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On a construction
of Markov models in continuous time

Summary - This paper studies a novel idea for constructing continuous-time stationary
Markov models. The approach undertaken is based on a latent representation of the
corresponding transition probabilities that conveys to appealing ways to study and
simulate the dynamics of the constructed processes. Some well-known models are
shown to fall within this construction shedding some light on both theoretical and
applied properties. As an illustration of the capabilities of our proposal a simple
estimation problem is posed.
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1. Introduction

Pitt, Chatfield and Walker (2002) introduced an approach to construct
strictly stationary time series models with arbitrary but given marginal dis-
tributions. The idea goes as follows: Suppose that we wish to build up a
Markovian model {Xn} with the requirement that its marginal distribution be-
longs to a given parametric family, say it takes the form πX (x). Their approach
consists of defining such a process by constructing the transition probabilities
that govern it in such a way that the desired marginal remains invariant through
time. Once the marginal form has been chosen, the construction of the transi-
tion probabilities is performed by imposing certain dependence through a latent
variable with conditional density given by fY |X (y | x). This conditional density
is then used to construct the transition distribution, driving the process {Xn},
with transition density given in the following form

p(xn−1, xn) =
∫

fX |Y (xn | y) fY |X (y | xn−1) η1(dy) (1)

where
fX |Y (x | y) ∝ fY |X (y | x) πX (x),
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that is the posterior distribution under a likelihood based on a single observation,
fY |X , and prior πX . It is easy to show that πX (·) constitutes an invariant density
for the transition density (1), that is

πX (xn) =
∫

p(xn−1, xn)πX (xn−1) η2(dxn−1). (2)

Here, η1 and η2 denote certain reference measures, in practice the Lebesgue or
counting measure.

The choice of the conditional density fY |X (y | x) is quite open, and repre-
sents the main contribution to the Makovian dependence driving the constructed
model. Pitt et al. (2002) used this idea to construct AR(1)-type models,
in particular, they limited their choice of fY |X (y | x) so the linear property
E[Xt | Xt−1 = x] = a x + b is attained. Further analysis outside this linearity
property has been studied in Pitt and Walker (2005) and Mena and Walker
(2007).

The main objective of this paper is to further explore this idea in the
continuous time setting. In general, this leads us to consider a conditional
distribution with density fY |X such that the transition density resulting from (1),
say p(x0, xt), satisfies the well-known Chapman-Kolmogorov equations

p(x0, xt+s) =
∫

p(xs, xt+s) p(x0, xs) η2(dxs). (3)

Although it does not seem to be a general form for fY |X under which the above
is satisfied, we can establish some interesting results when fY |X falls in some
parametric families. In particular, this leads to the appealing representation (1)
of transition densities corresponding to some well-known families of Markov
models. Our approach consist of assigning to one of the underlying parame-
ters, a time dimension and to examine the conditions under which the above
equations are satisfied.

A Markov process constructed through the transition probability with den-
sity given by (1) clearly inherited some characteristic features of a Markov
chain generated through a Gibbs sampler algorithm. In particular, all processes
generated through this mechanism are reversible. The “latent” representation
of the transition density, as given in (1), provides with an instrumental way
of dealing with the law of the process which could be useful for many pur-
poses such as the implementation of efficient estimation procedures. Clearly
the nature of the state space of {Xt}, i.e. the nature of the support of πX ,
and the kind of dependence induced through fY |X might lead us to particular
classifications of Markov processes, e.g. continuous time Markov chains and
diffusion processes among others.

Describing the layout of the paper; in Section 2 we concentrate on the
Gamma-Poisson model which leads, in particular, to the Cox-Ingersoll-Ross
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family of diffusion processes; in Section 3 we consider the normal-normal
model which results in the Ornstein-Uhlenbeck class of diffusions; in Section 4
we look at the Poisson-Binomial model which leads to a type of birth-death
process; in Section 5 we examine the Beta-Binomial model, where we utilise
the construction of the Gamma-Poisson model to give a representation of the
transition of the Wright-Fisher model; Section 6 contains a simple applica-
tion derived from the proposed construction and finally, in Section 7, some
discussion is provided.

2. Gamma-Poisson model

Let us start with a model contained in Pitt, Chatfield and Walker (2002) so
we assume that X0 ∼ Ga(a, b), where Ga denotes the gamma distribution with
mean a/b and a, b > 0. Hereafter, we will denote D(x; θ) as the density/mass
function corresponding to a random variable X ∼ D(θ). For fY |X , a natural
choice, due to conjugacy properties, is the Poisson distribution. If Y1 | X0 ∼
Po(φ X0) where φ > 0, and consequently X1 | Y1 ∼ Ga(a + Y1, b + φ) then
the marginal density of X1 also has a Ga(a, b) density. It is clear that X1 is
a Bayesian update of X0 given Y1. To proceed we take Y2 | X1 ∼ Po(φ X1)
and X2 | Y2 ∼ Ga(a + Y2, b + φ), and so on. It is also clear that effectively a
Gibbs sampler is being constructed based on the joint density

f (x, y) = Po(y; φ x) Ga(x; a, b).

In this example the parameter φ controls the correlation of the process {Xn}. If
φ is close to zero (equal to zero) then Y1 is likely to be small (equal to zero)
and so X1 is close to (equal to) the Ga(a, b) density. On the other hand, if φ
is large then so is Y1 with high probability and so X1 will be close to X0 with
high probability. As we mentioned in the introduction the resulting discrete
time Markov process, {Xn}, enjoys all the properties of a chain generated by
a Gibbs sampler with the distinctive feature that it is always on stationarity.

Following (1), we can obtain the transition density for the target process
{Xn} given by

p(xn−1, xn) =
∞∑

y=0

Ga(xn; y + a, φ + b) Po(y; xn−1φ)

= exp{−[φ(xn + xn−1) + bxn]}
(φ + b)−(a+1)/2 φ(a−1)/2

×
(

xn

xn−1

) a−1
2

Ia−1

(
2
√

xnxn−1φ(φ + b)
)

,

(4)
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where Iν(·) denotes the modified Bessel function of the first kind with index
ν. See Abramowitz and Stegun (1992).

The following interpretation follows; if we take n samples from the Poisson
distribution then the sum is a sufficient statistic for the mean parameter and this
would give us a Po(Sn X0) distribution, where Sn is the sum of the n Poisson
values. We can clearly generalize this to Po(φX0) and remove the need for
φ to be an integer. It turns out that a requirement for the process {Xt} to be
Markov and continuous in time can be attained by considering specifications of
φt , namely as a function of t , that result in the Chapman-Kolmogorov equations
being satisfied.

In other words, to introduce time continuous dependence in the above
model is by allowing the parameter φ, that controls the correlation, to vary
with time, so we write φt , and find the form of this function such that the
resulting process, {Xt}, is still Markov and exists.

Here, the state spaces corresponding to the processes we will present,
are complete and separable, hence the existence of a Markov process with
the prescribed laws, can be ensured by the accomplishment of the Chapman-
Kolmogorov equations. Further assumptions would be required for more general
spaces. See, for example, Pollard (1984).

2.1. Choice of φt satisfying Chapman-Kolmogorov equations

If we assume that φt is a strictly positive deterministic function, the pro-
cess resulting when generalizing transition (4) results in a time homogeneous
transition density given by

p(x0, xt) =
∞∑

y=0

Ga(xt; y + a, φt + b) Po(y; x0φt)

= e−[φt (xt +x0)+bxt ]

(φt + b)−(a+1)/2 φ
(a−1)/2
t

(
xt

x0

) a−1
2

Ia−1

(
2
√

xt x0φt(φt + b)
)

.

(5)

In order to see for which values of φt expression (5) satisfies the Chapman-
Kolmogorov equations, it is easier to deal with the Laplace transform than with
the transition density. Denote the Laplace transform of the random variable Z
as LZ (λ) := E[eλZ ], where in general λ ∈ C, obvious restrictions for the domain
of λ will follow depending of the distribution at issue. Hence, if Z ∼ Ga(a, b),
then LZ (λ) = (1 − b−1λ)−a and if Z ∼ Po(η), then LZ (λ) = exp{η(eλ − 1)}.



On a construction of Markov models in continuous time 307

The Laplace transform for the transition (5) can be easily found by using
the latent decomposition in the variable Y as follows

LXt |X0=x0(λ) = E[LXt |Yt (λ) | X0 = x0]

=
{

1 − (φt + b)−1λ
}−a

LYt |X0

(
− ln

(
1 − (φt + b)−1λ

))

=
{

1 − (φt + b)−1λ
}−a

exp
{

x0 φtλ

φt + b − λ

}
.

(6)

Proposition 1. A stationary gamma Markov process {Xt} defined through transition
densities given by equation (5) satisfies the Chapman-Kolmogorov equations if

φt := b
e c t − 1

, c > 0. (7)

Proof. In terms of Laplace transforms the Chapman-Kolmogorov equations are
satisfied if the following equality holds

E
[
LXt+s |Xs (λ) | X0

]
= LXt+s |X0(λ). (8)

Therefore, in this case

E
[
LXt+s |Xs (λ) | X0

]

=
{

1 − (φt + b)−1λ
}−a

LXs |X0

(
φtλ

φt + b − λ

)

=
{

1 − λ(φt + φs + b)

(φt + b)(φs + b)

}−a

exp
{

x0λφtφs

(φt + b)(φs + b) − λ(φt + φs + b)

}

which equals to LXt+s |X0(λ) if and only if φ satisfies

φt+s = φtφs

φt + φs + b
. (9)

Multiplying equation (9) by b and adding one in each side of the equality we
obtain

φt+s + b
φt+s

= (φt + b)(φs + b)

φtφs
. (10)

Now, if we define ϕt := (b + φt)/φt then we get

ϕt+s = ϕt ϕs,

known as the exponential Cauchy equation, and for which positive solution is
given by ϕt = ect . Applying the corresponding substitutions, we obtain the
desired result.
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Although equations (5) and (6) fully characterize the law that regulates
the dynamics of the constructed Markov process {Xt}, it is of interest to see
whether the resulting process can be identified within a particular class of
Markov processes, such as Markov chains, diffusion processes, Lévy processes,
etc. In order to endeavor this classification task, the first thing we look at is the
nature of the state space of the process at issue, which also match the support
of the chosen stationary distribution. In the particular case of this section, the
choice of a gamma distribution conveys to a Markov process with the positive
real line as a state space which in turn suggests that the model might fall in
the class of diffusion processes.

2.2. The Gamma-Poisson diffusion process

Given a time-homogeneous Markov process with transition density, pt(x0,xt),
we could test whether it is a diffusion process. This can be done by verifying

lim
t↓0

1
t

∫

|xt −x0|>ε
pt(x0, xt) dxt = 0, (12)

for ε > 0. Condition (12) essentially prevents a process to have instantaneous
jumps. An application of Chebyshev inequality ensures that (12) is satisfied if

lim
t↓0

1
t

E{|Xt − X0|h | X0 = x0} = 0, for h > 2. (13)

With this condition being satisfied the well know connection with stochastic
differential equations, with drift coefficient µ(x) and diffusion coefficient σ (x),
can be established through

µ(x) := lim
t↓0

1
t

E{Xt − X0 | X0 = x} (14)

σ (x) := lim
t↓0

1
t

E{|Xt − X0|2 | X0 = x}. (15)

In order to check these limits for the gamma-Poisson process, let us first define
Ex0(·) := E(· | X0 = x0). Now note that if Z ∼ Ga(a, b) then E[Z j ] = (a)j/b j ,
where (a)j := a(a + 1) · · · (a + j − 1) denotes the ascending factorial, also
known as the Pochhammer symbol. Therefore, for the Gamma-Poisson process
we have

Ex0

[
X j

t

]
= Ex0

[
(y + a)j

]

(b + φt) j
, (16)

where the expectation in the right hand side is taken with respect to a Po(x0φt)
distribution.
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Hence, in order to check condition (13), it is enough to consider h = 4,
in which case we get

Ex0

(
|Xt − X0|4

)

= Ex0(X4
t ) − 4 x0 Ex0(X3

t ) + 6 x2
0 Ex0(X2

t ) − 4 x3
0 Ex0(Xt) + x4

0

=
{

12 x2
0φ

2
t + φt [12x3

0 b2 − x2
0 b(24 + 24a) + x0(24 + 36a + 12a2)]
(b + φt)4

+ x4
0 b4−4x3

0 b3a+x2
0 b2(6a + 6a2)−x0b(8a + 12a2−4a3)+(a)4

}
.

(17)

Furthermore, it is easily seen that for φt = b (e ct − 1)−1

lim
t↓0

1
t
(b + φt)

−4 = lim
t↓0

1
t
φ2

t (b + φt)
−4 = lim

t↓0

1
t
φt(b + φt)

−4 = 0. (18)

Therefore, condition (13) follows. Analogously, applying (14) and (15), it can
be seen that

µ(x) = c (a/b − x) and σ (x) =
√

2 c
b

x . (19)

Hence, the Gamma-Poisson process can be seen as the law of the solution to
a stochastic differential equation given by

dXt = c (a/b − Xt) dt +
√

2 c
b

Xt dWt (20)

where {Wt} denotes a Brownian motion. This process constitutes a simple
reparameterization of the Cox-Ingersoll-Ross (CIR) model widely used as a
model for interest rates. See Cox, Ingersoll and Ross (1985). The form of the
drift function clearly identifies the reverting mean effect towards its equilibrium
value a/b, which is precisely the mean of the invariant density. By making
b = 1 and γ :=

√
2c we get the typical reparameterization of the CIR model.

Note that the diffusion resulting from (20) can hit zero when a < 1, however
this in not incompatible with the stationarity of the process. Furthermore,
it is also worth noting that the proposed construction establishes directly the
reversibility of the diffusion process.
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2.3. A non-stationary Gamma-Poisson process

One interesting question is whether a construction of the type (5) is also
available for non-stationary models. Here we present a possibility using the
same construction as in the stationary Gamma-Poisson model.

Assume that instead of constructing a process with marginal distribution
being Ga(a, b), we want a process with “marginal” measure with Lebesgue
density given by q(x) = xa−1 with a > 0, which is clearly not integrable on R+.
As before, let us introduce the dependence by assuming Yt | X0 ∼ Po(x0 φt).
After a simple application of Bayes’ theorem, it turns out that the posterior
distribution is integrable on R+ and given by Xt | Yt ∼ Ga(yt + a, φt), in
Bayesian terms, a proper posterior under an improper prior.

Following (9), the condition on φ that leads to Chapman-Kolmogorov equa-
tions to be satisfied is given by

φt+s = φtφs

φt + φs
, (21)

which have positive solution when φt = 1/ct , for c > 0. Hence, the process
{Xt} is defined through the conditional distributions

Yt | X0 ∼ Po(X0/ct), Xt | Yt ∼ Ga(Yt + a, 1/ct). (22)

In the same way as in the gamma-Poisson model, we can verify that the
constructed law corresponds to diffusion process. As before, using the mo-
ments (16), condition (13) can be verified for h = 4. Computing the corre-
sponding limits in (14) and (15), it is easily seen that

µ(x) = a c and σ (x) =
√

2 c x . (23)

Therefore the associated diffusion corresponds to the solution of a SDE given
by

dXt = a c dt +
√

2 c Xt dWt . (24)

Again, a simple reparameterization leads to a well-known diffusion process.
Take a := δ/2 and c := 2, then the resulting diffusion is known as the
δ-dimensional squared Bessel process, typically denoted by BESQδ(x). The
square root of this process measures the Euclidean distance of a δ-dimensional
Brownian motion from the origin and plays an important role in mathematical
finance; see Yor (2001). The transition density for this model has the same
expression as in (5) with b = 0 and φt = 1/(ct).
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3. Normal-Normal model

Here we start with
X0 ∼ N(µ, τ )

and impose the dependence in the model through

Yt | X0 ∼ N (X0, φt τ ) , (25)

with µ ∈ R, τ > 0 and φt > 0 for all t > 0. Once more, Bayes theorem
implies that

Xt | Yt ∼ N
(

Yt + φt µ

1 + φt
,

τ φt

1 + φt

)
. (26)

With the conditional distributions (25) and (26) and using (1), the transition
density driving the stationary process {Xt} with Normal marginals is given by

p(x0, xt) = N
(

xt;
x0 + φt µ

1 + φt
, τ [1 − (1 + φt)

−2]
)

. (27)

Hence, if Z ∼ N(µ, s), we obtain LZ (λ) = exp{λµ − λ2 s/2}. Therefore, the
Laplace transform corresponding to the transition density (27) is given by

LXt |X0(λ) = exp
{

λx0(1 + φt)
−1 + λµφt(1 + φt)

−1−

× λ2τ

2
[1 − (1 + φt)

−2]
}

.

(28)

The Chapman-Kolmogorov equations are satisfied if E[LXt+s |Xs (λ) | X0] =
LXt+s |X0(λ). Hence we get

E [LXt+s |Xs (λ) | X0 = x0] = exp

{
λφtµ

1 + φt
− λ2τ

2
[1 − (1 + φt)

−2]

}

× LXs |X0

(
λ

1 + φt

)

= exp
{
λµ

[
1 − (1 + φt)

−1(1 + φs)
−1
]
+ λ x0(1 + φt)

−1(1 + φs)
−1
}

× exp

{

−λ2 τ

2

[
1 − (1 + φt)

−2(1 + φs)
−2
]}

(29)

which equals LXt+s |X0(λ) if

φt+s = φt φs + φt + φs . (30)
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The functional equation (30) arises frequently in probability theory and its
positive solution is given by φt = eα t − 1, α > 0. See Aczél and Dhombres
(1989). Hence, the transition density (27) can be rewritten as

pt(x0, xt) = N
(

xt; x0 e−αt + µ (1 − e−αt), τ [1 − e−2αt ]
)

. (31)

In the same way as in Section 2.2, we can verify condition (13) to see whether
a diffusion process can be associated with the transition density given by (31).
It turns out that in this case we have

Ex0

(
|Xt − X0|4

)
= (x0 − µ)4 (e−αt − 1)4 + 3τ 2(e−2αt − 1)2

+ (2e−3αt − 2e−αt − e−4αt + 1)(6τ x2 − 12xµτ + 6µ2τ ),

from which is seen that

lim
t↓0

1
t

Ex0

(
|Xt − X0|4

)
= 0. (32)

In the same manner, limits (14) and (15) can be obtained to get the drift and
diffusion coefficients, yielding to a diffusion process solution of a SDE given
by

dXt = −α(x − µ) dt +
√

2τα dWt . (33)

If we put τ = σ 2/2α we obtain the SDE

dXt = −α(x − µ) dt + σ dWt , (34)

known as the mean reverting Ornstein-Uhlenbeck model.

4. Poisson-Binomial model

Following the approach in the previous sections, let us assume that we
want to construct a Markov chain in continuous case with a Poisson stationary
distribution. With this in mind let us choose πX (x, λ) = Po(x; λeθ ), serving
as the stationary distribution of the process to be constructed. Having set the
stationary behavior, the corresponding conditional density is chosen by

fY |X (y | x; ξ) = bin(y; x, ξ) =
(

x
y

)

(1 − ξ)x−y (ξ)y I{0,... ,x}(y),

where 0 < ξ < 1. After an application of Bayes theorem, we get

fX |Y (x | y; ξ) = [(1 − ξ)λ]x−y

(x − y)!
exp

{
(x − y)θ − λeθ (1 − ξ)

}
I{y,... ,∞}(x).
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Hence, as before, the idea is to construct a continuous time stationary process
X = {Xt; t ∈ R+} by introducing a latent process Y = {Yt; t ∈ R+} via the
updating mechanism

{Yt | X0 = x0} ∼ fY |X (· | x0; ξt)

{Xt | Yt = yt} ∼ fX |Y (· | yt; ξt),

where ξt is a function in (0, 1) which has to satisfy Chapman-Kolmogorov
equations (3).

In this case the transition probability (1) has mass probability function
given by

p(x0, xt) =
∞∑

y=0

fX |Y (xt | y; ξt) fY |X (y | x0; ξt)

= [λeθ (1 − ξt)]xt exp{−λeθ (1 − ξt)}(1 − ξt)
x0

xt !

×
x0∧xt∑

y=0

[
ξt

λeθ (1 − ξt)2

]y

x0!xt !

y!(xt − y)!(x0 − y)!

= [λeθ (1 − ξt)]xt exp{−λeθ (1 − ξt)}(1 − ξt)
x0

xt !

× 2 F0

(
−x0, −xt ,

ξt

λeθ (1 − ξt)2

)

= Po(xt; λeθ (1 − ξt))(1 − ξt)
x0 2 F0

(
−x0, −xt ,

ξt

λeθ (1 − ξt)2

)

(35)

where a ∧ b stands for min{a, b} and 2 F0() is a generalized hypergeometric
function, see Abramowitz and Stegun (1992), formulas 15.4.1 and 15.4.2. For
this expression, we have used the relation 1/(x − y)! = (−1)y(−x)y/x!.

As in Section 2.1, we can proceed to find the form of ξt such that Chapman-
Kolmogorov equations are satisfied. It is easily seen that

LY |X=x(ψ) =
{

1 − ξt + ξt eψ
}x

and

LX |Y=y(ψ) = eyψ exp{λeθ (1 − ξt)(eψ − 1)}.
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Therefore the Laplace transform corresponding to the transition mass func-
tion (35) can be computed as

LXt |X0=x(ψ) = E[LXt |Yt (ψ) | X0 = x]

= exp{λeθ (1 − ξt)(eψ − 1)}LYt |X0=x(ψ)

= exp{λeθ (1 − ξt)(eψ − 1)}
[
1 − ξt + ξt eψ

]x0
.

(36)

As before, using the Laplace transform(36), to satisfy the Chapman-Kolmogorov
equations is equivalent to satisfy

E
[
LXt+s |Xs (ψ) | X0 = x

]
= LXt+s |X0=x(ψ). (37)

Hence, we have

E
[
LXt+s |Xs (ψ) | X0 = x

]

= exp{λeθ (1 − ξt)(eψ − 1)}LXs |X0=x(ψ̂)

= exp{λeθ (1 − ξtξs)(eψ − 1)}
[
1 − ξtξs + ξtξseψ

]x0
,

(38)

where ψ̂ = log
(
1 − ξt + ξt eψ

)
The above quantity equals LXt+s |X0(ψ) if and

only if ξt+s = ξtξs which, once more, leads to ξt = eC t . Restricting such a
solution to the constrain 0 < ξt < 1 implies ξt = e−αt with α > 0.

4.1. The Poisson-Binomial continuous time Markov process

Just as in the Gamma-Poisson example, the Poisson-Binomial model pre-
sented in the previous section can be identified within a well-known class of
Markov chain model.

In fact, for this model the infinitesimal generator Q = {qi j } of the semi-
group Pt = {pt(i, j)} is given by

qi j =






− lim
t↓0

1 − pt(i, i)
t

, j = i

lim
t↓0

pt(i, j)
t

, i *= j
=






−α(i + λeθ ), j = i
αλeθ , j = i + 1
iα, j = i − 1
0, otherwise,

where pt(i, j) is given as in (35) with ξt = e−αt . It can be seen that in this
case the above process is strong Markov, since all the states are stable, that is
0 ≤ −qi j < ∞. This infinitesimal generator is immediately recognized as that
corresponding to a conservative birth and death process with birth rate αλeθ

and death rate iα. If we set θ = 0 we obtain a stationary model with Po(λ)
marginal distributions.
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5. Beta-Binomial model

A model particularly appealing in genetical applications arises from the
following construction. First, let us notice that if Xi

ind∼ Ga(ai , 1), i = 1, 2
then P = X1/(X1 + X2) ∼ Be(a1, a2) and is independent of X = X1 + X2 ∼
Ga(a1 + a2, 1). Second, it is well known that if Yi

ind∼ Po(φXi), i = 1, 2, then
{Y1 | Y } ∼ Bin(Y, X1/(X1 + X2)), where Y := Y1 + Y2.

Hence, following the construction of Section 2, we now construct two
Gamma–Poisson processes by means of the following conditional representa-
tions:

{X jt | Yjt} ∼ Ga(aj + Yjt , 1 + φt) and {Yjt | X j0} ∼ Po(φt X j0)

for j = 1, 2 and define the process {Pt} through the following transformation

Pt := X1t

X1t + X2t
.

Therefore, {Pt | Y1t , Yt} ∼ Be(a1 + Y1t , a − a1 + Yt − Y1t), where Yt = Y1t + Y2t .
In the notation of Section 2 we have set b = 1, and thus φt = (e ct − 1)−1.
Conditioning on the event {Yt = m} we can construct the transition density
driving this process as follows:

p(pt | p0, Yt = m) =
m∑

k=0

Be(pt; a1 + k, a − a1 + m − k) Bin(k; m, p0)

= 0(a + m)[(1 − pt)(1 − p0)]
m p

a1−1
t (1 − pt)

a2−1

×
m∑

k=0

!k

(
m
k

)

0(a1 + k)0(a2 + m − k)

= 0(a + m)[(1 − pt)(1 − p0)]mp
a1−1
t (1 − pt)

a2−1

0(a1)0(a2 + m)

× 2 F1(−m, −a2 − m + 1; a1; !)dpt ,

(40)

where

2 F1(a, b; c; z) =
∞∑

n=0

(a)n (b)n

(c)n

zn

n!
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denotes the Gauss hypergeometric function, ! := ptp0[(1 − pt)(1 − p0)]−1 and
a := a1 + a2. On the other hand, we have

Pr(Yt = m) = EX0 {Po(yt; φt X0)} = EX0

{
e−φt X0

(φt X0)
m

m!

}

= φm
t

m!
(a)m

(1 + φt)a+m
,

(41)

since X0 ∼ Ga(a, 1). Hence the transition density for the process {pt} is given
by

p(pt | p0) = EYt

{ Yt∑

k=0

Be(pt; a1 + k, a − a1 + Yt − k)Bin(k; Yt , p0)

}

=
∞∑

m=0

{ Yt∑

k=0

Be(pt; a1 + k, a − a1 + Yt − k) Bin(k; Yt , p0)

}

Pr(Yt = m),

which using (40) and substituting φt = (e c t −1)−1 in (41) leads to the transition
density

p(pt | p0) = p
a1−1
t (1 − pt)

a2−1(1 − e−ct)a

0(a)0(a1)

×
∞∑

m=0

0(a + m)2

0(a2 + m)m!
[e−ct(1−pt)(1−p0)]

m
2 F1(−m,−a2−m+1; a1; !).

(42)

Hence, we have constructed a stationary process {pt} with Be(a1, a2) marginal
distributions.

5.1. The Beta-Binomial diffusion process

As before, we can associate a diffusion process to the model described in
the previous section. If we notice that for p ∼ Be(a, b) we have the moments
E[p j ] = (a)j/(a + b)j and therefore

E
[
P j

t | P0 = p0, Yt = m
]

= 1
(a + m)j

E
[
(a1 + Y1t)j | P0 = p0, Yt = m

]

= 1
(a + m)j

m∑

k=0

Bin(k, m, p0)(a1 + k)j .

Now, substituting φt = (ect − 1)−1 in (41) we get

Pr(Yt = m) = (a)m

m!
(1 − e−ct)ae−mct .
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The unconditioned moments are given by

∞∑

m=0

E
[
P j

t | P0 = p0, Yt = m
]

Pr(Yt = m).

In particular, we can see that

E[(Pt − P0) | P0 = p0] = (1 − e−ct)a (a1 − ap0) 2 F1(a, a; a + 1; e−ct)

a
.

Hence, following (14) and assuming that a > 1 we get

µ(p) = c
a − 1

(a1 − ap).

Analogously, we could get

σ 2(p) = 2c
a − 1

p(1 − p),

and verify that condition (13) is satisfied. Therefore, the associated diffusion
process can be seen as the solution to the SDE given by

dPt = c
a − 1

(a1 − aPt)dt +
√

2c
a − 1

Pt(1 − Pt)dWt .

If we put c = (a − 1)/2 then we get

dPt = 1
2
(a1 − aPt)dt +

√
Pt(1 − Pt)dWt ,

which is known as the reversible mutation Wright-Fisher diffusion model or a
particular case of the Jacobi SDE.

6. Estimation example

In this section we simply exemplify a potential application of the latent
representation of the transition, in the context of estimation. If a tractable
analytic expression for the transition density pt(x0, xt) is available, then for a
given data set x = (xt1, . . . , xtT ) for t1 ≤ t2 ≤ · · · ≤ tT we could compute

Lx(θ) = qθ
X (xt1)

T −1∏

i=1

p(ti+1−ti )(xti , xti+1), (43)
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that could be used for instance in maximum likelihood or Bayesian estimation
methods.

However, closed expressions for (1), are not always available or they might
be hard to compute, therefore as an alternative approach one could resort to
the augmented likelihood

Laug
x,y (θ) = qθ

X (xt1)
T −1∏

i=1

f θ
X |Y (xti+1 | yti+1) f θ

Y |X (yti+1 | xti ), (44)

and, for instance, proceed through an expectation-maximization algorithm, that
in order to maximise (43) computes iteratively a sequence θ1, . . . , θj , . . . con-
verging to the maximum value of (43), with the following two steps

• E-step. For given data set x and current parameter value θj , compute the
following expectation

Q(θ | θ( j ), x) = Eθ( j )

[
log Laug

x,y (θ)
]
, (45)

where the expectation Eθ( j )
[·] is taken with respect to F

θ( j )
Y|X .

• M-step. Maximise Q(θ | θ( j ), x) in θ and define

θ( j+1) = arg max
θ

Q(θ | θ( j ), x). (46)

The EM iterations satisfy

Q(θ( j+1) | θ( j), x) ≥ Q(θ( j) | θ( j), x), (47)

which implies that the sequence θj is always moving towards the maximum.
We can write

Fθ
Y|X(y | x) ∝

T −1∏

t=1

f θ
X |Y (xti+1 | yti+1) f θ

Y |X (yti+1 | xti ).

Furthermore, if the E-step is not easy to evaluate, then, under the assumption
that a set y of latent random numbers is easily simulated from F

θ( j )
Y|X , we can

proceed from a Monte Carlo point of view and approximate Q as follows

Q̂(θ | θ( j ), x) = 1
m

m∑

k=1

log(Laug
x,y(k)(θ)), (48)
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where y(k) ∼ F
θ( j )
Y|X . See Tanner and Wong (1987) and Wei and Tanner (1990).

Due to the independence structure underlying this construction, we can simulate
each component of y(k) individually. That is, for a given k we can simulate
y(k) by sampling individually each yti+1 from a distribution with density

f (yti+1 | xti+1, xti ) ∝ f θ
X |Y (xti+1 | yti+1) f θ

Y |X (yti+1 | xti ) (49)

for i = 1, . . . , T − 1.
Let us consider the Gamma-Poisson diffusion model (20), in this case

θ = (a, b, c), for which an analytical maximum likelihood estimator is not
available. Hence we could alternatively use the estimator (48) where

f (yti+1 | xti+1, xti ) ∝ Ga(xti+1; yti+1 + a, φ(τi+1) + b) Po(yti+1; φ(τi+1)xti ).

If we take ρ = e−c and a = 1 then the augmented likelihood is given by

Laug
x,y (θ)=Ga(xt1; 1, b)

T −1∏

i=1

Ga
(

xti+1; yti+1 + 1, φ(τi+1) + b
)

Po(yti+1; φ(τi+1)xti ),

with corresponding scores given by

∂laug
x,y (θ)

∂b
= 1

b

(

T + 2
T −1∑

i=1

yti+1

)

− xt1 −
T −1∑

i=1

ρτi+1 xti + xti+1

1 − ρτi+1
(50)

and
∂laug

x,y (θ)

∂ρ
=

T −1∑

i=1

(yti+1 + 1)τi+1ρ
τi+1−1

1 − ρτi+1
−

bxti+1τi+1ρ
τi+1−1

(1 − ρτi+1)2

+ yti+1

(
τi+1

ρ
+ τi+1ρ

τi+1−1

1 − ρτi+1

)

−
bxti τi+1ρ

τi+1−1

(1 − ρτi+1)2
.

(51)

Equating expression (50) to zero and solving for b we get the following esti-
mator

b̂aug =
T + 2

T −1∑

i=1

yti+1

xt1 +
T −1∑

i=1

xti+1 + xti

1 − ρτi+1

.

In general, the estimator for ρ based on the augmented likelihood, is not directly
available. However, if we assume that the observations x are uniformly spaced,
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τi = 1 for all i = 2, . . . , T , then an estimate for ρ is given by solving the
following quadratic equation

ρ2

(

1 − T −
T −1∑

i=1

yti+1

)

− ρ

[

b

{
T −1∑

i=1

(xti+1 + xti )

}

− T + 1

]

+
T −1∑

i=1

yti+1 = 0.

At this point we have, at least, two alternatives to MLE in order to estimate
the parameters in the Poisson-gamma stationary model: a MCEM scheme, in
which we need to simulate from the latent vector Y | X or an EM method
where the E-step is obtained analytically.

Let us consider two data sets, x and xτ , of size T=1000, simulated from
transition (5). This can be easily done by first simulating a {yti +1 | xτi } ∼
Po(xτi φ(τi+1−τi)) and then {xti +1 | yti +1} ∼ Ga(yti +1+a, φ(τi+1−τi))+b) with
a = 1, b = 3 and ρ = 0.7. For this latter specification of the a parameter we
do not have a strictly positive diffusion process. For the data set x, we assumed
equally spaced data, that is τi = 1 for all i = 2, . . . , T . For the data set xτ ,
the data were generated at exponential times with intensity parameter λ = 0.5.
The simulated data together with their corresponding ACF’s are displayed in
Figure 1.
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Figure 1. Simulated data and respective ACF’s from the Poisson-gamma model with parameters a =
1, b = 3 and ρ = 0.7. The simulations were performed under two schemes: x denotes
an equally-spaced sample and xτ denotes an exponentially-distributed sample (with intensity
parameter λ = 0.5).

Table 1 shows the behavior of the above estimate as the sample size m in-
creases. We observed that only a few simulations are required in order to get
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a relatively good estimation. With simulations larger than 30, the resulting
estimates, obtained from the MCEM, did not show a significant improvement.
Being the latter our main objective, we initially implemented the MCEM fixing
m = 30.

Table 1. Monte Carlo approximation for the E-step, evaluated at the true parameter-value.

Simulations (m) Q̂(θ | θ, x) Q̂(θ | θ, xτ )

(Model) −731.49 −787.71

1 −688.53 −921.40
5 −711.89 −590.12

10 −708.63 −723.58
30 −717.68 −782.63

100 −721.03 −781.31
1000 −731.94 −786.1

Tables 2 and 3 show the MCEM iterations for the uniformly spaced data set
x and the exponentially spaced data set xτ respectively. It is worth noticing
that the scale parameter, b, is not fully recovered, but this might be due to
the inefficiency of having only one trajectory for inference purposes. For the
randomly spaced data set the parameter ρ, which represents the correlation
of the model, is not as close to the theoretical value as in the case of the
uniformly spaced data set. This is mainly due to the fact that we have ignored
the randomness of the time-gap between observations. Ways to correct this
issue are studied in Yacine and Mykland (2003).

Table 2. MCEM iterations for the simulated Poisson-gamma model (a = 1, b = 3 and ρ = 0.7)
based on the uniformly simulated data (x). For the results in this table the MC simulations required
within each iteration where reduced by half in each iteration with a minimum of 5 simulations.

MCEM-Iter. Q̂ lθ a b ρ

Model 478.72 1.0 3.0 0.7

1 −35.918 281.74 0.99767 3.3630 0.12458
2 −62.689 294.19 1.0081 3.3982 0.14979
3 −122.25 309.94 1.0076 3.3966 0.18435
4 −148.64 322.86 1.0070 3.3946 0.21350
5 −190.99 339.73 1.0066 3.3934 0.25236

10 −345.00 398.47 1.0111 3.4088 0.39295
20 −525.91 454.29 0.99835 3.3666 0.54879
30 −634.71 474.07 1.0055 3.3913 0.62272
40 −706.49 479.18 0.99591 3.3593 0.66021
50 −695.56 479.21 1.0154 3.4251 0.65675

100 −774.23 480.23 0.99182 3.3458 0.68584
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Table 3. MCEM iterations for the simulated Poisson-gamma model (a = 1, b = 3 and ρ = 0.7)
based on the exponentially spaced data (xτ ). For the results in this table the MC simulations required
within each iteration where reduced by half in each iteration with a minimum of 5 simulations.

MCEM-Iter. Q̂ lθ a b ρ

Model 374.48 1.0 3.0 0.7

1 −120.80 142.73 0.95280 2.6325 0.063404
2 −32.749 153.78 1.0729 3.1216 0.053279
3 −27.059 157.77 1.0895 3.1878 0.060540
4 −30.732 159.52 1.0926 3.1982 0.064691
5 −37.874 163.66 1.0793 3.1529 0.078280

10 −79.441 185.96 1.0781 3.1455 0.14994
20 −135.59 219.68 1.0837 3.1561 0.26650
30 −216.14 250.83 1.0487 3.0281 0.38240
40 −249.71 263.20 1.0465 3.0232 0.42071
50 −266.83 267.86 1.0321 2.9609 0.44180

100 −263.01 269.29 1.0551 3.0484 0.435

7. Discussion

The construction presented here allows for a nice statistical interpretation
of a class of continuous time Markov processes. It allows for either a direct
or latent availability of the transition density, which can be used in the un-
derstanding, study, estimation and construction of new models. Of particular
interest is the representation of transition densities corresponding to diffusion
processes, where estimation procedures are not always based on the likelihood
due to the unavailability and/or intractability of the transitions.
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