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Abstract

This article investigates the problem of Bayesian nonparametric regression. The pro-
posed model is based on a recently introduced random distribution function which is
based on a decreasing set of weights. The approach is surprisingly of a much simpler
form than alternative models described in the literature. A Gibbs sampler algorithm is
provided for posterior analysis.
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1. Introduction. Bayesian non-parametric inference is by now becoming quite routine with
one of the fundamental models being the mixture of Dirichlet process (MDP), which is based
on the Dirichlet process, introduced by Ferguson (1973). We use G ∼ D(aG0), to indicate
that G is a Dirichlet process random distribution function with scale parameter a > 0 and
expected distribution G0. A constructive representation of the Dirichlet process is given by
Sethuraman (1994) through

G(·) =
∞∑
k=1

ωk δxk(·), (1)

where xk
iid∼ G0, {ωk}k=1,2,... is a sequence of weights, independent of the xk’s, defined as

follows: ω1 := v1 and ωk := vk
∏
j<k(1− vj) with vi

iid∼ Be(1, a), a > 0, for each k = 1, 2, . . ..
This latter specification of the weights, termed the stick–breaking construction, ensures that∑∞

k=1 ωk = 1 a.s.
The discreteness of the Dirichlet process, see for example Blackwell (1973), led Lo (1984)

to consider the mixture of Dirichlet process model, which can be written in hierarchical form
as

yi |xi
ind∼ K( · |xi)

xi|G
iid∼ G (2)

G ∼ D(aG0)

where K( · |x) is a density function for all x. This approach allows us to think of a random
density function defined as

fG(y) =

∫
K(y | x)G(dx). (3)

Note that, based on the Sethuraman construction, we can equivalently write

f(y) =
∞∑
k=1

ωkK(y | xk).
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Current trends and interests have focused on generalizing the Dirichlet process to develop
more flexible mixture models. See, for example, Regazzini et al. (2003) and Ishwaran and
James (2001), among others. These are based on general G processes such as stick–breaking
processes or normalized random measures.

Recent attention has also been paid to extending these mixture models to cover regression
scenarios and the most popular approach has been to use random densities of the type

f(y | z) =

∫
K(y | x) Gz(dx),

where z denotes the independent variable, and it is the random distribution Gz which is
allowed to change with z. There are by now many proposals for Gz based on the Dirichlet
process, commonly known as dependent Dirichlet processes (DDPs), an idea first presented
in MacEachern (1999). The general idea consists of defining dependent stochastic processes
{Gz}z∈Z , where Z denotes an index set, over which such a distribution–valued process is
defined.

Most of the Bayesian literature in this direction centers on the following generalization of
the Sethuraman (1994) construction

Gz(·) =

∞∑
k=1

ωk(z) δxk(z)(·), (4)

where the {ωk(z)}k=1,2,... and the {xk(z)}k=1,2,... are infinite collections of processes indexed
by the z–space. Examples are provided in; De Iorio et al. (2004), for the analysis of variance
in regression problems; Caron et al. (2006), Griffin and Steel (2006) and Rodriguez and Ter
Horst (2008) for dynamic and time series models. Some further developments, also based on
the Dirichlet process, are introduced in Dunson et al. (2007) and Dunson and Park (2008).

In this paper, we will contribute to the problem of Bayesian nonparametric regression
based on a recent idea due to Fuentes-Garćıa et al. (2008). In Section 2 we review the
model of Fuentes-Garćıa et al. (2008) and the dependent and regression version is described
in Section 3. Section 4 applies the proposed approach to simulated and real data sets.

2. Nonparametric priors with decreasing weights. In Fuentes-Garćıa et al. (2008), a
nonparametric mixture model was introduced by considering

f(y|A) = |A|−1
∑
l∈A

k(y;xl), (5)

where A is a random subset of the positive integers, |A| denoting the cardinality of A, which
is always by design finite. For example, the Dirichlet process arises when A = {k : ωk > u}
and the {ωk} are precisely the weights described for the Dirichlet process in Section 1. The
distribution of u, which generates the random A, is given by p(u) =

∑
k I(u < ωk); see Walker

(2007). However, two key points were noted in Fuentes-Garćıa et al. (2008); the first is that
it would be useful to have A to be always of the type A = {1, . . . , N}, and second is that it is
not necessary to have both the infinite collection of {ωk}k=1,2,... and {xk}k=1,2,... to guarantee
flexible models. The {xk}k=1,2,... are enough and the weights can take a simple form.

These considerations led to the following model

f(y) =
∞∑
N=1

1

N

N∑
l=1

k(y;xl) q(N), (6)
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where q(·) is an un–yet specified distribution on the positive integers. Equation (6) can be
seen as a mixture of a nonparametric process, as in (3), with random probability measure
defined as in (1), but with the simpler structured weights given by

ωl =

∞∑
N=l

q(N)/N. (7)

A convenient choice for q(N) results when we take q(N | λ) = Nλ2(1 − λ)N−1, since the
resulting weights are geometric, i.e. ωl = λ(1 − λ)l−1. In Fuentes-Garćıa et al. (2008) this
model was shown to be perfectly adequate and comparable with models like the mixture of
Dirichlet process for density estimation purposes.

That model can be written instructively in hierarchical form as

yi |Ni
ind∼ 1

Ni

Ni∑
l=1

K( · | xl)

Ni|λ
ind∼ q( · | λ) (8)

xl
iid∼ G0

λ ∼ π,

where π can be taken as beta distribution for conjugacy purposes. In this paper we demon-
strate that this model can be extended to a regression situation and the key is to allow λ to
depend on the covariate z. Hence the difference is that now we will have to define a process
for λ on the covariate space. This is detailed in Section 3.

3. Dependent random probability measure. We define the dependent process based on
the Fuentes-Garćıa et al. (2008) construction, as

Gz(·) =

∞∑
k=1

ωk(z)δxk(·), (9)

where xk
iid∼ G0 and

ωk(z) =
∞∑
N=k

q(N | z)/N, (10)

with
q(N | λ(z)) = N [1− λ(z)]N−1λ(z)2. (11)

Hence, for each z we have that f(y | z) is a model described in Section 2. In order to complete
the dependent process we need to describe a λ(z) process. A sensible choice is then to take

λ(z) =
eξ(z)

1 + eξ(z)
(12)

where ξ := {ξ(z)}z∈Z is a Gaussian process with continuous mean function µ and continuous
covariance function σ. The logistic transformation (12) ensures that 0 < λ(z) < 1, as
required. Hence, we can write

fλ(y | z) =
∑
k

λ(z)(1− λ(z))k−1K(y | xk).
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The marginal properties of the model for each z are known and so now we look at dependencies
between two models one at z and one at z′.

Proposition 1. For any two points z, z′ ∈ Z and set B, it is that

Corr(Gz(B),Gz′(B)) =
τ(z, z′)√
τ(z)

√
τ(z′)

(13)

where

τ(z, z′) = E

{
λ(z)λ(z′)

1− (1− λ(z))(1− λ(z′))

}
(14)

and

τ(z) = E

{
λ(z)2

1− (1− λ(z))2

}
(15)

Proof. First, let us notice that for any set B it is that

Gz(B) = λ(z)
∞∑
j=1

(1− λ(z))j−1 δXj (B).

We can write

Gz(B)Gz′(B) = λ(z)λ(z′)

∞∑
j=1

[
(1− λ(z))(1− λ(z′))

]j−1
δXj (B) (16)

+ λ(z)λ(z′)
∑
j 6=k

[1− λ(z)]j−1
[
1− λ(z′)

]k−1
δXj (B)δXk

(B)

and so the conditional expectation of Gz(B)Gz′(B) given λ(·) is given by

λ(z)λ(z′)

1− (1− λ(z))(1− λ(z′))
G0(B) +

{
1− λ(z)λ(z′)

1− (1− λ(z))(1− λ(z′))

}
G0(B)2.

Therefore,

Cov(Gz(B),Gz′(B)) = G0(B)[1−G0(B)] E

{
λ(z)λ(z′)

λ(z) + λ(z′)− λ(z)λ(z′)

}
. (17)

Now

Var(Gz(B)) = G0(B)[1−G0(B)] E

{
λ(z)

2− λ(z)

}
(18)

and therefore the result follows.

In the particular case of the logistic transformation (12) the τ functions simplify to

τ(z, z′) = E

{
eξ(z)+ξ(z

′)

eξ(z) + eξ(z′) + eξ(z)+ξ(z′)

}
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and

τ(z) = E

{
e2ξ(z)

2eξ(z) + e2ξ(z)

}
.

Given our choices for q(N | λ) and the logistic Gaussian process for {λ(z)}z∈Z , we can
also determine that as z′ → z the convergence of f(· | z) to f(· | z′) is satisfied. In fact, if d
denotes the L1 distance, and fλ(y | z) is the model with λ given, it is easy to see that

d(fλ(· | z), fλ(· | z′)) =
∑
k

∣∣∣λ(z)(1− λ(z))k−1 − λ(z′)(1− λ(z′))k−1
∣∣∣ ,

which is the L1 distance between the two geometric distributions. Hence provided that the
mean and covariance functions of the Gaussian process are continuous, it follows that ξ(·)
and λ(·) are a.s. continuous and hence d(fλ(· | z), fλ(· | z′))→ 0 a.s.

3.1. Bayesian nonparametric regression. As a particular application of the model de-
fined in (9), we consider the problem of estimating the conditional density of a response
variable, y, given a predictor value z = (z1, . . . , zp)

′. We assume we observe n responses, yi,
i = 1, . . . , n, with corresponding predictor, or covariate, values zi = (zi1, . . . , zip)

′.
For this purpose, it is convenient to consider the mixture modeling approach given by

f(y | z) =
∞∑
N=1

1

N

N∑
l=1

K(y | xl)q(N | z). (19)

If {Gz}z∈Z is defined as in (9), this model can also be written as

f(y | z) =

∫
K(y | x)Gz(dx).

Given Ni and a predictor value zi, let us denote by di a random variable indicating from
which component yi came from, hence the following hierarchical model is deduced and is
convenient for understanding and exposing the Gibbs sampler for estimating the model;

yi | di, (x1, x2, . . .) ∼ K(· | xdi)
di | Ni ∼ Unif({1, . . . , Ni})

Ni | λ, zi ∼ q(· | λ(zi))

λ(·) ∼ LGP(µ, σ)

xl ∼ G0

where LGP(µ, σ) denotes the logistic Gaussian process defined by (12).

3.2. Gibbs sampler algorithm. The above hierarchical interpretation allows us to con-
struct a Gibbs sampler algorithm where an iteration consists of sampling from the full con-
ditional distributions, which are given by:

π(xj | · · · ) ∝ π(xj)
∏
di=j

K(yi | xj)

for j = 1, . . . , Nmax, where Nmax := maxi{Ni}.

P(di = l | Ni) =
K(yi | xl)∑Ni
k=1K(yi | xk)

,
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for l = 1, . . . , Ni.
P(Ni = N | di) ∝ [1− λ(zi)]

N−1I(N ≥ di)

with λ(z) defined as in (12). Hence, the full conditional for ξ = (ξ(z1), . . . , ξ(zn)) is given by

π(ξ | · · · ) ∝ π(ξ)
n∏
i=1

e2ξ(zi)

(1 + eξ(zi))Ni+1
.

If we update component-wise, then we have that for i = 1, . . . , n,

π(ξi | ξ−i, . . .) ∝
1

(1 + eξi)Ni+1
N

ξi;µi − 1

cii

∑
j 6=i

(zj − µj)cij +
1

cii
,

1

cii

 , (20)

where cij is the ij-th term of the precision matrix Σ−1, Σ = {σ(zi, zj); i, j = 1, . . . , n}. It
is worth mentioning that (20) is log-concave, so it can be easily sampled via the adaptive
rejection sampling algorithm of Gilks and Wild (1992).

4. Examples. Simulated data. For the sake of illustration we first consider a simulated data
set with 61 observations coming from

Yi = 0.2 z3i + εi

where εi
iid∼ N(0, 0.25) and z = (−3,−2.9, . . . , 2.9, 3). Using our model we fixed K(y |

x) = N(m, 1/v), so x := (m, v), and a conjugate prior distribution given by g0(x) =
N(m;µ, γv−1) Ga(v;α, β) where γ, α, β > 0. Hence, the full conditional for the xj is given by

π(mj , vj | . . .) = N

(
mj |

γ nj ȳj + µ

γ nj + 1
;

γ

vj (γ nj + 1)

)
Ga

(
vj |

nj
2

+ α;
nj(ȳj − µ)2

2(γ nj + 1)
+
Dj

2
+ β

)
where nj :=

∑
I(di = j), sj :=

∑
di=j

yi, ȳj = sj/nj and Dj =
∑

di=j
(yi − ȳj)2. For the

choice of ξ we selected a Gaussian process with mean function µ(z) = −|z| and stationary
covariance function given by σ(zi, zj) = e−φ||zi−zj ||.

Commonly regression analysis focuses on the predictive mean E[Y | zi], which in this
context is clearly a random quantity. In general, we can infer about the whole density
f(y | z) or the distribution of any derived functional ηz(h) :=

∫
h(y)f(y | z)dy. In particular,

we can approximate the latter distribution through the Rao-Blackwellized Monte Carlo (MC)
estimator resulting from the Gibbs sampler described above. That is

ηzi(h) ≈ 1

M

M∑
l=1

El[h(y) | zi],

where the expectation is taken exactly within each iteration l = 1, . . . ,M of the Gibbs
sampler.

For example, if we are interested in µzi(y) := E[y | zi], its mean value could be approxi-
mated by

η̄zi(y) ≈ 1

M

M∑
l=1

ml
di
,

where ml
di

is the value m evaluated at di at iteration l.
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In Figure 1 we observe the MC estimation for the distribution of µz(y) together with
the observed data. Figure 2 shows the mean and 95% high posterior density (HPD) intervals
corresponding this distribution. It is worth emphasizing that the results shown in these figures
are not to be interpreted in the usual sense for credible intervals, but rather as the distribution
of E[y | z]. A similar MC estimation could be done, for example, for the Var[y | z]. In Figure 3,
a combination of these, given by E{E[y | z]} ± E{Var[y | z]} is displayed. In this example, we
have chosen relatively simple forms for the mean and covariance functions corresponding to
the logistic Gaussian process, however a more elaborated choice, possibly with some hyper-
parameters involved could also be implemented. An important issue to consider while doing
this is that the logistic transformation tends to tie down large values of the Gaussian process.

Great Barrier Reef data. We now consider a data set analysed in Bowman and Azzalini
(1997). It considers the weight of fauna, given by a score in the log scale, mainly collected
in the Far Northern Section of the Great Barrier Reef Marine Park, at different locations.
The measurements were taken in an area that had location approximately: 11-12 Degrees
South Latitude, 143-144 Degrees East Longitude; see Table 1. The interest is to describe the
relationship of the 42 scores with the longitude of the sampling location.

Without any further tuning to the model specifications used for the simulated data, i.e.
the same normal-gamma choice for G0 and same mean and covariance functions, we are
able to produce the MC density estimators at several covariate values, shown in Figure 4.
The points were chosen so that one is able to witness the evolution of the densities as the
covariates change, clearly picking up the change point that occurs around z = 143.35.

5. Discussion. In the non-regression case we can see why the choice of simple weights work.
Essentially, the infinite number of locations available do all the work by controlling how much
weight is at a particular location, e.g. by how many x’s are placed at a particular location.

In the regression case, this principle still applies since we are only considering data from
a finite number of random densities. The x’s will need to work harder but will always have
the infinite number at their disposal to allocate the “ correct ” weights at the right places.

Having the first, and largest weight for each z to be arbitrary in (0, 1) combined with the
infinite choice of the x’s is sufficient for regression purposes.
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y z y z

0.18 142.88 1.83 143.18
2.06 142.89 1.54 143.21
0.90 142.91 1.85 143.21
1.46 142.93 1.49 143.25
1.93 142.97 1.58 143.27
1.75 142.98 -0.06 143.35
1.68 142.98 0.45 143.41
1.95 143.00 -0.14 143.42
0.86 143.02 0.27 143.52
1.45 143.02 0.12 143.56
1.44 143.02 -0.30 143.59
1.44 143.05 -0.30 143.64
1.74 143.06 -0.30 143.64
0.89 143.06 0.26 143.66
1.04 143.10 -0.30 143.71
1.68 143.10 -0.30 143.78
1.73 143.11 -0.28 143.79
1.38 143.13 -0.30 143.82
1.53 143.14 0.02 143.87
0.90 143.15 -0.30 143.89
1.36 143.18 -0.30 143.93

Table 1: Far Northern Section of the Great Barrier Reef Marine Park data.
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Figure 1: MC estimator for the density of ηz(y) for simulated data set. The spheres represent
the observed data and the surface the Rao-Blackwellized MC estimator for ηz(y). The results
are based on 10000 iterations of the Gibbs sampler algorithm.
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Figure 2: MC estimator for E[ηz(y)] for simulated data set. The solid line shows the mean
of the random functional E[ηz(y)] and the dotted lines the corresponding HPD(95%)
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Figure 3: MC estimation for E{E[y | z]} ± E{Var[y | z]}.
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Figure 4: MC estimator for the density of ηz(y) for Great Barrier Reef data set. The Rao-
Blackwellized MC estimator for ηz(y) is displayed for 12 different covariate values. The results
are based on 10000 iterations of the Gibbs sampler algorithm.
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