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Abstract

In this paper we provide an explicit probability distribution for classification purposes when

observations are viewed on the real line and classifications are to be based on numerical order-

ings. The classification model is derived from a Bayesian nonparametric mixture of Dirichlet

process model; with some modifications. The resulting approach then more closely resembles a

classical hierarchical grouping rule in that it depends on sums of squares of neighboring values.

The proposed probability model for classification relies on a numerical procedure based on a

reversible Markov chain Monte Carlo (MCMC) algorithm for determining the probabilities.

Some numerical illustrations comparing with alternative ideas for classification are provided.

Keywords: Classification; MCMC sampling; MDP model.

1. Introduction. Suppose we observe data y := (y1, . . . , yn) with each yi ∈ R. The aim is to

classify these data into k ≤ n groups and to determine which ones are in the same group. This is a

classic problem and current Bayesian approaches rely on mixture models, such as the one described

in Richardson and Green (1997), or the mixture of Dirichlet process (MDP) model (see, for example,

Lo (1984) and Escobar (1994)). In the Richardson and Green model the k is modeled explicitly via

p(y|k) =
k�

j=1

wj,k f(y; θj),
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where the f( · ; θj) is a density function, commonly chosen to be the Gaussian density, and wk :=

(wj,k)k
j=1 denotes a sequence of weights which sum to one and θ(k) = (θj)k

j=1 are parameters. Prior

distributions are assigned to (wk, θ(k)|k) for each k and a prior is assigned to k, and inference is

made possible, e.g., via reversible jump MCMC, (Green, 1995). The augmented likelihood function

for n observations is given by

l(k, w, θ; y, d) ∝
n�

i=1

wdi,k f(yi; θdi).

Here, the d := (di)n
i=1 denotes a sequence of latent variables acting as classification labels; that is,

di indicates the component, less than or equal to k, from which the ith observation is coming from.

On the other hand, an alternative approach is based on Bayesian non-parametric mixture models,

specifically the widely used mixture of Dirichlet process (MDP) model which is set as

p(y) =
∞�

j=1

wj f(y; θj),

where the weights (wj)∞j=1 can be represented in a stick-breaking form as wj = vj

�
l<j(1− vl) with

the vl’s being independent and identically distributed (i.i.d) as beta(1, α) random variables, and the

θj’s are also i.i.d. from π, the prior guess at the shape of the Dirichlet process (see Sethuraman,

1994). In this case the corresponding augmented likelihood function is given by

l(w, θ; y, d) ∝
n�

i=1

wdi f(yi; θdi).

Hence, we emphasize that in the Richardson and Green model, the k is explicit, but in the MDP

model it is implicit, and taken to be the number of distinct di’s.

Both of these models classify roughly in terms of numerical orderings of the data. So two

observations are in the same cluster if they are both close to one of the means of the mixing

densities. Yet both models put positive probability on configurations which would not be chosen

based on an ordering rule. Given only the data, we seek to classify the observations into groups

which strictly adhere to an ordering constraint. We adjust the MDP model to do this; effectively

putting zero probability on classifications which violate this rule.
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We do acknowledge this is not the only way observations could be classified; there are others.

Perhaps there are ways to adjust the MDP model to achieve other types of rules and this can be

investigated in the future. But for this paper we concentrate solely on the ordering rule; because it

is probably the most common and because it is implicit in the nature of the Bayesian models.

The MDP approach to the classification problem leads to posterior inference for the number of

distinct groups k given by

p(k | y) ∝
�

Pk
[n]

�
αk

(α)n

k�

j=1

(nj − 1)!

� � k�

j=1

�

i∈Jj

f(yi | θ) π(dθ), k = 1, . . . , n, (1)

where nj =
�n

i=1 1(di = j) denotes the number of observations in group j, Jj = {i : di = j} is

the corresponding set of indices, and Pk
[n] is the set of all partitions of the set [n] := {1, . . . , n}

into k groups, namely all possible partitions of the data y into k disjoint groups. We refer to Lijoi

and Prünster (2009) for a recent account of Bayesian non-parametric methods. There are Sn,k (a

Stirling number of the second kind) ways to partition the data into k groups and to obtain the

normalising constant a Bell number Bn =
�

k Sn,k of computations is required. This implies that

exact computation of (1) is computationally unfeasible even for small values of n, e.g. B10 = 115975

and B20 > 517 × 1012. Therefore, the need to resort to suitable simulation schemes arise. Within

the Bayesian framework, these are typically based on MCMC algorithms and specifically for the

case of MDP models the preferred Markov chain to navigate through the space of set partitions is

constructed via the Pólya urn scheme. See for instance Escobar and West (1995), Ishwaran and

James (2001) and Lijoi et al. (2007). A problem of a similar dimension is faced when dealing with

product partition models, see for instance Quintana and Iglesias (2003).

However, we are not convinced that either of these models are suitable for classification purposes

when the aim is numerical ordered classification. Our point is better understood if we set f to be

the Gaussian density N(·; µ, λ−1) and π(µ, λ) = π(µ | λ)π(λ) a conjugate prior with

π(µ|λ) = N(µ; 0, (cλ)−1) and π(λ) = gamma(λ; a, b).
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Hereafter we work under these specifications.

The problem is that locations of the Gaussian distributions, the µj’s, can be arbitrarily close to

each other and therefore register as different clusters. They could be close to each other since the

model is first and foremost modeling the data and this does not preclude two densities being close

to each other if the data deem this appropriate. Locally, two normals model the true density at this

place better than one, yet only one group is at this place. The density of this group may be skewed,

for example. But two µj’s close to each other still register as two clusters. Such a scenario may well

happen, for example, as we have just mentioned, when clusters are not Gaussian based. So both

methods would over–estimate the number of clusters when clusters are not Gaussian based. We

will discuss this issue later in Section 4 when we do some numerical illustrations. Nevertheless, it

is worth mentioning that the issue of overestimation of the number of clusters for the MDP model

with a Gaussian kernel has already been known; see, for example, the results reported in McGrory

and Titterington (2007).

Our approach is not model based yet the starting point is the MDP model. From the MDP model

we compute p(d|y), by integrating out the (w, µ,λ). But this p(d|y) will include many classifications

which are not suitable for the ordered case. For example, there is positive probability on di = di�

with yi and yi� the largest and smallest observation, and observations in between these two extremes

allocated to different groups. So, at this point we simply study p(d|y) as a classification probability

model and adjust it to eliminate groupings that do not preserve the ordering in the data.

Hence, we first order the y, so that y1 is the smallest observation and yn is the largest observation.

We then constrain the d so that the di’s are non–decreasing. This ensures that any group contains

only consecutive yi’s. For example, group 1 would contain a number of the smallest observations;

group 2 would contain a number of the next smallest observations; while group k would contain

a number of the largest observations. Thus, for any trio of (yi1 < yi2 < yi3), if yi1 and yi3 are in

the same group, then so is yi2 . It follows then that our p∗(d|y), with the ordered y’s, is given by
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p∗(d|y) ∝ p(d|y)1(d1 ≤ · · · ≤ dn). As we will see, this constrain reduces drastically the cardinality

of the support when compared with the support of (1). Once this approach has been undertaken

we then show how to sample from p∗(d|y) in order to compute the classification probabilities, and

obviously relevant features as the mode.

In Section 2 we derive and explain our probability model for classification. Section 3 then

describes an MCMC algorithm for sampling from this probability model, since for large n the number

of possible classes is prohibitively large to compute directly. Section 4 then presents numerical

illustrations based on a toy example of 10 data points, whereby all probabilities can be computed.

We also well evaluate the well known and widely studied galaxy data set. Finally, Section 5 provides

a discussion.

2. The classification probability model. Given the outline in the Introduction, our first task

is to compute p(d|y) based on the MDP model. First let us notice that

p(d, y|µ, λ, w) =
n�

i=1

wdi N(yi; µdi , λ
−1
di

),

where µ := (µi)∞i=1 and λ := (λi)∞i=1. Hence

p(d, y) = E
��n

i=1 vdi

�
l<di

(1− vl)
� �∞

j=1

� �
di=j N(yi; µ, λ−1) π(dµ, dλ)

=
�∞

j=1

�
α

�
vnj(1− v)mj+α−1 dv

� �� �
di=j N(yi; µ, λ−1) π(dµ, dλ)

�
.

Here, nj is defined as before and mj =
�n

i=1 1(di > j). The first term in the product is given by

α Γ(1 + nj)Γ(α + mj)

Γ(1 + α + nj + mj)

and the second term is easily found to be given by

Γ(a + nj/2) ba
√

c
�
b + S2

j /2
�a+nj/2 √

c + nj Γ(a)
,

where

S2
j =

�

di=j

y2
i −

nj ȳ2
j

1 + c/nj
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and

ȳj = n−1
j

�

di=j

yi.

Hence,

p(d|y) ∝
∞�

j=1

α Γ(1 + nj)Γ(α + mj)

Γ(1 + α + nj + mj)

Γ(a + nj/2) ba
√

c
�
b + S2

j /2
�a+nj/2 √

c + nj Γ(a)
.

This then is the classification probability based on the MDP model.

At this point, we simply focus on p(d|y) and assess it as a probability model for classification.

So, without loss of generality, we take the y’s to be ordered, with y1 being the smallest observation

and yn being the largest. Then, for reasons given in the Introduction, we would now for ordered, or

unsupervised, classification purposes, only wish to consider the (di) to be non–decreasing. Hence,

we obtain

p∗(d|y) ∝ 1(d1 ≤ · · · ≤ dn) p(d|y).

We also impose the constraint that if there are k distinct di’s then dn = k, namely there are no

gaps.

Our observation now is that given the current parameter and data values d is completely deter-

mined by (k, n1, . . . , nk) whereby k is the number of distinct di’s and nj is the number of the di’s

equal to j. Hence,

p(k, n1, . . . , nk) = K

k�

j=1

α Γ(1 + nj)Γ(α + mj)

Γ(1 + α + nj + mj)

Γ(a + nj/2) ba
√

c
�
b + S2

j /2
�a+nj/2 √

c + njΓ(a)
(2)

where K denotes the corresponding normalizing constant, mj = n− n1 − · · ·− nj and

S2
j =

n∗j�

i=n∗j−1+1

y2
i −

nj ȳ2
j

1 + c/nj

and

ȳj = n−1
j

n∗j�

i=n∗j−1+1

yi,

with n∗j = n1 + · · · + nj and n∗0 = 0. Note that, for a given sample size n, the support of this

probability is substantially reduced and is in bijection with the set of compositions Cn, rather than
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on the number of partitions of a set with n elements as in the MDP or other exchangeable partition

probability settings encountered in the Bayesian nonparametric literature. This, for instance, would

exclude group configurations of the sort G0 := {(y1, y2, y8, y4), (y3, y5, y6, y7, y9, y10)}. Although much

smaller than the set of all partitions of [n], i.e. P[n] =
�n

k=1 Pk
[n] (with Bn = #P[n]), the cardinality

of the set of compositions is 2n−1 and therefore the need of MCMC methods to approximate (2) is

still evident. However, the fact that the support of such probabilities is restricted to the ordering

of the data makes it more acceptable to employ split and merge samplers. In the next section we

present an algorithm to perform such a task.

From an unsupervised perspective, this probability model for classification is a suitable and,

we believe, useful adaptation of the probability model for classification based on the MDP model.

It can be seen to depend fundamentally on the sample variances of the observations in the same

group, so the lower the sample variances, the higher the probability assigned to the corresponding

partition. The rule of having k = n groups is countered by the probability being a product of k

terms. For our particular choice of f and π our classification probability depends on the parameters

(α, a, b, c), which have a similar interpretation as if we were using a MDP model for the data. So,

for example, if α is big, which implies a large number of groups in the MDP model, its role can be

seen explicitly in p(k, n1, . . . , nk), since we would have the term αk and so encourages large k. See

the discussion in Section 4.

We also note that attempts have been made to emphasize configurations, i.e. (k, n1, . . . , nk), that

are suitable for classification purposes by using alternative nonparametric mixing prior distributions

to the Dirichlet process and which have extra parameters to modulate the weight across the different

data partitioning (Lijoi et al., 2007). However, even in those more general Bayesian nonparametric

settings positive mass is still being put to overlapping configurations. Our approach, in light of

this, is remarkably obvious in that we put zero weight on all but those configurations preserving

the order of the data.
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Here we also mention the problem of what happens if a new piece of data arrives. Our ap-

proach is not to assume a classification for the existing data has been set and to decide into which

group, possibly a new one, the extra piece of data should be put; but rather we merely recompute

p(k, n1, . . . , nk) with all the data, including the additional piece. We do not see any other approach

as being relevant here.

We will compare our approach with a routine in the package R, a hierarchical clustering routine

based on local sums of squares that in principle is not unlike the idea of working with sample

variances. The routine is labeled hclust in R and is based on an original algorithm appearing in

Ward (1963). We use this method for comparison primarily as it is in R.

3. Sampling the model. The basic idea for sampling from p(k, n1, . . . , nk) will be a split–merge

MCMC algorithm. So at each iteration one of two types of move will be proposed: a split, whereby

a group of size bigger than one is divided into two groups so k is increased by one; and a merge,

whereby two groups are combined into one group so k is decreased by one. The idea for sampling

from p(k, n1, . . . , nk) can be seen as a reversible jump MCMC algorithm, and for ease of exposition

we will describe the algorithm using latent variables and the specification of a joint density for

a configuration conditional on a k: so let n(j) for j = 1, . . . , n be a clustering for j groups, and

consider

p(k, n(1), . . . , n(n)) = p(k, n1, . . . , nk)
n�

j=k+1

p(n(j)|n(j−1))
k−1�

j=1

p(n(j)|n(j+1)),

which is based on ideas provided, for example, in Godsill (2001).

The key here is that the marginal density for (k, n1, . . . , nk) is unchanged. Now given a k and

n(k) we propose a move to k+1 with probability 1/2 and to k−1 with probability 1/2 (with obvious

modifications if k = 1 or k = n). We need to therefore sample n(k+1) from p(n(k+1)|k, n(k)) and

n(k−1) from p(n(k−1)|k, n(k)). The former is achieved by finding an existing group with size bigger

than 1, and then we split this group into 2. If uniform distributions are used for both operations
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then

p(n(k+1)|k, n(k)) =
1

n(k)
g (n(k)

s − 1)
,

where n(k)
g is the number of groups of size > 1, from (n1, . . . , nk), and n(k)

s is the size of this chosen

group. The latter is obtained by merging two neighboring groups and so with a uniform distribution

we have

p(n(k−1)|k, n(k)) = 1/(k − 1).

Therefore, the sampler carries out each step through a Metropolis-Hastings scheme. When at state

x(k) = (k, n1, . . . , nk) the acceptance probability to move to state x(k+1) = (k + 1, n1, . . . , nk+1) is

α(x(k), x(k+1)) = min

�
1,

1− q

q

p(x(k+1))

p(x(k))

n(k)
g (n(k)

s − 1)

k

�
, (3)

where, e.g., q = 1/2. On the other hand, if instead two groups, (n(k)
s1 , n(k)

s2 ), in x(k) are selected and

we attempt to merge them, then the acceptance probability for this move is

α(x(k), x(k−1)) = min

�
1,

q

1− q

p(x(k−1))

p(x(k))

k − 1

(n(k)
s1 + n(k)

s2 − 1)n(k−1)
g

�
, (4)

where n(k−1)
g denotes the cardinality of the set containing all groups with more than one observation

in x(k−1).

To improve the algorithm we then can shuffle the n(k) by selecting adjacent groups, (ns1, ns2)

and attempting to change them into (n∗s1, n
∗
s2) in such a way that both n∗s1 and n∗s2 ≥ 1. The shuffle

is based on the idea of putting the two groups together and then uniformly splitting the combined

group into two. The acceptance probability is then given by

α(x, x∗) = min

�
1,

p(x∗)

p(x)

(n∗s1 + n∗s2 − 1)

(ns1 + ns2 − 1)

�
. (5)

These acceptance probabilities all follow from the expression p(k, n(1), . . . , n(n)) and the cancelations

which occur when evaluating the ratios of neighboring k.

The sampling algorithm can then be summarized with the following three steps:
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1. For a set of fixed parameters (α, a, b, c), initialize the chain with a configuration (k, n1, . . . , nk).

2. Select a type of move, either to split or merge and accept it with its corresponding acceptance

probability.

3. Perform a shuffle and accept it with probability given by (5).

The algorithm is effectively a joint Metropolis–Hastings and Gibbs algorithm, rather than a

reversible jump MCMC algorithm, and for connections between the two see Godsill (2001). However,

notice that under this perspective the dimension of the state space is fixed and so no special

considerations arise on this issue. The only necessary consideration is that if p(n(k)|n(k−1)) > 0

then p(n(k−1)|n(k)) > 0, and vice versa. Neither, if one is even needed, have we had to worry about

a Jacobian, since we are not basing the moves on transformations of variables between different

dimensions. We believe it is more explicit to understand transdimensional samplers from this

perspective.

3.1. An alternative sampler. Here we consider a more general idea for sampling, based on the

notion of a joint density

p(k, n(1), . . . , n(n)) = p(k, n(k)) p(n(2), . . . , n(k−1), n(k+1), . . . , n(n−1)| k, n(k)). (6)

It is easy to see how the reversible jump MCMC arises from this model, however we can seek

alternative and more general strategies, and one such is based on the idea of

p(n(2), . . . , n(k−1), n(k+1), . . . , n(n−1)|n(k)) = p(n(2))
k−1�

j=3

p(n(j)|n(j−1))
n−1�

j=k+1

p(n(j)|n(j−1)),

where p(n(k)|n(k−1)) is the probability density for a split move described earlier, and p(n(2)) is the

correct density for n(2) given k = 2, which is easy to sample since n(2) can be represented by a

single number between 1 and n − 1. Then it is easy to see that a move from x(k) to x(k�), with

k� ∈ {k − 1, k + 1} can be achieved by first sampling x(k+1) from p(n(k+1)|n(k)) and x(k−1) from
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the density p(n(2))
�k−1

j=3 p(n(j)|n(j−1)), which is done by sampling n(2), then n(3), and so on, up to

n(k−1). If p(n(k)|n(k−1)) = 0 then the proposed move is rejected and (k, n(k)) is kept. On the other

hand, if p(n(k)|n(k−1)) > 0 then a move to k + 1, proposed with probability 1/2 is accepted with

probability

min

�
1,

p(k + 1, n(k+1)) p(n(k)|n(k−1))

p(k, n(k)) p(n(k+1)|n(k))

�
,

or else a move to k − 1 is proposed and is accepted with probability

min

�
1,

p(k − 1, n(k−1)) p(n(k)|n(k−1))

p(k, n(k)) p(n(k−1)|n(k−2))

�
.

While in this particular case we do not claim an improvement using this algorithm, our point is

that there are alternatives to be considered not necessarily falling in the reversible jump MCMC

methodology, and in particular formulated by the notion of a joint density of the kind of (6).

4. Numerical illustrations. In order to underline the kind of results that can be obtained by our

approach, we first consider a small data set; small enough (n = 10) so that we can provide exact

computations of probabilities for all (k, n1, . . . , nk). We then illustrate our approach with a real

data set; the galaxy data set.

4.1. Small data set. Suppose the set of ordered observations is y = (-1.522, -1.292, -0.856, -0.104,

2.388, 3.080, 3.313, 3.415, 3.922, 4.194), a histogram of the data is shown in Figure 1, from this it is

evident that 2 groups are the most likely option. Table 1 gives the probabilities of having k groups

using the MDP approach, posterior probability (1), and our proposed approach, probability (2). In

both cases we use the prior specification of parameters as α = a = b = 1 and c = 0.1. For the MDP

model we computed the exact probabilities for each of the B10 = 115975 possible partitions of y,

and then used them to obtain the exact posterior probabilities for each k ∈ {1, . . . , 10}. The highest

probability in this case is allocated to k = 3. Further inspection among the partitions indicates that

the highest posterior probability, of 0.332, corresponds to the classification involving two groups;

{[y1, y2, y3, y4], [y5, . . . , y10]}, which corresponds to an integer partition (n1, n2) = (4, 6). However, it
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is worth emphasising that group configurations such as the G0 mentioned in Section 2 still receive

positive posterior probability under this approach.

On the other hand, the exact probabilities (2), p∗(k), computed over all the 512 possible con-

figurations, assign the highest probability to k = 2. As with the MDP case, the classification

with the highest probability corresponds to {[y1, y2, y3, y4], [y5, . . . , y10]}; but in this case with the

considerably higher probability of 0.833. Clearly, considering the order of the y limits the support

considerably, from set partitions to integer compositions, withdrawing all inadequate partitions for

unsupervised classification purposes and hence leading to an improved estimator for the number of

groups.

The last four columns in Table 1 show the estimates of p∗(k) based on the MCMC schemes

described in Section 3, with 10, 000 and 100, 000 iterations following a burn in period of 1, 000 and

10, 000 iterations respectively. The results match the exact probabilities and from these it is evident

that both algorithmic schemes are valid, although the first converges faster than the second.

The prior distribution on the different number of groups, in a sample of size n, corresponding

to the Dirichlet process is given by

P [Kn = k] =
αk

(α)n
|sn,k|, k = 1, . . . , n,

where |sn,k| stands for the sign-less Stirling number of the first kind. This distribution is highly

peaked, (Lijoi et al., 2007), with the parameter α modulating the location of the mode. Hence,

when using a MDP model a careful choice of the parameter α must be made. In some situations,

it is even convenient to assign a hyper–prior distribution to such a parameter, (see for instance

Escobar and West, 1995).

Table 2 reports the exact probabilities for both the MDP model and our approach, with the

parameter α selected in such a way that the E[K10] = 2.1 (α = 0.5) and E[K10] = 5.8 (α = 5). The

first being the correct number and other being far from it. As expected, for the MDP model with

α = 0.5 the mode of the posterior distribution is located at k = 2, improving the result encountered
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in Table 1. In contrast, the mode for the case when α = 5 is far from k = 2. For our approach we

obtain a mode at k = 2 in both cases.

Our results are in agreement with the hierarchical agglomerative clustering, using Ward’s (1963)

approach, which reduces the number of groups from k to k−1 by minimizing the local sum of squares;

see Figure 2. It is obvious from this that two groups are by far the preferred choice.

4.2. Galaxy data set. Here we consider the galaxy data set, first studied in Roeder (1990). It is

widely used in the literature to illustrate methodology for mixture modeling and cluster analysis.

In this case the sample size is n = 82 and so we would need to compute 281 probabilities to obtain

all the possible configurations.

Therefore, we will use the first MCMC algorithm proposed in Section 3 to obtain the proba-

bilities. We undertake this approach, with the same parameter specifications as in the small data

set example and perform 10000 iterations after a burn–in period of 1000 iterations. The MCMC

estimates result in p∗(k = 3) = 0.997 and p∗(k = 4) = 0.003, with the highest probability of 0.677

on the configuration (n1, n2, n3) = (7, 72, 3). The same results are obtained with the second scheme

of Section 3, but with a higher number of simulations required. It is worth remembering that most

Bayesian nonparametric approaches, such as the MDP or those based on more general random

probability measures, typically favour between 5 and 6 components. See, for example, Escobar and

West (1995) and Lijoi et al. (2005). Similar results are achieved in the finite mixture setting, as

found in Richardson and Green (1997) where a mode is put in k = 6 with posterior probability

0.199 followed by k = 5 with 0.182, when using an uniform prior for k. All of these approaches

seem to be overestimating the number of groups, as noted from results reported in McGrory and

Titterington (2007).

5. Discussion. We have proposed a probability for classification based on the mixture of Dirichlet

process model. The main idea is to restrict the support of all possible data grouping to those
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preserving the order, which for unsupervised classification purposes appears to be more acceptable.

This led us to consider probabilities with a much smaller support, namely those in bijection with the

set of compositions of the integer n instead of the typical set of partitions of a set with n elements.

An MCMC algorithm, that overcomes some of the complications typically found with the reversible

jump approach, is employed to sample the relevant classification probabilities.

Here we have focused on MDP based on Gaussian distributions. Similar results might be ob-

tained for other more general non-parametric priors, e.g. two parameter Poisson-Dirichlet process,

and other symmetric location-scale invariant kernels. We will devote future research to investigate

this.
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Exact M1 (A) M1 (B) M2 (A) M2 (B)

k MDP p∗(k) �p∗(k) �p∗(k) �p∗(k) �p∗(k)

1 0.00619 0.04535 0.04760 0.04709 0.04450 0.04794

2 0.37634 0.88622 0.88480 0.88375 0.84770 0.88376

3 0.39729 0.06597 0.06710 0.06652 0.10130 0.06482

4 0.17298 0.00240 0.00050 0.00250 0.00650 0.00348

5 0.04088 0.00006 – 0.00011 – –

6 0.00578 1.00 E−6 – 0.00003 – –

7 0.00051 1.31 E−8 – – – –

8 0.00003 1.22 E−10 – – – –

9 8.38 E−7 7.44 E−13 – – – –

10 1.12 E−8 2.26 E−14 – – – –

Table 1: Probabilities on the different number of groups for the small data set example. The

MDP results correspond to exact posterior probabilities. The probabilities p∗(k) and �p∗(k) for

the classification model correspond to the exact and MCMC estimates, respectively. The columns

labeled M1 and M2 refer to the two sampling schemes described in Section 3 with (A) 10000

iterations after a 1000 burn in period and (B) 100000 iterations after a 10000 burn in period.
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α = 0.5 α = 5

k MDP p∗(k) MDP p∗(k)

1 0.019469 0.08342 0.000071 0.01292

2 0.591630 0.87837 0.021504 0.80256

3 0.312288 0.03742 0.113509 0.16689

4 0.067986 0.00078 0.247113 0.01652

5 0.008033 0.00001 0.291972 0.00105

6 0.000568 1.06 E−7 0.206592 0.00005

7 0.000025 7.84 E−10 0.090763 1.64 E−6

8 6.74 E−7 4.10 E−12 0.024486 4.10 E−8

9 1.03 E−8 1.38 E−14 0.003740 7.10 E−10

10+ 6.85 E−11 2.29 E−17 0.000249 6.26 E−12

Table 2: Probabilities on the different number of groups for the small data set example. All the

results, for the posterior probabilities corresponding to the MDP model and for the classification

model correspond to the exact probabilities.
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Figure 1: Histogram for the small data set.
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Figure 2: Dendogram for the small data set example..
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