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We explore a method for constructing first order stationary autoregressive type models with given
marginal distributions. We impose the underlying dependence structure in the model using Bayesian
nonparametric predictive distributions. This approach allows for non-linear dependency and at the
same time works for any choice of marginal distribution. In particular, we look at the case of discrete-
valued models, that is the marginal distributions are supported on the non-negative integers.
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1 Introduction

In the literature, many of the constructions of stationary time series models
with fixed marginal distributions usually rely on a simple dependence struc-
ture, typically being dominated by certain linearity conditions, e.g. IE[Xt |
Xt−1 = x] = a x + b. In this paper we aim to further explore a novel ap-
proach, introduced in a parametric framework in [25] and generalised to the
nonparametric case in [27]. In particular, we will focus on the discrete-valued
case.

These authors suggest a method to construct stationary autoregressive-type
models of first order (AR(1)-type) with arbitrary, but fixed, stationary distri-
butions.

Given a specific stationary distribution with distribution function Q(x), the
proposed model has the one-step transition distribution driving the AR(1)-
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type model {Xt} as

Pxt−1
(xt) = E{Gy(xt) |xt−1} =

∫
Gy(xt)G

∗
xt−1

(dy), (1)

where Pxt−1
(xt) = Pr[Xt ≤ xt | Xt−1 = xt−1], Gy(xt) = Pr[Xt ≤ xt | Y = y]

and G∗xt−1
(y) = Pr[Y ≤ y | Xt−1 = xt−1]. Notice that, in a Bayesian context,

Gy(xt) denotes the corresponding posterior of G∗xt−1
(y) under Q(x).

Here the two conditional distributions, Gy(xt) and G∗xt−1
(y), arise from a

single joint distribution, G(x, y) := Pr[X ≤ x, Y ≤ y], such that∫
G∗x(y)Q(dx) = Q∗(y).

Equation (1) can also be thought as the Bayesian predictive distribution with
likelihood Gy(x) with certain prior Q∗(y) and based on the single observation
xt−1.

The main part in this construction, imposing the dependence structure be-
tween Xt and Xt−1, is the choice of the parametric family G∗x(y), which given
the choice of a stationary distribution Q(x) and using Bayes’ theorem, leads
to Gy(x). Notice that, a transition distribution constructed as in (1) satisfies∫

Pxt−1
(xt)Q(dxt−1) = Q(xt),

that is, the distribution Q remains invariant and therefore an AR(1)-type
model driven by (1) is strictly stationary having Q as its stationary distribu-
tion.

Clearly the range of possible choices for G∗x(y) is too wide and setting it
to a specific parametric form results in a different model, namely a different
dependence structure, but with the same stationary distribution.

In order to circumvent the potential problem of a misspecified dependence,
Mena and Walker [27] proposed a nonparametric choice forG∗x(y), which makes
the dependence structure more flexible. Effectively, they replace the latent
variable “ y ” with a random distribution G, with the probability measure
written as P(dG). That is, P denotes a probability measure on the space of
probability measures on R, say (F ,BF ). Applying a similar construction as in
(1), we shall consider the “ posterior ” distribution corresponding to the non-
parametric “ prior ” P, in order to construct Pxt−1

(xt). Specifically, for a set
A ∈ BF , start with the joint distribution

Pr(X ≤ x;G ∈ A) = IEP [G(x)1I(G ∈ A)] =

∫
A
G(x)P(dG), (2)
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where G ∈ F . Note that for A = F we obtain Pr(X ≤ x) = IEP [G(x)]. Hence,
this implies that the posterior probability is given by

P(G ∈ A | X ≤ x) =
IEP [G(x)1I(G ∈ A)]

IEP [G(x)]
. (3)

In a similar way we can condition on a singleton and obtain Px(A) = P(G ∈ A |
X = x) as the nonparametric Bayesian posterior distribution for the random
distribution G given the single observation x. With these elements we proceed
to “ sweep out ” the randomness in the nonparametric component to obtain
the Markovian transition distribution given by

Pxt−1
(xt) =

∫
G(xt)Pxt−1

(dG). (4)

Even though, we have used a random distribution in this construction, notice
that the resulting transition distribution is no longer random. However, due
to the grater dimensionality of the support of G over the support of y, the
transition resulting from (4) can encompass a wider dependence structure than
the one arising from (1). Analogously to the parametric setting, the transition
distribution can be interpreted as the Bayesian predictive distribution based
on the prior P(dG) and a single observation. This generalisation connects us
with the area of nonparametric Bayesian methods; see [24] for a recent review.
Note that the similarity to the parametric approach is given by replacing Gy(x)
by G(x) and G∗x(y) by Px(dG).

The advantage of this generalisation is that there is no need to specify G∗x(y)
in a parametric way. The dependence in the model is then determined by the
choice of measure P(·) and the stationary distribution is defined as Q(x) :=
Pr(X ≤ x) = IEP{G(x)}. Therefore, whereas in the Bayesian nonparametric
literature, Q is known as the baseline, in our construction Q will act as the
stationary distribution for the AR(1)-type model.

The issue here is which random measure should we use in order to produce
certain types of dependence or to match certain features underlying to the
data, for instance an AR(1)-type model being discrete-valued and non-linear.

A simple example arises when P(·) is the Dirichlet process. Denote by D(cQ)
a Dirichlet process driven by the measure cQ(·), where c > 0. A random
distribution function chosen by G ∼ D(cQ) satisfies

IEP{G(x)} = Q(x),

for any x ∈ R. See Ferguson [1]. The parameter c > 0 is commonly associated
with the variability of the random distributions G about Q. In this case, the
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well-known conjugacy property of the Dirichlet process leads to

G | [X = x] ∼ D(cQ+ δx),

where δx denotes the point mass at x; see [1]. Following the ideas described
above, we can construct the following transition distribution driving the
AR(1)-type model {Xt}∞t=1

Pxt−1
(xt) = IEP {G(xt) | Xt−1 = xt−1}

=
c

c+ 1
Q(xt) +

1

c+ 1
1I(xt = xt−1), (5)

which remains invariant with respect to Q.
In [27] the case of continuous-valued models was undertaken by choosing P

to be the generalised log-Gaussian process [10]. The main objective of this pa-
per is to explore this construction in two cases not covered in [27], namely that
devoted to model discrete valued data and that being able to capture negative
correlations. This lead us to two different choices of probability measures P(·).
First, in order to construct a model for discrete-valued AR(1)-type data we
should use a measure which puts positive probability to discrete distributions,
for this purpose we use a discrete-version of the Beta-Stacy process [21]. Un-
der a different choice of P, we will explore the Pólya tree distribution which
leads us to AR(1)-type models with an appealing dependence structure, this
is easily extendible to model negative correlation among observations.

Describing the layout of the paper; Section 2 provides with a brief discus-
sion on the problem of constructing discrete-valued models. In Section 3 the
nonparametric approach to construct discrete-valued AR(1) models using the
Beta-Stacy process is undertaken. We also illustrate the capabilities of the
proposed model with a example based on simulated data. Section 4 discusses
the construction of stationary AR(1) models via Pólya trees. In particular, we
address the issue of obtaining models for negatively correlated observations.

2 Discrete AR(1)-type models

Discrete-valued time series are found in many applications in statistics. This
has encouraged researchers to develop adequate models for such data. McDon-
ald and Zucchini [19] and McKenzie [26] review many models available in the
literature. Most of the constructions of such models available in the literature
are devoted to a specific parametric form, e.g. Binomial distribution, Poisson
distribution. Furthermore, they are devoted to linear dependence structures,
fact which makes them unsuitable for some applications.
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One of the first efforts to tackle the modelling of discrete-valued time series
is found in Jacobs and Lewis [3–5]. The idea in these papers can be easily
stated in the AR(1)-type case given by

Xt = VtXt−1 + (1− Vt)Zt,

where the {Vt} are i.i.d. binary variables with P (Vt = 1) = ρ, 0 < ρ < 1,
and the {Zt} are i.i.d. with distribution Q. This model, known as the discrete
autoregressive (DAR(1)) model, leads to a stationary model with Q as the
stationary distribution. After a suitable re-parametrisation, model (5), can be
seen as the DAR(1) model. Take c = ρ−1 − 1 to obtain the parametrisation
in [5]. Although this approach encompasses a wide choice of marginal distribu-
tions, the simple construction based on a linear combination of i.i.d. discrete
random variables leads to a very simple dependence structure.

Another way to construct stationary discrete-valued AR models is based on
thinning operators. The most common of these operators is the binomial thin-
ning; if N is a non-negative integer and ρ ∈ [0, 1] then ρ ∗ N =

∑N
i=1 Bi(ρ),

where {Bi(ρ)} is a sequence of i.i.d. Bernoulli random variables, independent
of N , satisfying Pr(Bi(ρ) = 1) = ρ. This operator was proposed by [6] to gen-
eralise self-decomposable random variables to the discrete case. Many authors
used this idea to construct models of the type

Xt = ρ ∗Xt−1 + Zt,

with specific marginal distributions. For example, McKenzie [7–9,11] proposed
models for binomial, negative binomial and poisson marginals. See also [12,
14,15].

An extension of the concept of thinning was also utilised to construct models
of the type

Xt = At(Xt−1) + Zt, (6)

where At(x) denotes a random operator defined by the law of the conditional

distribution of X1 | [X1 +X2 = x], where X1 +X2
d
= Q, the required marginal

for the constructed AR(1) model.
An example of this extension can be found in [13], where AR(1) models with

Binomial(N, p) marginals were introduced. In this case Zt ∼Binomial(N −
M,ρ) and

At(X) | [X = x] ∼ Hypergeometric(N, x,M),

which defines a hypergeometric thinning. For this model the resulting auto-
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correlation function (ACF) is given by ρh with ρ = M/N , which depends on
a parameter from the marginal distribution. This approach was also used in
a more general setting [18] to construct AR models with convolution-closed
infinitely divisible marginal distributions.

A common factor among all the models mentioned in this section is the
linear dependence in the conditional mean, given by

E(Xt | Xt−1) = ρXt−1 + (1− ρ)µ, (7)

where µ = EQ(X) denotes the mean of the stationary density. This property
implies an exponentially decaying ACF.

3 A discrete time version of the Beta-Stacy process

In this section we will apply the construction described in the introduction by
choosing P(·) to be the Beta-Stacy process [21]. We will briefly review this
random distribution in the case where its support coincides with the space of
distribution functions with support on {0, 1, 2, . . .}, and denote this space by
F .

Denote by B(α, β) the beta function and by C(α, β, ξ) the Beta-Stacy dis-
tribution with density function given by

1

B(α, β)
yα−1 (ξ − y)β−1

ξα+β−1
1I(y ∈ (0, ξ)).

Let IN0 = {0, 1, 2, . . .} be a set of non-negative integers. Consider the sequence
of positive random variables {Yk; k ∈ IN0} given through

Y1 ∼ C(α1, β1, 1),

Y2|Y1 ∼ C(α2, β2, 1− Y1),

... (8)

Yk|Yk−1, . . . , Y1 ∼ C(αk, βk, 1− G(k − 1)),

where {αk} and {βk} are sequences of of positive real numbers and

G(k) =

k∑
j=1

Yj .



On AR(1) models via random distributions 7

Proposition 1 in [21] states that almost surely the discrete time Beta-Stacy
process

G(k) =

{
0 if k = 0,∑

j≤k Yj if k > 0

is an element of F . Thus, the random size of the jump of G at k is given by
Yk, and for each m = 1, 2, . . . the joint probability distribution of the vector
(Y1, . . . , Ym) is the generalised Dirichlet distribution, presented in [21].

By considering the sets and Ak = {0, . . . , k}, it is possible to center the
process on a particular distribution Q ∈ F with mass function q(k) > 0, for
all k. To this end, choose

αk = ckq(k) and βk = ck{1−Q(k)} = ck

{
1−

k∑
l=0

q(l)

}
, (9)

where {ck} is a sequence of positive real numbers. See [21] for details.
Given a random sample X1, . . . , Xn from an unknown distribution G with

discrete support, if G comes from a discrete Beta-Stacy process then the pre-
dictive mass function based on one observation is given by

Pr(Xt = xt | Xt−1 = xt−1) = h(xt | xt−1) ×
∏
ξ<xt

{1− h(ξ | xt−1)}, (10)

where

h(ξ | xt−1) =
αξ

αξ + βξ
1I(ξ > xt−1) +

αξ + 1

αξ + βξ + 1
1I(ξ = xt−1)

+
αξ

αξ + βξ + 1
1I(ξ < xt−1).

It is worth emphasizing the parametric nature of the transition mechanism
(10), which is due to the fact that the randomness in the nonparametric com-
ponent has been integrated. In particular, if we use the choice of α’s and β’s
given by (9) the transition mass function (10) has Q as the invariant dis-
tribution. Therefore, by imposing such a dependency, we have constructed a
discrete-valued stationary AR(1) with transition function given by (10) and
having Q as the stationary distribution. We will name this model the Beta-
Stacy AR(1) model. Given a particular set of observations modelled through
the Beta-Stacy AR(1) model, the required fitting translates to estimate the
sequence {ck}, and possible unknown parameters contained in the stationary
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distribution Q. Notice that, from (10), the dependence in the regressor xt−1

is only affected by its relative level with respect to values less than xt.
For the moment, let us assume thatQ has a finite support on {x0, x2, . . . , xl},

so there is a finite number of parameters {c0, c1, . . . cl}. If ck = c > 0 for every
k, then the corresponding Beta-Stacy process turns out to be the Dirichlet pro-
cess, see [20]. Furthermore, in this case, from equation (5) and the stationarity
of {Xt} the corresponding auto-correlation sequence is given by ρk = (1+c)−k.
Thus, for the Beta-Stacy process, different patterns of auto-correlation func-
tions can arise depending on the values of {c0, c1, . . . cl}. As a way to illustrate
that different patterns for the auto-correlation sequence of the process can be
obtained, Figure 1 shows different auto-correlation sequences. The autocorrela-
tions of the underlying AR(1) model, with transition probability given by (10),
were computed by setting different values of the sequence {ck; k = 0, 1, . . . , 9}
and having a Binomial(9, 0.3) distribution as the stationary distribution, Q.
The upper panel was obtained using ck = β exp{αk}, k = 0, 1, . . . , 9, where
β = 0.001 and α = 0.1. The middle panel was obtained by changing these
parameters to β = 2.4 and α = −0.1. The lower panel was obtained by using
ck−1 = γ (1− k/11)α (k/11)β + c (1− k/11)a (k/11)b , k = 1, 2, . . . , 10, where
α = 0.9, β = 4.0, γ = 3, a = 4.0, b = 0.9 and c = 3.

3.1 Simulated Data

In this section we aim to show how the Beta-Stacy AR(1) model performs
to capture a known dependence contained in a simulated data set. For this
illustration we have considered 200 simulated data points from the AR(1)
model with binomial marginal distribution, introduced in [13], equation (6).
For the choice of the marginal distribution we set N = 5, assumed to be
known, and p = 0.5. The one-lag autocorrelation in this model is given by
ρ = M/N , hence we set ρ = 0.2 by fixing M = 1.

In order to estimate the parameters in the Beta-Stacy AR(1) model, that is
{c0, . . . , c5} and p, we used numerical maximum likelihood estimation via the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimisation algorithm. For the
complete specification of the Beta-Stacy AR(1) we have chosen Q is binomial,
so its support is finite. Denote by i? the value of the largest state in the
support of the stationary distribution Q, in this example i? = 5. It is not
difficult to show that the transition probabilities (10) do not depend on ci?
and consequently the likelihood function will not depend on ci? . Thus we are
actually estimating {c0, . . . , c4} and p.

In order to present the estimations result based on a fair simulation proce-
dure we use the following criterion proposed by Walden et al. [23]. For a given

sample {X(i)
1 , . . . , X

(i)
200} of the process, simulated from model (6), define the
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Figure 1. On the Left: The parameter sequence {ck}, On the Right: Associated
auto-correlation sequence {ρk}
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root mean square error (RMSE) of the spectral density as

{
1

W/2 + 1

W/2∑
k=0

[
Ŝ i(k/W )− S(k/W )

]2
}1/2

, (11)

whereW = 200, S denotes the spectral density and Ŝ i is the estimated spectral
density corresponding to the i-th sample. We computed this RMSE for i =
1, 2, . . . , 500 samples.

We report the results obtained from the sample whose RMSE is located
at the 50 % quantile. The maximum likelihood estimators are ĉ = (3.73,
3.02, 8.81, 13.79, 13.67) and p̂ = 0.488. For the BFGS optimisation algorithm
we used p0 = 0.1 and c0 = (1, 1, 1, 1, 1) as initial values. Figure 2 shows the
simulated data together with the estimated spectral density. From the spectral
densities in Figure 2 is clear that the Beta-Stacy AR(1) model is able to capture
the dependence up to a second-moment degree.

In order to see how our model is able to capture other dependencies on higher
moments we have plotted, in Figure 3, the bivariate cumulative distribution
functions GXt,Xt−1

corresponding to both the model and our estimate using
the Beta-Stacy AR(1) model.

3.2 Infinite support of Q

For cases in which the stationary distribution has infinite support the BFGS
optimisation algorithm is not feasible since the model becomes overparame-
terised. In order to overcome this issue we could reparameterise the ck’s to
lower dimensions as we did for the illustrations in Figure 1. However, such an
approach would limit the underlying dependence in the model.

Assuming that the parameters underlying to the chosen stationary distribu-
tion are known we are able to compute the likelihood function explicitly for
each ck and maximise the resulting expression to obtain an estimator. In a
similar fashion of that followed to find MLE of Markov chains, we count the
number of relevant transitions within the data. Let us first define nib to be
the number of transitions which move from the state i to a state bigger than
i (hence ib). Define also, in an obvious way, nbi, nbb and nii.

The likelihood for ci is then given by

li ∝
[
1− ciq(i)

ciQ̃(i) + 1

]nbb
[

ciq(i)

ciQ̃(i) + 1

]nbi
[
1− ciq(i) + 1

ciQ̃(i) + 1

]nib
[
ciq(i) + 1

ciQ̃(i) + 1

]nii

,
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Figure 2. Top: 200 simulated data from the stationary AR(1) model of [13] with
stationary distribution Binomial(5, 0.5) and M = 1. Below: Spectral density

corresponding to the model and its estimation using the Beta-Stacy AR(1) model.

where q(i) = Q(i)−Q(i−1) and Q̃(i) = (1− q(0)−· · ·− q(i−1)) =
∑∞

l=i q(l).
Hence estimation via maximum likelihood is straightforward. We can go

from i = 0, 1, 2, . . . maximising li to obtain ĉi.

4 A stationary AR(1) model defined via Pólya trees

In this section we explore the use of the Pólya tree distribution as the choice for
P(·). Pólya tree distributions are an important ingredient in the development
of Bayesian nonparametric techniques. Accounts regarding their construction
and properties can be found in [16,20]. In what follows, we shortly review the
features relevant for our approach.

For each m = 0, 1, . . . , let {0, 1}m ≡
∏m
j=1{0, 1} and B = {Bε} be a binary

partition of the state-space (E, E) where ε ∈ {0, 1}m this is ε = ε1 · · · εm,
εj ∈ {0, 1}. The subindex ε allocates the set Bε in the tree while keeping
the branch information. The partition mechanism in a Pólya tree is given
as follows: in the mth level, partition Bε splits into (Bε0, Bε1), then Bε0 into
(Bε00, Bε01) and so forth until infinity. Random mass is allocated to the sets
via independent beta random variables Yε0 ∼ Be(αε0, αε0), Yε1 = 1 − Yε0 for
non-negative numbers αε0 and αε0. Then, at a given level m the random mass
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Figure 3. a) Bivariate distribution corresponding to the Binomial model by [13] with parameters
M = 1, p = 0.5 and N = 5. b) Estimated bivariate distribution using the Beta-Stacy AR(1) model.

allocated to a particular set is given by

G(Bε) =

 m∏
j=1; εj=0

Yε1···εj−10

 m∏
j=1; εj=1

1− Yε1···εj−10

 ,

where ε = ε1 · · · εm. In theory the number of levels required is infinity, however
an approximation is commonly used by terminating the process at a finite level
m. For A ≡ {αε, ε ∈ {0, 1}∞}, we use the notation G ∼ PT(B,A ) to denote
a Pólya tree distribution. The Dirichlet process arises when αε0 +αε1 = αε for
all ε [2].

It is possible to center the process in a specific distribution Q by choosing
the sets Bε in the partition at level m as[

Q−1

(
j − 1

2m

)
, Q−1

(
j

2m

))
(12)

for j = 1, . . . , 2m, see [2, 16,17,24].
Under an exchangeable sampling scheme, the one-data based posterior prob-



On AR(1) models via random distributions 13

ability of G given Xt is also a Pólya tree distribution PT(B,A |Xt), where

A | Xt =

{
αε + 1 if Xt ∈ Bε,
αε otherwise.

(13)

Given the stationary distribution Q and a level m, if the random measure in
(4) is modelled by G ∼ PT(B,A ) and all αε are fixed to be a constant c > 0,
then the predictive distribution based on one observation is given by

Pr(Xt ∈ Bε | Xt−1 = x) =


(
c+1
2c+1

)kt
c

2c+1

(
1
2

)m−kt−1
0 ≤ kt < m,(

c+1
2c+1

)kt
kt = m,

(14)

where ε = ε1 · · · εm and kt denotes the number of levels in which both Xt−1 and
Xt share the same partition set. We will use (14) as the transition probability
leading to our stationary AR(1)-type model.

It is worth mentioning that in a similar, but different, approach Sarno [22]
used Pólya tree distributions to model the dependence in autoregressive mod-
els of first order. The difference in our approach lies in that we use predictive
distributions which are always invariant when used as transition probabilities.
Sarno’s model is not always strictly stationary. She also raised, but did not
study, the question of how to include negative dependence between observa-
tions. We shall address this issue in the rest of this section.

In order to construct a stationary AR(1) model with Q invariant distribution
via Pólya trees, we fix the partitions to match the percentiles of Q as described
in (12). Therefore the transition mechanism driving the underlying stationary
model is approximated by (14).

Regarding the estimation of the parameter c, let the number of levels m
approach to infinity in the transition (14). The score for c corresponding to a
sample x = (x1, x2, . . . , xN ) is given by

∂ logLx(c)

∂c
=

N − 1

c(2c+ 1)
− 1

(c+ 1)(2c+ 1)

∑
t

kt.

By equating the above quantity to zero and solving for c we get the MLE for
c, given by

ĉ =
1

k − 1
, (15)

where k denotes the mean of the number of levels shared for the consecutive
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observations in the sample.

4.1 Correlation structure

At this point we need to study admissible values for ĉ. Despite the condition
c > 0 allows us to contruct a Pólya tree distribution from which (14) arises
by using equation (4), note that (14) is also well defined for negative values
of c (e.g. c < −1). Thus, for such negative values of c, we would not have
an associated random probability measure, however, still we can define an
autoregressive process with fixed marginal Q.

Now, the condition −1 < ĉ < 0 leads to k < 0, which is contradictory since
k is an average of non-negative numbers. Therefore, we shall consider values
of ĉ in (−∞,−1)∪ (0,∞), this matches the domain for c such that (14) defines
a transition probability.

Notice that the value of c affects the dependence between observations in
the sample. A natural question to ask is how the estimator ĉ changes as the
correlation in the sample varies. In the following example we use simulations
to depict the latter relation.

Let us consider the Gaussian AR(1) model given by

Yt = ρYt−1 +
√

1− ρ2 εt, (16)

where 0 < |ρ| < 1 and ε1, ε2, . . . are independent and N(0, 1) distributed. It is
easy to verify that the above model is stationary with Corr(Yt, Yt−1) = ρ.

In order to illustrate the dependence on the correlation ρ, of the parameter c,
we have simulated series, with 10000 observations each, from the autoregressive
model (16) ranging in a grid of values of ρ. For the resulting simulations
we fitted a stationary Pólya tree AR(1) model with invariant distribution
Q = N(0, 1) and transition probability (14). In other words, given a ρ we
simulate from model (16) and compute ĉ = 1/(k − 1). Figure 4 shows the
results.

In general, negative correlation at lag 1 of the samples corresponds to nega-
tive values of ĉ and positive correlation at lag 1 of the samples corresponds to
positive values of ĉ. Let us consider the partition in two sets of the support of
Q introduced by the mean of the distribution. If correlation at lag 1 is positive
then consecutive observations tend to stay on the same side of the real line
with respect to the mean. Thus, we expect k > 1 and therefore ĉ > 0. On
the other hand if correlation at lag 1 is negative then consecutive observations
tend stay on opposite sides with respect to the mean. Thus, we expect k < 1
so that ĉ < 0.
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Figure 4. Estimator ĉ as the correlation ρ varies. The estimator was computed for
simulated data over for ρ = −0.99,−0.98, . . . 0.98, 0.99. The central plot only shows

results for ρ = −0.4,−0.39, . . . 0.39, 0.4. In the upper-right corner, the behaviour of ĉ
for values of ρ close to 0.99 is shown. In the lower-left corner, a magnified plot

presents the behaviour of ĉ for values of ρ close to −0.99.

For positive values of ρ we note that the estimator ĉ decreases as ρ increases.
For large and positive correlation more levels are shared between consecutive
observations (in mean), then from (15) ĉ turns to be small.

When |ρ| approaches to zero ĉ is very unstable. For small correlation values,
consecutive observations only share one level (in average), thus we expect
k ≈ 1 and |ĉ| can be very large.

As an instance, consider Q to be the uniform distribution over the set [0, 1],
m = 10 and c = −2. We used (14) to simulate a realisation of an autoregressive
process with uniform marginal density and negative correlation. Figure 5, in
the upper-left panel, shows the first 1000 samples of the realisation. In upper-
right panel we show a histogram based on 10000 samples. Finally, in the lower
panels we can appraise that the sample autocorrelation of order 1 is negative
and significant.

We can apply the same principle to obtain a negative correlated Beta-Stacy
AR(1) process. To this end define uk = max{1/q(k), 1/Q̃(k+1)}, where Q̃(k) =∑∞

l=k q(l). Then, for a positive number ε let us consider ck = −(1+ε)uk. Again,
because originaly ck should be positive, we do not have a random probability
measure from which (10) arises. However, this choice of {ck} enables us to use
(10) as a transition probability and then to define an autoregressive process
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Figure 5. Simulation of the AR(1) Polya tree process. On the upper-left panel: first
1000 Simulated samples. On the upper-right panel: histogram of 10000 observations.
On the lower-left panel: ACF of the sample. On the lower-right panel: PACF of the

sample.

with negative correlation.
We have implemented this idea for ε = 0.2, Q the Binomial probability

distribution with parameters N = 5 and p = 0.5. Figure 6 shows the first
1000 samples of the realisation in the upper-left panel. In upper-right panel
we show a histogram based on 10000 samples. Finally, in the lower panels the
sample autocorrelation of order 1 is negative and significant.
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scheme. Annals of Statistics, 25, 1762–1780.
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