ-field. The prior distribution which is employed on the
space of probability distributions on X is the so-called species sampling model that is defined by

P̃.A/=
∞∑

j=1
p̃j δZj .A/ ∀A∈�, .2/

where δx is the point mass at x, the Zjs are independent and identically distributed (IID) with
common non-atomic distribution P0 and the random weights p̃j are independent from the Zjs.
This class of random probability measures was introduced by Pitman (1996). It can easily be
shown that, for this model, the prior guess at the shape of P̃ is P0, i.e. E[P̃.A/]=P0.A/ for any
A in �. Since a species sampling model selects discrete distributions (almost surely), ties within
the latent variables Xi occur with positive probability. If k ∈{1, . . . , n} is the number of distinct
values among the n variables X1, . . . , Xn, we denote such values by XÅ

1 , . . . , XÅ
k . Moreover, nj is

the number of Xis coinciding with XÅ
j , thus implying that Σk

j=1nj =n. We shall focus attention
on species sampling models inducing a joint distribution of the number of ties Kn among n
latent variables and the corresponding absolute frequencies of the product form

Vn,k

k∏
j=1

.1−σ/nj−1 σ ∈ [−∞, 1/, .3/

where the Vn,ks are a set of non-negative weights with V1,1 = 1, ni � 1 for each i= 1, . . . , k and
Σk

i=1ni = n. Moreover, .a/n = a.a + 1/ . . ..a + n − 1/ with the convention .a/0 = 1. This means
that the distribution of the random partition of the n latent variables X1, . . . , Xn in model (1) fac-
torizes in a term depending only on n and on the number of clusters k and a term which depends
on the abundances njs of the various clusters through σ. As in Pitman (2006) and Gnedin and
Pitman (2005), we say that the random partition whose law is identified by expression (3) is of
Gibbs type. Moreover, P̃ gives rise to the predictive distributions

P.Xn+1 ∈A|X.n//= Vn+1,k+1

Vn,k
P0.A/+ Vn+1,k

Vn,k

k∑
j=1

.nj −σ/δXÅ
j
.A/ ∀A∈�, .4/

where XÅ
1 , . . . , XÅ

k are the k distinct observations in the sample X.n/ = .X1, . . . , Xn/. The predic-
tive distribution results from a linear combination of P0 and of a weighted empirical distribution
which depends on the parameter σ. We shall show that the clustering behaviour of the Xis can
dramatically change according to the value of σ.

It is interesting to note how we can recover the Dirichlet process as a special case. If Vn,k =
ak=.a/n and σ =0, then expression (3) yields

ak

.a/n

k∏
i=1

.ni −1/!

which is the Ewens sampling formula induced by a Dirichlet process whose base-line measure
has total mass a>0. See Ewens (1972) and Antoniak (1974). This formula has found application
in a variety of scientific areas ranging from Bayesian statistics to population genetics. See also
Arratia et al. (2003).

There is also a close connection between Gibbs-type random partitions and the product par-
tition models that were introduced by Hartigan (1990) and further studied, among others, by
Barry and Hartigan (1993) and Quintana and Iglesias (2003). If Πn represents a random par-
tition of the set of integers {1, . . . , n}, a product partition model corresponds to a probability
distribution for Πn represented as
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P[Πn ={S1, . . . , Sk}]=M
k∏

i=1
c.Si/

where c.·/ is known as the cohesion function and

M =1
/ ∑

π∈Pn

k∏
i=1

c.Si/,

Pn being the set of all partitions of the integers {1, . . . , n}. The model that we are dealing
with can be seen as an (exchangeable) product partition model. Indeed, if |S| = card.S/ and
Ij ={i : Xi =XÅ

j } for each j ∈{1, . . . , k}, then we have

Yi|.XÅ
1 , . . . , XÅ

k , Πn/
ind∼ f.·|XÅ

j / i∈ Ij,

XÅ
i |Πn

IID∼ P0 i=1, . . . , k,

Πn ∼product partition distribution with c.S/= .1−σ/|S|−1

where in the above we have set k equal to the number of sets in the partition Πn. Our choice of
c.·/ is quite general in the sense that, if we allow the cohesion function c(S) to be just a function
of the cardinality of S, we can reformulate an important result due to Gnedin and Pitman (2005)
as follows.

Proposition 1 (Gnedin and Pitman, 2005). The exchangeable random partitionΠn has distribu-
tion of the form

Vn,k

k∏
j=1

c.nj/

for any n=1, 2, . . . and 1�k �n, if and only if

c.nj/= .1−σ/nj−1

for some σ ∈ [−∞, 1] and also Vn,k = .n − σk/Vn+1,k + Vn+1,k+1, with the proviso that .1 −
σ/nj−1 =1 when σ =−∞ and that Πn reduces to the singleton partition when σ =1.

From this result it is apparent that if someone is to use a cohesion function depending on
cardinalities, which seems a natural choice, then it must be of the form c.S/= .1−σ/|S|−1. This
provides a strong foundation for our treatment. It is worth noting that, unlike Quintana and
Iglesias (2003), we do not confine ourselves to the Dirichlet process set-up: in our model the
new parameter σ will have a deep influence on the clustering behaviour as will be clear from the
next section.

In this setting, it is of great importance to know the distribution of the number Kn of distinct
observations in the sample X.n/ since it takes on the interpretation of a prior distribution on
the number of components in the mixture model that is defined by expression (1). Within the
class of Gibbs-type random partitions, this distribution is derived, e.g. in Gnedin and Pitman
(2005), and is given by

P.Kn =k/= Vn,k

σk
G.n, k, σ/, .5/

where, for any n�1 and k =1, . . . , n,

G.n, k, σ/= 1
k!

k∑
j=0

.−1/j

(
k

j

)
.−jσ/n
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are known as generalized Stirling numbers or generalized factorial coefficients. It is also the
case that G.0, 0, σ/= 1 and G.n, 0, σ/= 0 for all n� 1. See Charalambides and Singh (1988) or
Charalambides (2005) for a review on Stirling numbers.

To make concrete use of model (3) it is necessary to make the Vn,ks explicit by using the recur-
sive equation that they need to satisfy. In general, this is a difficult task. Apart from the Dirichlet
process prior, the other two cases in which the exact form of Vn,k is known correspond to the
two-parameter Poisson–Dirichlet process (Pitman, 1995) and the normalized inverse Gaussian
process (Lijoi et al., 2005). In the next section we shall consider another Gibbs exchangeable
random partition for which σ lies in (0,1) and the Vn,ks can be determined in closed form. It
is worth noting that Gibbs partitions with negative σ give rise to finite exchangeable partitions
which are mixtures of Poisson–Dirichlet distributions with appropriate parameters. See theorem
12(i) in Gnedin and Pitman (2005).

3. The generalized gamma process prior

The generalized gamma process has been introduced in Brix (1999) for constructing shot noise
Cox processes. It is obtained from a Poisson random process on R+ with mean intensity given by

ν.ds/= Γ.1−σ/−1 exp.−τs/s−.1+σ/ ds s∈R+, .6/

where σ∈ .0, 1/ and τ �0. In a Bayesian framework, such random measures have been exploited
in, for example, Epifani et al. (2003), James (2002) and James et al. (2005). Here, we define a
generalized gamma prior as species sampling model (2) with

p̃i =Ji

/ ∞∑
k=1

Jk .7/

where the Jis are the points of a generalized gamma process. This means that, if N.A/= card.{Ji :
i=1, 2, . . .}∩A/ and A∈�.R+/, the latter being the Borel σ-field on R+, is such that ν.A/<∞,
then N.A/ is a Poisson random variable with

E[N.A/]=ν.A/ ∀A∈R+:

The class that we are considering contains some noteworthy priors as particular cases. For exam-
ple, if τ = 1 and σ → 0 we have the Dirichlet process. However, if τ = 0, then P̃ coincides with
the normalized stable process that was first considered in Kingman (1975). Finally, if σ = 1

2 , we
obtain the normalized inverse Gaussian process. It is known that these three particular cases
induce Gibbs-type random partitions.

The following proposition establishes that, for any σ ∈ .0, 1/, a generalized gamma prior
induces a Gibbs-type partition and provides the distribution of the number of distinct com-
ponents Kn. Note that, once the Gibbs structure has been proved, the determination of the
distribution of Kn is achieved by deriving an explicit expression for Vn,k to be inserted in for-
mula (5).

Proposition 2. A generalized gamma prior induces a Gibbs-type partition and the correspond-
ing distribution of the number of distinct components Kn is given by

P.Kn =k/= exp.β/G.n, k, σ/

σΓ.n/

n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ Γ

(
k − i

σ
;β

)
, .8/

where β = τσ=σ, k ∈{1, . . . , n} and



Reinforcement in Non-parametric Mixture Models 721

Γ.a, x/=
∫ ∞

x

sa−1exp .−s/ds

is the incomplete gamma function.

Vn,k and the prior for Kn in equation (8) depend on two parameters β ∈ R+ and σ ∈ .0, 1/.
For this reason, we refer to the generalized gamma process prior that is defined via equation (7)
as GG.β, σ/. With this new parameterization, the normalized σ-stable process is obtained by
setting β =0, whereas the normalized inverse Gaussian process arises when fixing σ = 1

2 .
As a by-product of proposition 2 we can easily determine from expression (4) the predictive

distributions that are associated with a generalized gamma prior. Indeed, we have

P.Xn+1 ∈B|X.n//=w.n/
0 P0.B/+w.n/

1

k∑
j=1

.nj −σ/δXÅ
j
.B/, .9/

with

w.n/
0 = σ

n

n∑
i=0

(
n

i

)
.−1/iβi=σ Γ .k +1− i=σ;β/

n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ Γ .k − i=σ;β/

, .10/

w.n/
1 =

n∑
i=0

(
n

i

)
.−1/iβi=σ Γ .k − i=σ;β/

n
n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ Γ .k − i=σ;β/

: .11/

Knowledge of the predictive distributions is fundamental for the application of appropriate sim-
ulation algorithms for sampling from a mixture of generalized gamma processes as will become
clear in Section 4.

We now provide a deeper analysis of the behaviour of the distribution of Kn. This turns
out to be important since it provides some hints for the prior specification of the parameters
appearing in equation (5). In particular, the parameter σ plays a remarkable role in determining
the clustering behaviour of the Xis. We first provide an asymptotic result which establishes the
rate of growth of Kn as n increases. Such a statement can also be derived from proposition 13
in Pitman (2003) by suitably rewriting the GG.β, σ/ process as a Poisson–Kingman model.

Proposition 3. Let Kn be the number of clusters that are induced by a GG.β, σ/ prior. Then

Kn=nσ →Sσ .12/

almost surely. The random variable Sσ is strictly positive and its density is given by

gβ,σ.s/= exp
{

β −
(

β

s

)1=σ}
fσ.s−1=σ/

σs1+1=σ
.13/

where fσ is the density function of a positive stable random variable with parameter σ.

In particular, for the normalized inverse Gaussian process (GG.β, 1
2 /), the asymptotic rate

of growth for Kn is
√

n and the density of the limiting random variable S1=2 coincides with

gβ,1=2.s/= 1√
π

exp
(

β − β2

s2 − s2

4

)
: .14/
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Result (12) yields important information for mixture modelling. Indeed, it establishes that the
asymptotic growth of the number of distinct components in a sample of size n for a GG.β, σ/

prior is of the type nσ. This clearly suggests that σ is responsible for the number of distinct latent
variables that are generated by the generalized gamma prior: the bigger σ, the larger the number
of clusters that will be generated among the latent Xis.

Proposition 3 can be compared with analogous results for the Dirichlet and the two-param-
eter Poisson–Dirichlet process. In Korwar and Hollander (1973) it was shown that the number
Kn of clusters that are induced by the Dirichlet process is such that

Kn=log.n/→a

where a > 0 is the total mass of the base-line measure α. As for the Poisson–Dirichlet process
with parameters .a, σ/, in Pitman (2006) it was shown that

Kn=nσ →Yσ

where Yσ has density given by

Γ.a+1/sa=σ fσ.s−1=σ/

Γ.a=σ +1/σs1+1=σ
:

Recall that the normalized stable process can be seen as a particular case of both the GG.β, σ/

family and of the two-parameter Poisson–Dirichlet process. In the latter case, the normalized
stable process is recovered by setting a=0 and, obviously, Yσ coincides in distribution with Sσ

in proposition 3 with the choice β =0.
Another important issue is associated with the clustering mechanism of a GG.β, σ/ prior

to be considered. It concerns the asymptotic behaviour of the number of clusters with a fixed
size. If we let Kn,j denote the number of clusters, among X1, . . . , Xn, of size j, a combination of
proposition 3 with lemma 3.11 in Pitman (2006) leads to the following corollary.

Corollary 1. If Kn is the number of clusters that are generated by a GG.β, σ/ prior, then

Kn,j

Kn
→pσ,j = σ.1−σ/j−1

j!

almost surely, for any j =1, 2, . . . , as n→∞.

Hence, the asymptotic proportion of clusters of size j equals pσ,j and Σ∞
j=1pσ,j = 1. Note

that the asymptotic proportion of clusters of size 1 coincides with σ. As for the tail behaviour
of pσ,j, we have that, for j sufficiently large,

pσ,j ∼ σ

Γ.1−σ/
j−σ−1,

thus suggesting a power law decay of index σ +1.
The parameter σ again appears to be the most influential for the clustering structure of the

latent variables. It should be remarked that a value of σ that is close to 1 yields a partition
structure with a large number of clusters whose size tends to be small. The considerations that
have been developed so far suggest some qualitative analysis of the distribution of Kn to provide
some intuition on the prior specification of a GG.β, σ/ model. This task is fulfilled in the next
subsections.
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3.1. The prior distribution of the number of clusters
Keeping in mind the results that were given in the previous section, it is worth investigating
the qualitative behaviour of the distribution of Kn in equation (5) as the parameters β and σ
vary. This seems of some importance since it should provide guidance on the prior specifica-
tion of β and σ. In Fig. 1 we plot the graphs of the distribution of Kn for various values of
n and of .β, σ/. The probability points are connected by straight lines only for visual simpli-
fication.

It is evident that β can be used to control the location: the bigger β the larger the expected
number of components tends to be. In contrast, σ allows the tuning of flatness of the distribution
of Kn. Indeed, the bigger σ, the flatter is the distribution of Kn, suggesting that a large value of
σ yields a non-informative prior for Kn. Such a finding is in accordance with proposition 3 and
corollary 1, from which it can be deduced that, for a given n, a bigger σ tends to favour a large
number of clusters and, among these, most of them have small size.

A reasonable strategy for the prior specification of .β, σ/ would be to fix Eβ,σ[Kn] equal to
the prior opinion on the number of clusters. If we proceed in this way, we discover that there
are some constraints on the possible choices. In particular, if we would like to tune Eβ,σ[Kn]
on a small value, large values of σ are not allowed whatever the choice of β. To make this
argument more precise, one can numerically check that E0,σ[Kn]�Eβ,σ[Kn] for any fixed σ and
n. Table 1 displays the values of E0,σ[Kn] for various sample sizes n and various choices of σ.
These represent lower bounds for the possible values of Eβ,σ[Kn].

3.2. The reinforcement mechanism induced by σ
Prior distributions inducing a Gibbs-type random partition exhibit a mechanism for allocating
the mass that can be split into two stages, as suggested by the predictive distribution in equa-
tion (9). Given a sample X1, . . . , Xn, with k distinct values XÅ

1 , . . . , XÅ
k , the first step consists

in allocating the mass between a newly observed value XÅ
k+1 sampled from P0 and the set of

observed values {XÅ
1 , . . . , XÅ

k }. This first step depends on n and k only. The second step consists
in spreading the mass of {XÅ

1 , . . . , XÅ
k } to each XÅ

i . This allocation is determined by the size ni of
each cluster and by σ. At this stage, a reinforcement mechanism which is driven by σ takes place.
Indeed, we can see that the ratio of the probabilities that are assigned to any pair of .XÅ

i , XÅ
j /

is given by .ni −σ/=.nj −σ/. As σ → 0, the previous quantity reduces to the ratio of the sizes
of the two clusters, which characterizes the Dirichlet case. If ni > nj, the ratio is an increasing
function of σ. Hence, as σ increases the mass is reallocated from XÅ

j to XÅ
i . This means that

Table 1. Lower bounds on Eβ,σ [Kn] for various choices of σ
and n

σ Results for the following values of n:

n=100 n=250 n=500 n=750 n=1000

0.125 1.89 2.12 2.31 2.43 2.52
0.25 3.49 4.39 5.22 5.77 6.20
0.375 6.32 8.92 11.57 13.47 15.00
0.5 11.27 17.83 25.23 30.90 35.68
0.625 19.81 35.15 54.22 69.86 83.63
0.75 34.38 68.38 115.03 155.92 193.47
0.875 58.95 131.46 241.13 343.84 442.263
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Table 2. Ratio of the probabilities allocated to XÅ
i observed

ni times and XÅ
j observed only once for various choices of σ

Model Results for the following values of ni:

ni =2 ni =10 ni =50 ni =100

Dirichlet 2 10 50 100
GG(β, σ =0:25) 2.33 13 66.33 133
GG(β, σ =0:50) 3 19 99 199
GG(β, σ =0:75) 5 37 197 397
GG(β, σ →1) →∞ →∞ →∞ →∞

the sampling procedure tends to reinforce, among the observed clusters, those having higher
frequencies. Table 2 provides an idea of the magnitude of the reinforcement.

Combining these remarks with the asymptotic results that have been achieved so far, we can
expect a GG.β, σ/ process prior to behave as follows. For a large value of σ, a large number of
clusters will be generated. Among the clusters most will have small size (a small value of ni).
Some of them will have a significant size. The reinforcement mechanism acts on the mass allo-
cation among the clusters by penalizing the clusters of small size and favouring those exhibiting
some empirical evidence. We provide a qualitative illustration of this intuition by resorting to a
simple example.

3.2.1. Example 1
Consider a uniform mixture of three normal distributions with means −4, 0 and 8, and unit
variance. We simulate 100 values from such a mixture and use the data to compare the perfor-
mance of three different mixture models: the MDP model, the mixture of normalized inverse
Gaussian process and the mixture of GG.β, 0:75/ process. In each of these models, the mixing
kernel is Gaussian with fixed variance 1. In the three cases that are under consideration, the main
parameters have been chosen in such a way that the expected number of clusters, among the
100 sampled values, is equal to 50. Thus the prior opinion is very far from the truth. This choice
is motivated by the fact that we wish to highlight the reinforcement mechanism acting with a
GG.β, σ/ process prior. The corresponding parameter values turn out to be a=39:13205 for the
Dirichlet, β =24 for the normalized inverse Gaussian (σ =0:5) and β =2:23 for the generalized
gamma model with σ =0:75. For all three processes P0 is set equal to N.·|Ȳ , t2/, where Ȳ is the
sample mean and t is the data range. Simulations were carried out by using the algorithm that
is detailed in Section 4. The results are based on 20000 iterations with 2000 burn-in sweeps.
In Table 3 we have displayed the posterior probabilities on the number of components. Fig. 2
shows the corresponding Bayesian density estimates. In particular, the GG.2:23, 0:75/ process
provides, in this case, a better fit.

In this example, the choice of a large expected value of the number of clusters has been done
on purpose. It firstly allowed us to point out the benefits of the reinforcement mechanism. Sec-
ondly, it also allowed us to circumvent the problem of fixing a large value of σ and achieving
a low value of Eβ,σ[Kn]. In other terms, there is a trade-off in the choice of σ. The best way
to solve the issue seems to be the specification of a prior for σ. Hence, the data will select the
appropriate reinforcement rate. This will be carried out in Section 4.
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Table 3. Posterior distributions on the number of components arising from the
three mixture models centred such that the prior expected value of the number
of components is 50

k Results for the following models:

Dirichlet (a=39.13) GG(β =24,σ =0.5) GG(β =2.23,σ =0.75)

3 0.00205 0.06660 0:42490
4 0.01295 0.19095 0.36055
5 0.04000 0:25175 0.15555
6 0.08210 0.22095 0.04575
7 0.13690 0.14305 0.01090
8 0:16560 0.07395 0.00195
9 0.16450 0.03530 0.00035

10 0.14395 0.01100 0.00005
11 0.10725 0.00455

�12 0.1447 0.00190

Fig. 2. Posterior density estimates arising from the MDP model, the mixture of normalized inverse Gaussian
process and the mixture of generalized gamma process centred such that the expected value of the number
of components is 50: . . . . . . ., Dirichlet (a D39:13205); – – –, GG(2.23, 0.75); � � � � � �, GG(24, 0.5); , true
model

3.3. The posterior distribution of the number of clusters
Since the main focus of the paper is the behaviour of the number of components Kn within
mixture models defined as in expression (1), the interest naturally lies on the determination of
the posterior distribution of Kn given the observations Y1, . . . , Yn. Such a task is difficult, even
though a formal analytic representation can be provided. Within the Dirichlet process set-up,
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such an issue has been considered first in Liu (1996) where a derivation, which is related to the
binomial kernel, is presented in his theorem 2. In the setting of contingency tables, with Dirichlet
prior on cell probabilities, the problem was tackled in Quintana (1998). For species sampling
mixture models, Ishwaran and James (2003) formally derived a representation for the posterior
distribution of Kn and, then, focused attention on the two-parameter Poisson–Dirichlet process
whose weights are obtained via a stick breaking procedure. An explicit form for normalized
random measures with independent increments priors was obtained in James et al. (2005). To
obtain an expression for the posterior distribution of Kn for a GG.β, σ/ mixture model, we first
introduce the symbol �k to denote the joint distribution of the observations Y.n/ = .Y1, . . . , Yn/

and of the number of distinct values Kn among the n latent variables X1, . . . , Xn. In other
words,

�k.y.n//dy.n/ =P.Y1 ∈dy1, . . . , Yn ∈dyn, Kn =k/:

By resorting to proposition 2, which determines Vn,k, we have

�k.y.n//= σk−1 exp.β/

Γ.n/

{
n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ Γ

(
k − i

σ
;β

)}

× ∑
.Å/k

k∏
j=1

.1−σ/nj−1

∫
R

∏
i∈Ij

f.yi|x/P0.dx/ .15/

where the above sum is extended over all partitions of the integers {1, . . . , n} into k groups and
Ij is the set of indices in the jth cluster of the partition. Having equation (15) at our disposal,
we can provide an expression for the posterior distribution of Kn, given Y.n/ =y.n/,

P.Kn =k|Y.n/ =y.n//=�k.y.n//

/
n∑

i=1
�i.y

.n// k =1, . . . , n: .16/

At this point, any further computation requires the specification of the kernel f.·|x/ and of the
base-line measure P0. We first consider a simple and widely used choice of these two quantities,
namely

f.y|x/= 1√
.2π/

exp
{

−1
2

.y −x/2
}

,

P0.dx/= 1
v
√

.2π/
exp

{
− 1

2v2 .x−m/2
}

dx:

Such a choice connects with example 1 that we have considered before and highlights difficulties
that are usually associated with the exact evaluation of equation (16). In this case, the integral
appearing in equation (15) can be easily seen to coincide with

∫
R

∏
i∈Ij

f.yi|x/P0.dx/= .njv2 +1/−1=2

.2π/.nj+1/=2 exp
[

− 1
2

{
m

v2 +∑
.j/

y2
i + v2

njv2 +1

( m

v2 +njȳ.j/

)2
}]

,

where ȳ.j/ =Σ.j/yi=nj is the sample mean within the jth cluster of a partition of {1, . . . , n}. From
this, we note that the main difficulty arises when trying to compute the sum over all partitions
of order k, i.e.

∑
.Å/k

k∏
j=1

.1−σ/nj−1

∫
R

∏
i∈Ij

f.yi|x/P0.dx/:
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This consideration suggests that in practice formula (16) cannot be used, apart from cases in
which n is very small. Hence, we shall resort to suitable computational schemes to determine
a numerical approximation of the posterior distribution of Kn. This will be an issue that is
considered in the next section.

4. The mixture model with a prior on σ

On the basis of the arguments of the previous sections, we introduce a mixture model with a
further hierarchy on σ. Hence model (1) becomes

Yi|Xi
ind∼ f.·|Xi/,

Xi|P̃ IID∼ P̃ ,

P̃ |σ ∼�β,σ,

σ ∼q:

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.17/

Various sampling techniques are widely used for generating inferences from model (1), given the
knowledge of the predictive distribution. See, for example, Escobar and West (1995), Liu (1996),
MacEachern (1994), MacEachern and Müller (1998) and Ishwaran and James (2001). Model
(17) requires a slight modification of any of these algorithms to take into account a step in which
the value of σ is drawn. This is easily accomplished once we can evaluate the full conditional for
σ. Indeed, it can be seen, on the basis of proposition 2, that such a full conditional is given by

q.σ|Y.n/, X.n//=q.σ|Kn =k, n1, . . . , nk/

∝q.σ/σk−1
{

k∏
j=1

.1−σ/nj−1

}
n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ Γ

(
k − i

σ
;β

)
: .18/

It is clear from this expression that the full conditional for σ depends only on the clustering
structure of the n latent variables Xi. None-the-less, the clustering is affected by the observed
Yis which, then, indirectly influence the sampled value of σ. Before focusing on the illustrative
examples, let us briefly describe the sampling scheme that we resort to. First fix initial values
σ =σ0 and Xi =Xi,0, for i= 1, . . . , n. These can be drawn from q and from P0 respectively. At
step t �1 we can proceed in a similar fashion to that in Ishwaran and James (2001), i.e.

(a) draw σt from q.σ|kt−1, n1, . . . , nkt−1/, where kt−1 is the number of ties in X
.n/
t−1, and

(b) draw the latent variables X1,t , . . . , Xn,t from the Pólya urn scheme as follows: for any i
sample Xi from

P.Xi,t ∈ ·|X.n/
−i,t , Y.n/, σt/=qÅ

i,0.σt/P0.dXi,t/ f.Yi|Xi,t/+
ki, t∑
j=1

qÅ
i,j.σt/δZÅ

j
.·/, .19/

where X
.n/
−i,t = .X1,t , . . . , Xi−1,t , Xi+1,t−1, . . . , Xn, t−1/ and ZÅ

j are the ki,t distinct values in
the vector X

.n/
−i,t . The mixing proportions are given by

qÅ
i,0.σt/∝w.n/

i,0 .σt/

∫
X

f.Yi|x/P0.dx/,

qÅ
i,j.σt/∝ .nj −σt/w.n/

i,1 .σt/ f.Yi|ZÅ
j /,

subject to the constraint Σki, t
j=0 qÅ

i,j.σt/=1:
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The weights w.n/
i,r , with r∈{0, 1}, are the same as those given in equations (10) and (11). Moreover,

it is useful to implement an acceleration step which is aimed at a faster mixing. Such a variation
of the MCMC algorithm for MDP models has been proposed by MacEachern (1994) and Bush
and MacEachern (1996). See also MacEachern (1998) and Ishwaran and James (2001). The idea
is to add a further step after step (b) in the previous description of the algorithm. Indeed, step (b)
is used to fix the number of clusters and the cluster memberships. To generate the representative
of each cluster, i.e. the unique distinct values ZÅ

j , we proceed as follows. Suppose that from step
(b) we have kt clusters with memberships identified by the sets of indices I1,t , . . . , Ikt ,t . Then

(c) draw the unique values ZÅ
1,t , ZÅ

2,t , . . . , ZÅ
kt ,t from the full conditional

P.ZÅ
j,t ∈dx |Y.n/, X.n//∝ ∏

i∈Ij, t

f.yi|x/P0.dx/:

We can see that an important point of the algorithm is the evaluation of the weights qÅ
i,0. To

obtain an explicit form for them, we can choose a conjugate pair {f.·|·/, P0}. This computa-
tional scheme has been used in all the examples in the paper. In particular, in example 1 step
(a) is skipped since a prior for σ has not been specified. In all the other examples the following
specifications are made:

(a) f.·|·/ coincides with a normal density and P0 is conjugate and
(b) as a prior for σ we choose a discrete distribution q, which is useful for reducing the com-

putational burden of the algorithm.

The final subsection provides some insight into the numerical issues that are raised by the
algorithm and how they have been tackled.

4.1. Simulated data for a simple mixture
We first consider the simple mixture that we have already dealt with in example 1 and we,
now, specify a prior for σ. This mixture, even though simple, turns out to be quite useful for
identifying some specific features of putting a hierarchy on σ. We set q as the discrete uniform
distribution over the points j=100 for j = 1, . . . , 99. To draw a comparison with the previously
examined cases (fixed σ), we select β such that

Eβ [K100]= 1
99

99∑
j=1

Eβ,j=100[K100]=50

which corresponds to β =22:8. It is worth noting that the prior that is induced on the number
of components Kn is essentially uniform with prior probabilities on the ks of about 0.01. To be
more precise, the distribution is bimodal with modes in k =19 and k =100 with probabilities of
0:01076 and 0:01163 respectively. The MCMC sampling scheme that we have adopted provides
an output that can be used to provide posterior summaries for Kn and for the density of the
data and we run it for 20000 iterations with 2000 burn-in sweeps. The posterior probabilities
for Kn are displayed in Table 4.

Table 4 suggests that the performance, in terms of the ability to detect the correct number
of clusters in the data, of a generalized gamma mixture model with random σ is clearly better
than the model that is achieved with a fixed σ. For instance, note that the best model with fixed
σ that we have considered, i.e. σ = 0:75, yields a posterior probability of 0.4249 on the correct
number k =3 of components. This is remarkably lower than the value of 0.8811 that we obtain
by putting a uniform prior on σ. The density estimate does provide a fit that is indistinguishable
from the fit that is featured by the GG.β, σ/ model with σ =0:75.
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Table 4. Prior and posterior probabilities for the number of components corresponding to the
GG.β D22:8, σ/ process with σ uniformly distributed over j=100 for j D1,. . ., 99, nD100

Results for the following values of k:

k �2 k =3 k =4 k =5 k =6 k �7

GG.β =22:8, σ/ Prior 0.0121 0.0092 0.0096 0.0098 0.01 0.9495
Pr.σ = j=100/=1=99 Posterior 0.8811 0.1105 0.0078 0.00055 0.00005

These preliminary findings allow us to draw some comments about the role of σ in this more
general mixture model. First, note that, when the configuration of the latent variables consists
of a relatively large number of groups, then it is more likely to sample a relatively large value of
σ. This can be seen from Fig. 3 where we can find graphs of the full conditional of σ that is given
in expression (18) for different configurations which highlight the influence of both the number
of clusters Kn and the balancedness or unbalancedness of the corresponding composition. In
particular

(a) Fig. 3(a) displays the full conditionals for K100 = 3 with compositions .n1, n2, n3/ =
.33, 34, 33/ and .n1, n2, n3/= .98, 1, 1/,

(b) Fig. 3(b) displays pictures of the full conditional for K100 = 20 with compositions
.n1, . . . , n20/= .5, . . . , 5/ and .n1, . . . , n20/= .81, 1, . . . , 1/ and

(c) Fig. 3(c) concerns the case of K100 =50 with compositions .n1, . . . , n50/= .2, . . . , 2/ and
.n1, . . . , n50/= .51, 1, . . . , 1/.

Having sampled a large value of σ, this generates a large number Kn of clusters in the Pólya
urn scheme and concentrates the observations in those few groups having larger sizes. Hence,
there is a remarkable fraction of groups having small sizes. The first behaviour, namely having
a large Kn, can be motivated in the light of proposition 3: indeed large values of σ lead to a
large value of Kn. The second effect, i.e. the concentration structure of the observations, can
be explained by corollary 1. Indeed, according to such a result, the larger σ the higher is the
proportion of classes having small sizes. However, we also need to consider the action of the
kernel f , which in this case is the normal distribution. Indeed, the effect of a large σ generating
a large Kn is compensated by such a kernel. From a qualitative point of view, we can say that
the smoothing effect of the normal kernel tends to ‘merge’ the classes with small sizes to classes
having large sizes. If as a final outcome we have a reduction in Kn, then the next sampled value
of σ is likely to be smaller.

Let us now focus on the specific example of this subsection. From the MCMC output we can
extract information about σ. Indeed the average σ, which we interpret as a posterior estimate of
σ, turns out to be 0.0267. A comparison with the results that were obtained in example 1 can be
of interest. In that example, it turned out that the value σ=0:75 was much better than the value
corresponding to the Dirichlet process, i.e. σ →0. This might seem to be in contrast with what
we have obtained with random σ. Indeed, it is not. This is because in this example the algorithm
detects very quickly the correct number of components and these are well separated. Hence,
the effect of the normal kernel is dominating and there is no need for reinforcement once the
correct number of components has been identified. Such a small value of Kn leads to sampling
small values of σ, thus explaining the outcome that we obtained.
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Fig. 3. Conditional distributions of σ for various configurations of Kn and n1, . . . , nKn: (a) k D 2 .�, .n1,
n2, n3/ D .33, 34, 33/; �, .n1, n2, n3/ D .98, 1, 1//; (b) k D 20 (�, .n1, . . . , n20/ D .5, . . . , 5/I �, .n1, . . . , n20/ D
.81, 1, 1//; (c) k D50 (�, .n1, . . . , n50/D .2, . . . , 2/I �, .n1, . . . , n50/D .51, 1, . . . , 1//
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4.2. A mixture with non-uniform weights and unequal variances
We now apply our mixture model to a more complicated setting to test its performance further.
We shall consider a mixture of normal distributions with unequal variances and mixing weights
of the kind

7∑
i=1

ωi N.·|θi, λ2
i /

where ω1 = ω2 = 0:1, ω3 = 0:15, ω4 = ω5 = 0:125, ω6 = ω7 = 0:2, .θ1, . . . , θ7/ = .−8, −5, 0, 5, 7,
11, 15/ and .λ2

1, . . . , λ2
7/ = .0:8, 0:5, 2, 0:25, 0:05, 1, 1:25/. Our hierarchical mixture model (17)

can be translated in a semiparametric form as

.Yi |mi, Vi/
ind∼ N.Yi |mi, V −1

i /,

.mi, Vi | P̃/
IID∼ P̃ ,

P̃ |σ ∼�.β,σ/,

σ ∼q

for i=1, . . . , n. The GG.β, σ/ process is centred at P0 of the form

P0.dm, dv/=N.m|Ȳ , t2=v/Ga.v|1, 1
2 /dmdv, .20/

where Ga.·|c, d/ is the density corresponding to a gamma distribution with mean c=d and, as
before, t stands for the range of the data. The last specification that we need to make concerns σ
and β. Unlike example 1, we now wish to consider the case in which the prior expected number
of components is lower than the correct number. Hence, we aim at fixing the expected value
for K200 equal to 3. As has already been observed in Table 1, having some mass on values of σ
that are sufficiently close to 1 prevents us from obtaining a small expected value for K200. For
this reason, the prior q for σ has been chosen as a discretized beta distribution with parameters
(1,9). In particular, we consider discretizations yielding supports for q either with nine points
corresponding to {0:1, 0:2, . . . , 0:9} or 99 points corresponding to {0:01, 0:02, . . . , 0:99}. These
two choices are made to check the sensitivity of the posterior inferences on the degree of coarse-
ness of the support of the prior. At this point, the targeted Eβ [K200]=3 is attained for β =0:485
(for the nine-points support of q) and β =0:841 (for the 99-points support of q).

To evaluate the performance of the GG.β, σ/ mixture, we generate a sample Y1, . . . , Y200 from
the seven normal distributions that were described before with proportions coinciding with the
correct weights ωi, for i=1, . . . , 7. In Table 5 we summarize the results about posterior proba-
bilities on the number of components. Fig. 4 depicts the plot of the posterior density estimates.

As for the behaviour of σ, we have a posterior estimate equal to 0:16871 and 0:14440 in the
nine-points support and 99-points support case respectively.

The results show a good performance of the mixture model that is driven by a GG.β, σ/

process with random σ. The model can detect the correct number of components for a data
set that was generated by a complicated mixture. Also the posterior density estimates feature a
satisfactory fit to the density that has generated the data. This argument is further strengthened
by the fact that we are using a sample of relatively small size if compared with the complex
structure of the true mixture.

As for the sensitivity of posterior inferences to the degree of coarseness of the support of the
prior q for σ, we can note that there is no substantial difference between the two cases. This is
true when considering the posterior distribution of K200, the density estimate of the mixture and
the Bayes estimate of σ. Hence, we find that the model has a satisfactory degree of robustness
with respect to the prior for σ.
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Table 5. Posterior distributions on the number of components arising
from the GG.β, σ/ process mixtures with nine and 99 points in the sup-
port of q

k Results for the following models:

GG(β =0.485,σ), σ ∼q, GG(β =0.841,σ), σ ∼q,
supp(q)= {0.1, 0.2, . . . , 0.9} supp(q)= {0.01, 0.02, . . . , 0.99}

6 0.25705 0.30230
7 0.33760 0.32785
8 0.19820 0.19695
9 0.09835 0.09660

10 0.05590 0.04235
11 0.02725 0.01820
12 0.01435 0.00900

�13 0.01130 0.00675

Fig. 4. Posterior density estimates arising from GG(β, σ) process mixtures with E[K200] D 3 and σ � q,
where q is a discretized beta distribution with support {0:1, 0:2, . . . , 0:9} and {0:01, 0:02, . . . , 0:99}I . . . . . . .,
GG(β D0:485); – – –, GG(β D0:841); , true model

A concluding comment concerns the possibility of adding further hierarchies to the mixture
model that we have used. For example, we could have introduced a further hierarchy for the
parameters in P0 in equation (20). This strategy has been pursued in other references concerning
the MDP model such as Escobar and West (1995). From a computational point of view,
the addition of this step is straightforward and does not complicate the algorithm, and also
for GG.β, σ/ process mixtures. We have, indeed, experimented with models with a larger num-
ber of hierarchies: however, we have found a strong sensitivity of inferential results to the
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specification of the hyperparameters. In particular, for some choices of these parameters we can
achieve the same performance, for the detection of the correct number of components, and a
slight improvement for the density fit. In contrast, other choices of the hyperparameters yield
a drastic worsening in the posterior inference on the number of components. These findings
suggest that the addition of a further hierarchy is reasonable when the prior specification for the
hyperparameters is advised by particular features of the real problem being examined. See, for
example, Escobar and West (1995) and the motivation that they provided for the choice of the
hyperparameters, for the MDP model, in the example with the galaxy data. In other situations,
a good strategy would be a default specification as the one that we have adopted in this example
which leads to robust inferences about Kn.

4.3. Numerical issues
Just as in the case of MDP models, inferences that are based on mixtures of GG.β, σ/ mod-
els strongly rely on the ability to draw samples from such a random measure. Although many
of the methods that are available for MDP models are also potentially feasible for mixtures
of GG.β, σ/ models, some computational issues need to be discussed. In the examples that
are contained in this work, we have used the generalized Pólya urn Gibbs sampler which re-
quires the computation of the weights w.n/

0 and w.n/
1 .nj − σ/, j = 1, . . . , k, which are given in

equations (10) and (11). These quantities clearly take a more complex form than those cor-
responding to the Dirichlet process, since they require the computation of sums of incomplete
gamma functions. However, it is not only the computation of these functions that makes such
quantities difficult to handle in standard packages but also the magnitude of the resulting
summands.

To have a better picture of this issue, let us consider the following set of parameters: n =
200, K200 =10, β =20:5 and σ =4=3. For these values, the summands that are contained in w.n/

0
eventually need the evaluation of Γ.−256:667, 20:5/ = 9:336349705 × 10−349. With the same
parameters, but with K200 =150, the generalized Pólya urn Gibbs sampler eventually falls into
the evaluation of Γ.151, 20:5/ = 5:713383956 × 10262. Large values for the number of ties Kn

are typically observed for the first iterations when the algorithm has not been able to disentangle
the right number of components and still preserves many of the samples from P0 or the data.
Even though, for most purposes, such quantities could be considered as 0 and ∞ respectively,
doing this in the computation of the weights would lead to a significative bias, since they must
add up to 1.

One might attempt to rescale the big summands that are required to compute w.n/
0 and

w.n/
1 . However, such an approach would depend on a given set of parameters (β, σ and n)

and would therefore be difficult to implement in general. Truncating small and big quantities
might lead to bad approximations. However, the availability of arbitrary precision packages
such as Mathematica, Mupad, Maple and PARI among others aids in the precise compu-
tation of small and big numbers. Given the nature of the algorithm, which is required to
implement the generalized Pólya urn Gibbs sampler, we decided to use the PARI C library,
which is freely available at http://pari.math.u-bordeaux.fr/, to compute, not only
the weights, but also the generalized Stirling numbers that are required in expressions (5) and
(8). To facilitate the implementation of the Gibbs sampler we programmed in OX (Doornik,
2002) and perform a call to the PARI C library when necessary. Other packages such as R
could also be used as a front end environment. Alternatively one could develop the whole pro-
cedure in the C language. The programs that were used for this work are available from the
authors.
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5. Concluding remarks

When dealing with inferential problems of clustering or of density estimation in a Bayesian
non-parametric framework two alternative approaches can be followed to achieve the necessary
flexibility for fitting the data:

(a) employ the MDP model with a suitable number of hierarchies on the parameters or
(b) look for extensions of the MDP model by replacing the Dirichlet process with a more

general prior.

The latter aims at a more parsimonious specification with a reduced number of hierarchies.
Within this second approach, in this paper we have considered an important extension of the
MDP model. The main advantage is the availability of an additional parameter with a precise
meaning in the context of mixture modelling. Indeed, σ greatly affects the clustering behaviour
of the latent variables.

Finally, it is worth remarking that, apart from the MCMC sampling scheme which we have
adopted, one can resort to alternative algorithms such as sequential importance sampling as set
out in Liu (1996). Future work will focus on the implementation of the sequential importance
sampling algorithm for GG.β, σ/ mixture models and on the comparison, in terms of efficiency,
with MCMC sampling.
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Appendix A

A.1. Proof of proposition 2
Note that the species sampling model (7) can also be represented as

P̃.A/=

∫
R+×A

s N .ds, dx/

∫
R+×X

s N .ds, dx/

= ξ.A/

ξ.X/
,

where ξ is a random measure with independent increments such that

E[exp{−λξ.A/}]= exp
[
−a P0.A/

∫
R+

{1− exp.−λs/}ν.ds/

]
, .21/

where ν is given in equation (6). The prior P̃ is, thus, a normalized random measure with independent
increments, a general class of priors that was introduced in Regazzini et al. (2003) and extended to more
general spaces X in James (2002). It also belongs to the family of Poisson–Kingman models that was
introduced by Pitman (2003). The Lévy–Khintchine representation in equation (21) plays an important
role in our proof. Indeed, we note that the joint distribution of the number of components Kn and of the
absolute frequencies that we wish to determine coincides with the so-called exchangeable partition prob-
ability function; see Pitman (1995). If we let μn.u/ := ∫ ∞

0 sn exp.−us/ν.ds/, n = 1, 2, . . . , for any positive
u, and Π.n/

k .n1, . . . , nk/ denote the exchangeable partition probability function that is associated with a
normalized random measure with independent increments having intensity a P0.·/ν.·/, then
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Π.n/
k .n1, . . . , nk/= ak

Γ.n/

∫ ∞

0
un−1E[exp{−u ξ.X/}]μn1 .u/ . . . μnk

.u/ du:

See corollary 6 in Pitman (2003) and, also, the proof of proposition 3.6 in Prünster (2002). In the case of a
GG.β, σ/ model we shall show that Π.n/

k can be decomposed in a product form, thus yielding a Gibbs-type
exchangeable random partition for which Vn,k can be exactly determined. If ν is as in equation (6), then

μnj
.u/= 1

Γ.1−σ/

∫ ∞

0
snj−σ−1 exp{−.τ +u/s}ds= .1−σ/nj−1

.τ +u/nj−σ

and, from equation (21),

E[exp{−u ξ.X/}]= exp
{

−a
.τ +u/σ − τσ

σ

}
:

Hence, denoting the exchangeable partition probability function of a GG.β, σ/ prior by Πβ,σ to emphasize
its dependence on the parameters .β, σ/ yields

Πβ,σ =
ak

k∏
j=1

.1−σ/nj−1

Γ.n/

∫ ∞

0
un−1 exp

[
− a

σ
{.τ +u/σ − τσ}

]
.τ +u/−n+kσ du:

If we set β =aτσ=σ and use an appropriate change of variable, we obtain

Πβ,σ =
ak exp.β/

k∏
j=1

.1−σ/nj−1

σ Γ.n/

∫ ∞

τσ

.y1=σ − τ /n−1yk−n=σ+1=σ−1 exp
(
−ay

σ

)
dy

=
ak exp.β/

k∏
j=1

.1−σ/nj−1

σ Γ.n/

n−1∑
i=0

(
n−1

i

)
.−τ /i

∫ ∞

τσ

yk−1−i=σ exp
(
−ay

σ

)
dy

=
σk−1 exp.β/

k∏
j=1

.1−σ/nj−1

Γ.n/

n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ Γ

(
k − i

σ
;β

)

and the result desired easily follows.

A.2. Proof of proposition 3
The first part of the proof of proposition 3 exploits a martingale convergence theorem along the same lines
as in theorem 8 of Pitman (2006). Let, first, Π∞ stand for the infinite exchangeable random partition that
is induced by a GG.β, σ/ process and let Pβ,σ denote its distribution. The random partition Πn of the set
of integers {1, . . . , n} is the corresponding restriction of Π∞ and �n is the σ-algebra that is generated by
Πn. Consider the Radon–Nikodym derivative of Pβ,σ with respect to P0,σ restricted to �n, i.e.

Mβ,σ,n = dPβ,σ

dP0,σ

∣∣∣∣∣
�n

= exp.β/

Γ.Kn/

n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ Γ

(
Kn − i

σ
;β

)
:

Now, .Mβ,σ,n, �n/n�1 is a positive martingale with respect to P0,σ. Note that Pβ,σ and P0,σ are mutually
absolutely continuous on �∞. Hence, by theorem 35.7 in Billingsley (1995) we have that Mβ,σ,n → Mβ,σ
almost surely with respect to P0,σ and

Mβ,σ = dPβ,σ

dP0,σ

is the Radon–Nikodym derivative of Pβ,σ with respect to P0,σ on �∞. Moreover, we obviously have

E0,σ[Mβ,σ]=1: .22/
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This convergence result is now exploited to prove the asymptotic behaviour in expression (12). For this, let
.En/n�1 be a sequence of IID random variables having a negative exponential distribution with parameter
1. Moreover, suppose that the Ens are independent of Kn. Set �n :=ΣKn

j=1Ej and note that, conditionally
on Kn, �n has a gamma distribution with expected value Kn. We can then rewrite Mβ,σ,n as

Mβ,σ,n = exp.β/

Γ.Kn/

n−1∑
i=0

(
n−1

i

)
.−1/iβi=σ

∫ ∞

β

yKn−i=σ−1 exp.−y/ dy

= exp.β/

Γ.Kn/

∫ ∞

β

yKn−1 exp.−y/

(
1− β1=σ

y1=σ

)n−1

dy

= exp.β/E

[
I.β,+∞/ .�n/

(
1− β1=σ

�1=σ
n

)n−1 ∣∣∣∣Kn

]
,

where IA denotes, as usual, the indicator function of a set A. From the law of large numbers, �n=Kn →1,
almost surely and conditionally on Kn. This entails that �n is eventually larger than β, whatever the choice
of β. Hence, the indicator function in the conditional expectation is eventually 1. Using the dominated
convergence theorem, we have

Mβ,σ,n ∼ exp.β/

{
1− β1=σ

Kn.�n=Kn/1=σ

}n

∼ exp.β/

(
1− β1=σ

K
1=σ
n

)n

∼ exp
(

β −β1=σ n

K
1=σ
n

)

as n→∞. Since Mβ,σ,n →Mβ,σ almost surely with respect to P0,σ, then there is some random variable, say
Zσ, such that

n=K1=σ
n →Zσ

almost surely, with respect to P0,σ, as n→∞. From equation (22), it follows that

E0σ[exp.−β1=σZσ/]= exp.−β/

and, then, Zσ must coincide with a σ-stable random variable, with respect to the distribution P0,σ. This
implies that Kn=nσ →Z−σ

σ ≡Sσ, almost surely with respect to P0,σ. Since the P0,σ-law of Zσ is σ stable, the
P0,σ-law of Sσ is the σ-Mittag–Leffler distribution whose density is given by

gσ.s/=fσ.s−1=σ/=σs1+1=σ

and fσ is the density function of Zσ. Moreover, since the probability measures Pβ,σ and P0,σ are mutually
absolutely continuous, almost sure convergence holds true with respect to Pβ,σ, as well. To deduce the
Pβ,σ-law of Sσ, it is sufficient to exploit a change of measure that is suggested by

Pβ,σ.A/=
∫

A

dPβ,σ

dP0,σ
dP0,σ

and by the fact that
dPβ,σ

dP0,σ
=Mβ,σ = exp.β −β1=σZσ/:

The change of variable Zσ = S−1=σ
σ leads to the desired conclusion in equation (13). Finally, for the case

σ = 1
2 , some algebra leads to the simple density that is given in equation (14).
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