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ABSTRACT. When dealing with risk models the typical assumption of in-
dependence among claim size distributions is not always satisfied. Here we
consider the case when the claim sizes are exchangeable and study the impli-
cations when constructing aggregated claims through compound Poisson type
processes. In particular, exchangeability is achieved through conditional inde-
pendence, using parametric and nonparametric measures for the conditioning
distribution. Bayes’ Theorem is employed to ensure an arbitrary but fixed
marginal distribution for the claim sizes. A full Bayesian analysis of the pro-
posed model is illustrated with a panel type dataset coming from a Medical
Expenditure Panel Survey (MEPS).
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1. Introduction

In insurance and risk modelling, the study of the dynamics through time of the wealth
of a business has been object of research for several decades. In the basic setup of col-
lective risk theory, the interest lies in the probability distribution of the reserve process
and henceforth, using historical information and a robust model, in predicting potential
bankruptcies. The cornerstone tool is based on the modeling of the aggregated claims
amount through the compound Poisson process (CPP), here denoted by {Xt; t ≥ 0} and
defined through

Xt =
Nt
∑

i=1

Yi, (1)

where {Nt; t ≥ 0} is a homogeneous Poisson process with intensity λ > 0 and Y1, Y2, . . .
a sequence of independent and identically distributed (nonnegative) random variables
with a common distribution F , independent of {Nt}. In insurance applications, {Nt} is
interpreted as the number of claims performed to the company during the time interval
(0, t], and Yi as the magnitude of the i-th claim. Hence Xt can be seen as the aggregated
claims, on the time interval (0, t].
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Provided second order moments for the claim distribution exist, some basic character-
istics of process (1) are at order

E(Xt) = λtE(Yi)

Var(Xt) = λtE(Y 2
i ) (2)

Cov(Xt, Xs) = Var(Xt∧s),

where t ∧ s := min(s, t). Moreover, Corr(Xt, Xs) = (t ∧ s)/
√
ts, so if we let t < s then

Corr(Xt, Xs) =
√

t/s.
In the collective risk theory it is common to model the risk process, {Zt; t ≥ 0}, of a

portfolio via the following compensation of a CPP

Zt = r t−Xt, (3)

where r > 0 denotes the constant gross risk premium rate. This model constitutes the
classical risk model introduced by Lundberg [1] and further analyzed by Cramer [2] and
many others. In the case of an insurance company, Zt takes the interpretation of the
profit of the portfolio over the time interval (0, t].

One of the main interests regarding the wealth of a portfolio, with initial capital u and
facing risk process (3), is concerning the probability that the reserve process, Ru

t := u+Zt,
falls below zero. This quantity is usually measured through what is known as the ruin
probability, Ψ(u), defined through

Ψ(u) := P

(

inf
t≥0
{t;Ru

t < 0} <∞
)

(4)

or through its finite-horizon analog

Ψ(u, T ) := P

(

inf
0≤t<T

{t;Ru
t < 0} < T

)

. (5)

These quantities are relevant when, in average, the portfolio is facing a profitable business.
This situation is measured through the relative safety loading ρ, which represents the
expected profit/loss relative to the total claim amount, that is

ρ :=
E(Zt)

E(Xt)
.

Hence an insurance company is willing to have a relatively small ruin probability Ψ(u)
when starting a business with ρ > 0, bearing in mind that the larger the safety loading
the smaller the ruin probability becomes.

Thanks to a well-known renewal argument Feller [3], the non-ruin probability ϕ(u) :=
1 − Ψ(u) for the CPP process satisfies ϕ(u) = E[ϕ(u − rT1 − X1)], where T1 ∼ Exp(λ)
denotes the time of the first claim and X1 ∼ F . Hence, it can be proved that

ϕ(u) =
λ

r
eλu/r

∫ ∞

u

e−λx/r
∫ x

0

ϕ(x− z)F (dz)dx.

Apart of the case of exponential claim sizes, or mixture of exponentials, little is known
about closed solutions to the above equation. The situation complicates even more for
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the finite-horizon case, however several approximations and estimators are available, we
refer to Rolski et al. [4] for some of these methods.

The literature provides with various generalizations to the above simple compound
Poisson process (1), most of them inherited by generalizations of the underlying Pois-
son process {Nt}. For example, {Nt} could be replaced by a mixed Poisson process or
a Cox process (see, for example, Grandell [5]). These approaches might result in pro-
cesses with increments no longer being independent. For instance, it can be seen that
a stationary mixed Poisson process {Nt} (and then the resulting compound process Xt)
have exchangeable increments Daboni [6]. Alternative generalizations are in the line of
independent increments processes, as can be found in the work by Morales and Schoutens
[7], who considered a Lévy process for modeling the aggregate claims Xt. Other gener-
alizations, rather devoted to insurance applications, extend the above reserve process to
have, for instance, a non-linear premium income. For these and many other extensions
we refer to Rolski et al. [4].

A common scenario is when the insurer only considers the aggregated information of
all policies composing a portfolio, e.g. the aggregated claim amounts of all the portfolio’s
policies together with pre-fixed cut-off times, regardless of whether such claims where per-
formed by the same or different policy holders. In this situation the independence among
claims assumption inherent in the CPP approach could, in principle, make some sense.
However, as is typically the case in modern products offered by insurance companies, the
“collectiveness” is more specialised to more homogeneous groups, and a claim generated
by one policy holder may cause a future claim related to the same policy or even claims
related to other policies within the same portfolio. This, for instance, is the situation
encountered in some health care portfolios where a persistent disease could result in re-
current claims. Clearly this latter case could break with the independence among claims
assumption.

Let us envisage a situation where we are able to identify claims made by the same
individual j, say Y1j, Y2j, . . .. In this case we would like to model the claiming patterns
of individual j by acknowledging a possible dependence among claims related to the
same policy. For this reason it is desirable to undertake a framework that includes a
possible dependence among claims made by the same individual. Furthermore, if policy-
wise information is available, it would also be desirable to consider such disaggregation for
modelling purposes. To achieve this goal we will consider a modeling framework that is, in
spirit, similar to a mixed model in the sense that a random effect accounts for the temporal
correlation in the claims. Within this interpretation, such a random effect will play the
role of a latent variable that produces an exchangeable sequence of claims within each
individual. At the same time, we will introduce a methodology that allows us to maintain
the same marginal distribution for all claims. The main difference of having policy-wise
information available, is that we can consider several trajectories of the reserve process,
namely individual trajectories, for estimation and modelling purposes. This has a similar
statistical interpretation to that of panel studies and results in a robust methodology
not only at the aggregate level but also at the average individual one. Hence under this
framework we can consider individual (or policy)-wise realizations Xt1, Xt2, . . . , Xtm in
order to build up the corresponding average individual reserve process as well as the
aggregated one, say Xa

t :=
∑m

j=1 Xtj .
The main objective of this work is to generalize the compound Poisson processes (1)
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by relaxing the independence assumption in the claims, but keeping the counting process
Nt to be a homogeneous Poisson process. The idea of imposing dependence among claims
has been considered before by other authors, for instance: Gerber [8] and Promislow [9]
imposed a dependence structure through a linear ARMA model; Cossette and Marceau
[10] modeled dependence through a Poisson shock model and studied its implications in
the ruin probability, and Mikosch and Samorodnitsky [11] model the claims through a
stationary stable process and also investigated the impact on ruin probabilities.

The approach we undertake is based on a dependence structure provided via exchange-
ability assumptions in the claims. It is worth noting that exchangeability has also been
used to generalize risk models but in a different direction. Buhlmann [12], Buhlmann
[13] and Daboni [6] generalized the counting process and used a mixed Poisson process
specially designed to have exchangeable interarrival times. We rather focused on a par-
ticular construction that allows us to have dependence among claims while keeping the
marginal distribution invariant. This is appealing since in applications, such as risk mod-
elling, well-identified claim distributions are employed. In principle our approach could
be also extended to CPP with non-homogeneous or state dependent Poisson process, how-
ever we have decided to keep it to the basic reserve process to emphazise the proposed
contribution.

The outline of the paper is as follows. In Section 2 we define the exchangeable claims
process and provide two ways of defining exchangeable sequences via a parametric and
a nonparametric approach. Section 3 describes a methodology to implement Bayesian
inference for the parameters in both the traditional compound Poisson process and the
proposed approach. Finally in Section 4 we illustrate our model with a full Bayesian
analysis of data from the Medical Expenditure Panel Survey (MEPS).

2. Exchangeable claims modeling

Definition 1. Let {Nt; t ≥ 0} be a simple Poisson process with intensity λ > 0 and
Y1, Y2, . . . a sequence of exchangeable nonnegative random variables with common one-
dimensional marginal distribution F , independent of {Nt}. Then the exchangeable claims
process (ECP), {Xt; t ≥ 0}, is defined as

Xt :=
Nt
∑

i=1

Yi (6)

Clearly this new process has no longer independent increments, however it is clearly
a Markov process with exchangeable increments. Non random summations of the type
defined by (6) have been previously used to generalize the central limit theorem for ex-
changeable sequences, see for example Klass and Teicher [14].

When analysing real data it is of interest to have an arbitrary but given claim dis-
tribution, therefore the issue is how to construct an exchangeable sequence with given
marginal distributions. Clearly the easiest case is that of iid claims, however the point
here is to allow the model to have a possible dependence structure among the claims.

Based on the representation theorem of de Finetti [15], we can construct a sequence
of exchangeable random variables through a conditional independence sequence. More
explicitly, the random variables Y1, Y2, . . . are an exchangeable sequence if there exists a
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latent variable/measure G such that {Yi} for i = 1, 2, . . . are conditionally independent
given G, and G is a random variable/measure (known as the de Finetti’s measure) with
law described by a distribution/process P . Note that exchangeable variables defined in
this fashion are always positive correlated, which suffices for most relevant dependencies
found in risk modeling.

Proposition 1. Let {Xt; t ≥ 0} be an ECP with Yi | G ∼ G, i = 1, 2, . . . conditionally
independent given G, and G ∼ P, then assuming the existence of second order marginal
moments we have:

(i) E(Xt) = λtE(Yi)

(ii) Var(Xt) = λtE(Y 2
i ) + λ2t2Cov(Yi, Yj)

(iii) Cov(Xt, Xs) = λ (t ∧ s)E[Y 2
i ] + λ2 tsCov(Yi, Yj)

Proof. The whole idea is based on the conditional independence properties.

(i)

E(Xt) = E

{

E

(

Nt
∑

i=1

Yi |Nt

)}

= E (Nt) E (Yi) = λ tE(Yi),

where the second equality follows due to the independence between Nt and Yi.

(ii) First, let us notice that

Cov(Yi, Yj) = Cov {E(Yi | G),E(Yj | G)} = Var{E(Yi | G)},

hence

Var(Xt) = E{Var(Xt | G)}+Var{E(Xt | G)}
= λ tE(Y 2

i ) + λ2 t2 Var{E(Yi | G)}
= λ tE(Y 2

i ) + λ2 t2 Cov(Yi, Yj)

(iii)

Cov(Xt, Xs) = Cov {E (Xt | G) ,E (Xs | G)}+ E [Cov(Xt, Xs | G)]

= Cov {λtE(Yi | G), λsE(Yj | G)}+ E{Var(Xt∧s | G)}
= λ2 tsCov(Yi, Yj) + λ (t ∧ s) E[Y 2

i ].

If we define processes CPP and ECP with the same one-dimensional marginal claims
distribution, then comparing their characteristics we note that both processes have the
same expected value. However, the variance and covariance are not the same; the variance
(covariance) of the ECP is larger than the variance (covariance) of the CPP.

In terms of the correlation, if we let h(t) := Cov(Yi, Yj)λt + E[Y 2
i ] and if t < s then

Corr(Xt, Xs) =
√

t
s

h(s)√
h(s)h(t)

, which means that the correlation in the ECP is also larger.

This behavior is later illustrated in Examples 1 and 2.
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It is worth mentioning that in some applications, where heavy tailed distributions
are used for claim modeling, the covariance or correlation might not be a good indica-
tor of dependence since typically when using such distributions second moments do not
exist, hence one has to resort to other measures of dependence such as Kendall’s Tau or
Spearman’s Rho.

Now we will consider two ways of defining exchangeable sequences of random variables
with given marginal distributions, through a parametric and a nonparametric conditioning
distributions.

2.1. Exchangeable sequences: Parametric method

The idea is to define an exchangeable sequence Y1, Y2, . . . in such a way that each Yi
will have the same marginal distribution F (y). For the sake of exposition we assume
the existence of a density f(y). First, we introduce a latent variable Z with arbitrary
conditional density f(z | y). Then, we define f(y | z) using Bayes’ Theorem in the
following way:

f(y | z) = f(z | y)f(y)
f(z)

(7)

with

f(z) =

∫

f(z | y)f(y)dµ1(y), (8)

where µ1(y) represents a reference measure such as counting measure if Y is discrete or the
Lebesgue measure if Y is continuous. It is straightforward to show that if we marginalize
over Z then,

∫

f(y | z)f(z)dµ2(z) = f(y)

as required, where µ2(·) is another reference measure acting on Z. Then, if we take
Yi | Z ∼ f(y | z), as in (7), for i = 1, 2, . . . a sequence of conditional independent random
variables given Z = z, with marginal distribution for Z, as in (8), then Y1, Y2, . . . is a
sequence of exchangeable random variables with marginal densities f(y). A similar idea
was used by Pitt et al. [16] to construct stationary autoregressive models with given
marginal distributions, although in their construction different Zi’s are used for different
Yi’s.

Notice that the possibilities for Z are wide open, for example it could be discrete,
continuous, univariate or multivariate. Hence different features of Z will lead to different
forms of dependence. Closed form expressions can be obtained when considering conjugate
pairs (y, z) in a Bayesian setting.

Example 1. Let us denote by Ga(a, b) a gamma distribution with mean a/b and by
Gga(a, b, c) a gamma–gamma distribution with mean c b/(a − 1). We will define an
exchangeable sequence with Ga(a, b) as marginal distribution by assuming f(z | y) =
Ga(z | c, y), c > 0. In this case we obtain that, f(y | z) = Ga(y | a + c, b + z) and
f(z) = Gga(z | a, b, c). Therefore, if we take Yi | Z ∼ Ga(a + c, b + z) for i = 1, 2, . . .
conditionally independent given Z and Z ∼ Gga(a, b, c) hence marginally Yi ∼ Ga(a, b)
with Corr(Yi, Yj) = c/{(a+ c+1)}, for all i 6= j. Now, since Nt ∼ Po(λt) is the number of

claims in (0, t] and Y1, Y2, . . . the claim sizes such that Yi ∼ Ga(a, b), then Xt =
∑Nt

i=1 Yi
is the total claims amount in (0, t]. Consider two processes, the one with independent
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claims (XI
t ) and the one with exchangeable claims (XE

t ). Using the moments in (2) and
Proposition 1, it follows that the expected value of the total claims amount is,

E
{

XI
t

}

= E
{

XE
t

}

=
a

b
λt.

The variance of the processes become,

Var
{

XI
t

}

=
a(a+ 1)

b2
λt

and
Var

{

XE
t

}

= Var
{

XI
t

}

+
ac

b2(a+ c+ 1)
λ2t2,

which clearly shows that XE
t is overdispersed with respect to XI

t . Finally, the covariance
function for t < s takes the form,

Cov
{

XI
t , X

I
s

}

= Var
{

XI
t

}

and

Cov
{

XE
t , X

E
s

}

= Cov
{

XI
t , X

I
s

}

+
ac

b2(a+ c+ 1)
λ2ts.

In order to have an idea of the implications of using a ECP instead of a CPP in the
ruin probability, we performed a simulation study. We considered 5,000 iid realizations of
the reserve processes with the above specifications for both the CPP and the ECP, and
computed the Monte Carlo estimates of the corresponding finite-horizon ruin probabilities.
A finite-horizon realization of reserve process, e.g. on [0, T ], was simulated via

Ru
t = u+ rt−

N
∑

i=1

I(Ui < t)Yi,

where N ∼ Po(λT ) gives the total number of claims on the interval [0, T ], {Ui}Ni=1 are
iid from a uniform distribution on [0, T ] (denoting the jump times) and {Yi}Ni=1 are iid
or exchangeable from the claim distribution for the CPP or ECP respectively. We then
approximate the ruin probability as the relative frequencies of those realizations falling
below zero. For this experiment the parameters specifications are r = λ = a = c = 1 and
b = 1.1, e.g. with a relatively small (but positive) safety loading of ρ = (r b)/(λ a)− 1 =
0.1.

Figure 1 shows the behavior of the ruin probability as a function of the initial capital
and also as a function of the finite-horizon, the latter for two choices of initial capital,
u = 4 and u = 10. From the top-right graph is evident the existence of a crossing point
around u = 4, i.e. a point from where ECP causes a larger (and with slower decay) ruin
probabilities than those induced by the CPP. In order to further inspect on this issue, the
bottom graphs show the behavior of the ruin probabilities as the finite-horizon changes
starting from two different choices of initial capital: u = 4 (left), i.e. when there is a
similar behavior of the ruin probability for both the CPP and the ECP, and u = 10
(right), i.e. for a choice of initial capital where the ECP induces a higher ruin probability
than the CPP.
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Clearly, there is a remarkable variation on the corresponding ruin probabilities. In
particular, for this choice of Ga(a, b) marginal, and dependence induced through f(z) =
Gga(a, b, c), we could conclude that for big initial capitals, the discrepancies between the
ruin probabilities tend to be quite substantial, making a process with dependence more
riskier. This observation makes sense since the larger the initial capital is, the longer we
have to wait for a given trajectory to be ruin, and therefore, the more time we have for
the underlying dependence to induce an important difference when compared with the
CPP case.

Remark: Notice that a different choice of the conditional distribution f(z | y), in the
above construction, would lead to a different dependence structure. For instance, choosing
f(z | y) = Po(z | c y) implies that f(y | z) = Ga(y | a+z, b+c) and f(z) = Pga(z | a, b, c),
where Pga(z | a, b, c) denotes a Poisson-gamma distribution with mean c a/b. Therefore,
for constructing an exchangeable sequence we take Yi | Z ∼ Ga(a + z, b + c) for i =
1, 2, . . . conditionally independent given Z and Z ∼ Pga(a, b, c) hence Yi ∼ Ga(a, b) with
Corr(Yi, Yj) = c/{(b+ c)}, for i 6= j.

2.2. Exchangeable sequences: Nonparametric method

The parametric method described in the previous section has the feature of having a wide
variety of choices for the conditional distribution f(z | y), leading then to different para-
metric dependence structures. Alternatively, instead of having a latent random variable
Z, we could consider a latent random distribution G, i.e., the conditional density f(z | y)
will be replaced by a nonparametric density measure P . By doing this, we will be able
to define a nonparametric dependence structure within the exchangeable sequence. The
nonparametric nature underlied to this construction coveys to a dependence between the
variables not depending on the marginal distributions.

Having in mind the previous parametric construction, instead of the latent variable
Z we consider a latent random distribution G with conditional random distribution G |
Y ∼ P(· | y). In this case,

F (dy | G) = G(dy)

with
G ∼ P .

Proceeding analogously to the previous construction we would need to choose P such that

EP{G(dy)} =
∫

G(dy)P(dG) = F (dy).

The above is a characteristic property that many probability measures on the space of
distributions, used in the Bayesian nonparametric literature, satisfy. This is the case of the
seminal Dirichlet process introduced by Ferguson [17] and most of its generalizations such
as species sampling models presented by Pitman [18] and normalized random measures
with independent increments analyzed in Regazzini et al. [19]. The above feature, is
attractive in the Bayesian nonparametric literature, since it allows to set F as the prior
guess (mean) at the shape for the realizations of G.

Now, if we take Yi | G ∼ G, for i = 1, 2, . . . conditional independent random variables
given G, and G ∼ P , then Y1, Y2, . . . is a sequence of exchangeable random variables with
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marginal distributions F (dy) = EP{G(dy)}. Mena and Walker [20] also used similar ideas
based on nonparametric predictive distributions to define the dynamics of a first order
autoregressive processes.

Example 2. In order to define an exchangeable sequence with marginal distributions
Ga(a, b) through the nonparametric method just described, we consider a Dirichlet process
DP(F/c) as the law P ofG, where 1/c > 0 is the precision parameter and F is a parametric
c.d.f. that coincides with the mean of the process G, for details see Ferguson [17]. Now
we want that EDP{G(dy)} = F (dy), with F the c.d.f. of a gamma distribution. Thus, if
we take Yi | G ∼ G for i = 1, 2, . . . conditionally independent given G, and G ∼ DP(F/c),
with F (dy) = Ga(y | a, b)dy and c > 0 then Yi ∼ Ga(a, b) with Cov(Yi, Yj) = VarDP(µG)
and

µG =

∫

yG(dy),

for i 6= j.

The distribution of the mean µG has been studied by Regazzini et al. [19] and others.
These authors provide theoretical expressions for the distribution of the functional µG
for any centering function F , however, explicit expressions are not available in closed
from, except for particular cases of F . On the other hand, there is an alternative way of
obtaining dependence properties of an exchangeable sequence modeled by the Dirichlet
process.

According to Blackwell and MacQueen [21], the joint distribution of the exchangeable
sequence {Yi} where Yi | G ∼ G for i = 1, 2, . . . conditionally independent given G, and
G ∼ DP(F/c), can be characterized, after a marginalization of G, by the Pólya urn type
updating

Y1 ∼ F,

Y2 | Y1 ∼
1

c+ 1
F +

c

c+ 1
F1

and in general,

Yi | Y1, . . . , Yi−1 ∼
1

c(i− 1) + 1
F +

c(i− 1)

c(i− 1) + 1
Fi−1(yi), (9)

where Fi(·) is the empirical distribution function (e.d.f.) of the first i − 1 observations.
With this characterization of the exchangeable sequence, induced by the Dirichlet process,
we are able to compute the covariance of any pair (Yi, Yj).

Proposition 2. Let {Yi} be an exchangeable sequence such that Yi | G ∼ G for i = 1, 2, . . .
conditionally independent given G, and G ∼ DP(F/c), where F is a centering function
and 1/c > 0 the precision parameter. Then,

Corr(Yi, Yj) =
c

c+ 1

for all i 6= j.

Proof. Let µ = E(Yi) and σ2 = Var(Yi), which correspond to the expected value and
variance of F . Then, using conditional expectation we express E(Y1 Y2) = E{Y1E(Y2 |
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Y1)}. Now, based on the Pólya urn representation (9) we obtain that E(Y2 | Y1) =
µ/(c+1)+cY1/(c+1) which implies that E(Y1 Y2) = µ2+σ2c/(c+1). Thus, Cov(Y1, Y2) =
σ2c/(c + 1) and Corr(Y1, Y2) = c/(c + 1). Therefore, as Y1, Y2, . . . is an exchangeable
sequence then Corr(Yi, Yj) = Corr(Y1, Y2), which completes the proof.

Proposition 2 shows that the correlation induced by the exchangeable sequence {Yi}
sampled from the Dirichlet process is, in fact, nonparametric in the sense that it is in-
dependent of the marginal distribution of the Yi’s and only depends on the parameter
c. This is in contrast with the parametric constructions of exchangeable sequences where
the correlation depends on the marginal distribution of the Yi’s.

Example 2 (Continued...) We consider the two processes X I
t and XE

t based on indepen-
dent and exchangeable claims respectively, but now exchangeability is defined through the
nonparametric (Dirichlet) construction with Ga(a, b) marginals. Then from Proposition
1, the moments of the total claims amount in both cases are,

E
{

XI
t

}

= E
{

XE
t

}

=
a

b
λt,

Var
{

XE
t

}

= Var
{

XI
t

}

+
ac

b2(c+ 1)
λ2t2,

and the covariance for t < s is

Cov
{

XE
t , X

E
s

}

= Cov
{

XI
t , X

I
s

}

+
ac

b2(c+ 1)
λ2ts,

where Var
{

XI
t

}

and Cov
{

XI
t , X

I
s

}

are given in Example 1. Again, overdispersion of the
process XE

t with respect to process XI
t is also clear.

We would like to clarify that the Bayesian nonparametric ideas mentioned here have
been employed as a constructive tool rather than for inference procedure, for nonpara-
metric and semiparametric inference on non-homogeneous Poisson processes we refer the
reader to Merrick et al. [22], for example.

3. Bayesian inference of CPP and ECP

Once we have proposed a way of constructing exchangeable sequences for defining an ECP,
then for a given data set we would like to make inference on the parameters of both, the
CPP and the ECP models to compare. The ECP model acknowledges that claims made
by the same individual are (or can be) positive correlated. This assumption determines
the way our data has to be recorded. That is, for each individual j we require information
of all his/her claims {Yij}, for i = 1, . . . , Ntj, with Ntj ∼ Po(λt) independent across j and
independent of {Yij}. The aggregated claims for individual j, is Xtj constructed as in (1)
for the independence case or as in (6) for the dependence case, for j = 1, . . . ,m. The
type of data we require is usually called panel data, where the same set of individuals is
followed and measured along time.

The Bayesian approach for making inference has become very popular in several areas,
including actuarial sciences (see, for example, Klugman [23]), due to its advantage of
combining all available information in a probability distribution. Here we will follow this
approach.
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3.1. CPP model

In order to set ideas, let us start with the traditional CPP model with independent
claim sizes. Let Xt1, . . . , Xtm be a collection of independent CPP’s as defined in (1),
with Yij ∼ f(y | θ) independent for i = 1, 2, . . . and independent of Ntj ∼ Po(λt), for
j = 1, . . . ,m, with θ and λ the parameters of the claims density and the Poisson processes,
respectively.

Due to the independence of the Poisson processes Ntj and the claim sizes Yij, inference
for λ and θ can be done separately. Let J1j, J2j, . . . , Jnjj be the jump times in the Po(λt)
process for individual j, it is well known that the inter-arrival times W1j = J1j,W2j =
J2j − J1j, . . . are independent random variables with Ga(1, λ) distributions. Therefore,
inference on λ reduces to the standard estimation problem of the scale parameter in a
sample of independent gamma random variables. Thus, a conjugate analysis for λ is
obtained when assuming a prior distribution π(λ) = Ga(λ | αλ, βλ). Moreover, due to the
independence of the processes Ntj for all j, the posterior distribution for λ becomes

π(λ | w) = Ga

(

λ

∣

∣

∣

∣

∣

αλ +
m
∑

j=1

nj, βλ +
m
∑

j=1

nj
∑

i=1

wij

)

, (10)

which in terms of the jump times J = {Jij} can be expressed as π(λ | J) = Ga
(

λ | αλ +
∑m

j=1 nj,

βλ +
∑m

j=1 Jnjj

)

.

Now, given Ntj = nj, we let yj = (y1j, y2j, . . . , ynjj) denote the set of all claims of
individual j, j = 1, . . . ,m. Then, the likelihood for θ is given by

f(y1, . . . ,ym | θ) =
m
∏

j=1

nj
∏

i=1

f(yij | θ).

If we assume that our prior knowledge on θ is summarized in a prior distribution π(θ),
then the posterior distribution of θ is obtained through the Bayes’ Theorem, i.e.,

π(θ | y) ∝ f(y | θ)π(θ),

with y = (y1, . . . ,ym). In Section 4, an explicit form of this posterior distribution, will
be obtained.

3.2. ECP model

Lets now assume that Xt1, . . . , Xtm are independent ECP’s as the one given in Definition
1, with Ntj | λ ∼ Po(λt) and Yj = (Y1j, Y2j, . . .) an exchangeable sequence with f(y | θ)
marginal distributions. The sequencesYj’s are independent of each other and independent
of the processes Ntj, for j = 1, . . . ,m. Let us consider two cases, the parametric and the
nonparametric construction of the exchangeable sequences:

Parametric case

Recall the parametric construction of the exchangeable sequence with given marginal
distributions presented in Section 2.1, that is, for each j = 1, . . . ,m we require a latent
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variable Zj ∼ f(z | c) such that Yij | Zj
iid∼ f(y | θ, zj) for i = 1, . . . , nj, with (θ, c)

parameters of the model.
Given Ntj = nj, the likelihood for (θ, c) is given by

f(y1, . . . ,ym | θ, c) =
m
∏

j=1

f(yj | θ, c) (11)

where

f(yj | θ, c) = f(y1j, . . . , ynj ,j | θ, c) =
∫

{

nj
∏

i=1

f(yij | zj, θ)
}

f(zj | c)dµ2(zj). (12)

The marginalization over zj does not usually have an analytic expression, except for
particular cases. When expression (12) is available analytically, inference on (θ, c) is
conducted as in the CPP case via the Bayes’ Theorem using the likelihood (11). However,
if the integral in expression (12) is not analytically available in closed form, we can get
around by considering, for the moment, that we have observed Zj = zj along with the
yij’s. If we denote z = (z1, . . . , zm), an extended likelihood has the form

f(y, z | θ, c) =
m
∏

j=1

f(yj, zj | θ, c) (13)

with

f(yj, zj | θ, c) =
{

nj
∏

i=1

f(yij | zj, θ)
}

f(zj | c).

If π(θ, c) represents our prior knowledge on (θ, c) then the posterior distribution is given
by

π(θ, c | y, z) ∝ f(y, z | θ, c)π(θ, c).
Note that an estimability condition for the parameter c is that m > 1.

Remembering that we have assumed that Zj = zj was observed. Now, to make
posterior inference we implement a Gibbs sampling scheme (see, for example, Smith and
Roberts, [24]) with the previous conditional posterior distribution of θ and c as well as
the conditional distribution of each Zj which is given by

f(zj | y, θ, c) ∝ f(yj, zj | θ, c)

given in (13), for j = 1, . . . ,m. By doing this, we will have a simulated value of Zj in
each iteration. Finally, due to the independence between Ntj and the Yij’s, the posterior
distribution for λ is that given in (10).

Nonparametric case

Let us now consider the nonparametric construction of the exchangeable sequence with
given marginal distributions via the Dirichlet process as in Example 2. That is, via a

latent measure G ∼ DP(F/c) and Yi | G iid∼ G.

12



Given that we have observed Ntj = nj, then the likelihood function for (θ, c) is given
by

f(y | θ, c) =
m
∏

j=1

f(yj | θ, c)

with

f(yj | θ, c) = f(y1j, . . . , ynjj | θ, c) = EDP

{

nj
∏

i=1

G(dyij)

}

.

Blackwell and MacQueen [21] showed that this joint distribution for the exchangeable
sequence can be obtained by the product of expressions coming from the Pólya urn rep-
resentation (9). Therefore, dropping for the moment the subscript j, we get

f(y1, . . . , yn | θ, c) =
n
∏

i=1

{

(

1

1 + c(i− 1)

)

f(yi | θ) +
(

c(i− 1)

1 + c(i− 1)

) i−1
∑

l=1

δYl
(yi)

}

,

where δY (·) is the degenerated measure that assigns probability one to the point Y . If
we let y∗1, . . . , y

∗
k the distinct yi’s for i = 1, . . . , n, with k ≤ n and after some algebra, the

joint distribution for the exchangeable sequence becomes

f(y1, . . . , yn | θ, c) =
(1/c)kΓ(1/c)

Γ(1/c+ n)

k
∏

i=1

f(y∗i | θ), (14)

where Γ(·) denotes the gamma function.
Having a closer look, we can see that as a function of θ, this likelihood is the same

as the likelihood obtained with the traditional CPP but when considering the distinct
observations only. This is a feature of the Dirichlet process that allows ties in the obser-
vations and thus information on θ only comes from the distinct observations. Moreover,
the number of distinct observations kj, for j = 1, . . . ,m, provides information about the
parameter c, that is, a smaller value of kj produces a sharper likelihood for c; however,
if no ties are present in any of the exchangeable sequences, the likelihood for c becomes
flat.

Now, considering that (θ, c) have prior distribution π(θ, c), then the posterior distri-
bution is simply

π(θ, c | y) ∝ f(y | θ, c)π(θ, c).
Note that given the form of the j-th contribution to the likelihood, (14), if θ and c are
independent a-priori then they will also be independent a-posteriori. Again, the posterior
distribution for λ is the same as before, given in (10).

Due to the choice of the Dirichlet process to construct the exchangeable sequence,
inference on c does not necessarily require several realizations of the ECP as in the para-
metric case, only one realization of the process would be enough as long as the observed
claims sizes had repeated values. This is a consequence of the discreteness of the Dirichlet
process (see, Blackwell and MacQueen [21]).
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4. Illustration

The Medical Expenditure Panel survey (MEPS) provides information on health care use,
expenditures, sources of payment, and health insurance coverage of the US civilian non-
institutionalized population. A national representative sample of households is selected
every year and information is reported for all members by a single household respondent.

The panel design of the survey provides data for examining person level changes in
selected variables including expenditures among others. In particular, MEPS HC-094D
(available at: http://www.meps.ahrq.gov) contains information for the 2005 hospital in-
patient stays. There are two steps for collecting the information. In the first step, the
Household Component, information about each household member is collected. Upon
completion of the household interview and obtaining permission from the household re-
spondents, the Medical Provider Component (second step) is carried out. A sample of
medical providers are contacted by phone to obtain information that household respon-
dents could not accurately provide.

There are 3341 events (hospital inpatient stays) reported in the database. From those
we selected 2110 events which contained complete Medical Provider Component data. We
removed the events with missing data and after we added up the claims made in the same
day to have a single claim per day, we ended up with 1729 events for which we have the
starting date for the event and the total expenditures, resulting from both facility and
physician amounts. The 1729 events were made by 66 individuals, which gives an average
of 26 events per individual in the year, ranging from 1 to 122 events per person.

We will carry out a comparison when fitting the traditional CPP and the two ECP
models introduced in this paper. The expenditures values were transformed to satisfy a
parametric assumption. The best power transformation of the data was achieved with a
power of 1/4, which produced data that are well modeled by a gamma distribution. After
the data was transformed we kept only the first two significant decimal places. The date
of the events was also transformed to elapsed days within the same calendar year (2005).

The general setting is the following: We have a sample Xt1, . . . , Xtm of independent
aggregated total expenditures up to time t made by individuals j = 1, . . . ,m, such that
the number of events Ntj follows a homogeneous Poisson process Po(λt) independent of
the expenditures sizes Yij which are gamma distributed with parameters a and b.

We then start by assuming that Xtj is a CPP with independent claims, that is, Yij |
a, b ∼ Ga(a, b) are all independent for i = 1, . . . , nj and j = 1, . . . ,m. If our prior
knowledge on (a, b) can be represented by π(a) = Ga(a | αa, βa) and π(b) = Ga(b | αb, βb)
independently, then the posterior distribution, given the sample, is characterized by the
conditional distributions

π(a | y, b) ∝ {Γ(a)}−naαa−1

(

bne−βa

m
∏

j=1

nj
∏

i=1

yij

)a

I(a > 0),

with n =
∑m

j=1 nj, and

π(b | y, a) = Ga

(

b

∣

∣

∣

∣

∣

αb + n a, βb +
m
∑

j=1

nj
∑

i=1

yij

)

.

Now we will assume that Xtj is an ECP with claims Yj = (Y1j, . . . , Ynjj) following
an exchangeable sequence of gamma random variables. We consider both, the parametric
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and the nonparametric approaches. For the parametric method we use the construction
given in Example 1. That is, take independent latent variables Zj ∼ Gga(a, b, c), for
j = 1, . . . ,m, and for each of them define conditionally independent random variables
Yij | Zj ∼ Ga(a+ c, b+ zj) for i = 1, . . . , nj.

For this particular construction of the exchangeable sequence, the joint distribution
for (y1, . . . ,ym), marginalizing over z, is not available explicitly. Therefore we rely on
the extended likelihood, as in (13). Now, assuming that (a, b, c) are independent a-priori
such that π(a) = Ga(a | αa, βa), π(b) = Ga(b | αb, βb) and π(c) = Ga(c | αc, βc), then the
posterior distribution given (y, z) is characterized by the full conditionals

π(a | y, z, b, c) ∝ aαa−1

Γm(a)
∏m

j=1 Γ
(nj−1)(a+ zj)

[

e−βabm

{

m
∏

j=1

(b+ zj)
(nj−1)

nj
∏

i=1

yij

}]a

I(a > 0),

π(b | y, z, a, c) ∝
{

m
∏

j=1

(b+ zj)
(nj−1)

}a+c

bαb+ma−1 exp

{

−b
(

βb +
m
∑

j=1

nj
∑

i=1

yij

)}

I(b > 0)

and

π(c | y, z, a, b) ∝ cαc−1

{Γ(c)}m {Γ(a+ c)}n−m
exp

[

−βc
{

m
∏

j=1

(b+ zj)
(nj−1)zj

nj
∏

i=1

yij

}]c

I(c > 0).

Finally we also require the full conditional distribution for the latents zj’s which are

f(zj | y, a, b, c) ∝ (b+ zj)
(nj−1)(a+c)zc−1

j e−zj

∑nj
i=1

yijI(zj > 0),

for j = 1, . . . ,m.
For the construction of an exchangeable sequence with Ga(a, b) marginals under the

nonparametric approach we will use the Dirichlet process as in Example 2. That is, we
take Yi | G ∼ G for i = 1, 2, . . . conditionally independent given G and G ∼ DP(F/c)
with F (dy) = Ga(y | a, b)dy. If we use the same prior distribution for (a, b, c) as in the
parametric construction, given the exchangeable sequences y, the conditional posterior
distributions required to make inference become

π(a | y, b) ∝ {Γ(a)}−kaαa−1



bke−βa

m
∏

j=1

kj
∏

i=1

y∗ij





a

I(a > 0),

where k =
∑m

j=1 kj and kj denote the number of distinct observation in each exchangeable
sequence yj and (y∗1j, . . . , y

∗
kj ,j

) the distinct observations for j = 1, . . . ,m, and

π(b | y, a) = Ga



b

∣

∣

∣

∣

∣

∣

αb + k a, βb +
m
∑

j=1

kj
∑

i=1

y∗ij



 .

Note that since (a, b) and c are independent a-priori, they are also independent a-posteriori.
Moreover, the posterior distribution for c is given by

π(c | y) ∝ Γm(1/c)
∏m

j=1 Γ(1/c+ nj)
cαc−

∑m
j=1

kj−1e−βccI(c > 0).
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Finally, in all cases, the posterior distribution for the intensity parameter λ of the
Poisson processes Nj(t) for j = 1, . . . ,m, when considering a conjugate analysis, is given
by equation (10).

We carried out posterior inference for the expenditures data by implementing Gibbs
samplers for the three models, CPP, ECPp and ECPnp. For sampling from each of the
conditional distributions we used random walk Metropolis-Hastings steps, that is, at
iteration t+1 we took θ∗ ∼ Ga(1, 1/θ(t)) as proposal variate. This proposal distribution is
centered at the previous value of the chain and has a variation coefficient of one. A Fortran
code of the algorithm is available upon request from the second author. We considered
vague prior distributions for all the parameters of the model, i.e. we took (αa, βa) =
(0.01, 0.01), (αb, βb) = (0.01, 0.01), (αc, βc) = (0.01, 0.01) and (αλ, βλ) = (0.01, 0.01). The
Gibbs sampler was run for 600,000 iterations with a burn-in of 100,000 keeping every 50th
observation after burn-in to reduce the autocorrelation in the chain.

Our main parameter of interest is the one that controls the dependence among obser-
vations, that is c. It is worth mentioning that in both (parametric and nonparametric)
models a value of c = 0 implies that the observations are all independent. However their
magnitudes are given in different scales. Posterior distributions of c for the two cases are
shown in Figure 2. The left graph corresponds to the parametric construction (ECPp)
where positive values of c are clearly supported by the data. In fact the 5% lower quantile
of the distribution is 0.32 which means that the posterior probability that c takes a larger
value is 95%. On the other hand, the right graph of Figure 2 contains the posterior dis-
tribution of c using the nonparametric construction (ECPnp). From here we can observe
that only fairly small values of c are supported by the data which means that there is
very little or none dependence captured by the nonparametric model.

To better discriminate among the models, we use the logarithm of the pseudo-marginal
likelihood (LPML) statistic. This statistic is a measure of the marginal fitting to the data
and has been used as a model selection criterion in many different contexts (see, for
example, Sinha and Dey [25]). Table 1 summarizes the LPML statistic as well as the
posterior estimates of the parameters of the models. The fitting of the ECPp provides
the best fitting among the three models. This suggests that there is certainly a positive
dependence in the claims which has been captured by the ECPp model. On the other
hand, the worst fitting was obtained by model ECPnp, which can be explained by the fact
that the dependence in the nonparametric construction, when using the Dirichlet process,
relies on the existence of ties in the claim amounts and in the expenditures dataset there
are quite few (77 out of 1729).

Posterior estimates of a and b, reported in Table 1 are very similar in all models, being
slightly smaller the point estimates in the ECPp model. 95% credible intervals are also
included in Table 1 for reference. Different values for the hyper parameters of the prior
distributions, not reported here, were also studied and gave similar results in terms of
fitting of the models and estimators. Therefore, by allowing the claims to be dependent
within each individual, via the parametric construction, we are able to better modelling
this dataset.

From now on we will concentrate in comparing the independence model (CPP) and the
dependence parametric model (ECPp). There are several ways of appreciating the impact
of the parameter c in the ECPp model. The correlation among claims made by the same
individual is estimated to lie in the interval (0.021, 0.112) with 95% of probability. In
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order to understand the implications in the ruin probability, we have repeated the same
analysis done in Example 1 with a safety loading of 0.1. From Figure 3, it is evident that
widening the model to allow for exchangeable claims leads to higher ruin probabilities
than those corresponding to the CCP, in both the finite and the infinite horizon case. In
particular, a slower decay in the ruin probability, as the initial capital varies, is noted
in the ECPp when compared to the CPP. Therefore, leading to a more realistic scenario
when determining an adequate risk premium rate.

Finally, we carried out a predictive analysis for the aggregated expenditures of a pa-
tient in a year. For that we needed to consider the information about the frequencies of
occurrence of the claims, modeled by the Poisson processes Ntj, j = 1, . . . ,m and in par-
ticular by the intensity λ. Considering that we observed 1729 claims in the year, then the
posterior distribution for the intensity of the claims per year, λ, is Ga(1729.01, 52.7479).
Therefore, the posterior mean rate is 32.78 claims per person per year.

With the posterior distribution for λ and the posterior predictive distribution for the
whole sequence of claims, we obtain the posterior predictive distribution for the aggregated
claims in a year for one individual. Figure4 contains normal smoothed density estimators
of this aggregated claims distribution in thousands of dollars (back-transforming each
claim with a power of 4 adding them up and dividing by one thousand). The solid line
corresponds to the aggregated claims distribution obtained with the CPP model whereas
the dotted line corresponds to the one obtained with the ECPp model. As we can see,
the predictive distribution with the ECPp is slightly shifted to the left, has heavier tails
and is over-dispersed with respect to the one obtained with the CPP model.

For the insurance company, having a model that better represents the data implies a
more accurate scenario. For instance, for determining the reserve for a new insuree one
could be conservative and take the 95% quantile of the aggregated claims distribution
in a year. These values are 606, 438 dollars and 618, 370 dollars for the CPP and the
ECPp models respectively. Alternatively, the traditional way of determining the reserve
is in terms of the posterior mean, which in our case are 394, 796 and 364, 120 dollars
respectively. This would result in 30, 676 dollars saving in reserves per person per year.

5. Discussion.

In this paper we introduced a generalization of the compound Poisson process by relaxing
the independence assumption in the claims to a more realistic exchangeable assumption.
The resulting process has important implications in the ruin probability tending, in av-
erage, to ruin faster than when using the traditional CPP process. Moreover, predictive
distributions of the aggregated claims are more accurate, thus helping the insurance com-
panies to better determine reserves.

We proposed two general ways of defining exchangeable claims with arbitrary but fixed
marginal distributions. This is done by means of conditioning on a latent random variable
(parametric approach) or a latent random distribution (nonparametric approach) as in de
Finetti’s representation Theorem [15]. It is worth emphasizing that this approach is the
only way of constructing infinite exchangeable sequences.

The proposed methodology was illustrated for gamma distributed claims, however it
can be equally applied to any distribution. In addition, we provided Bayesian procedures
to tackle the problem of parameter estimation. An illustration regarding medical expendi-
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tures was presented together with possible scenarios of the ruin probability under different
initial capitals and policy durations. From this, together with a simulation example, we
can conclude that considering an ECP process instead of a CPP we are potentially able
to capture more riskier situations and therefore worth to consider when modeling reserve
processes.

As we mentioned in Section 2, we employ Bayesian nonparametric ideas as a construc-
tive technique to define exchangeable sequences rather than as an estimation procedure.
However, as a byproduct, the nonparametric approach at issue can also be used to eluci-
date the claim distribution. Instead of marginalizing the latent distribution G as we did
for the Dirichlet case, posterior inference could be carried out for the nonparametric G
and the posterior predictive distribution of G given the data would be an estimate of the
marginal density that generated the claims.
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Model
Quantity CPP ECPp ECPnp

Mean 95% CI Mean 95% CI Mean 95% CI
LPML -4124.6 – -4117.9 – -4555.8 –

a 11.99 (11.25, 12.72) 11.45 (10.61, 12.24) 11.58 (10.81, 12.48)
b 1.28 (1.20, 1.36) 1.25 (1.17, 1.34) 1.24 (1.15, 1.33)
c – – 0.78 (0.27, 1.50) 0.0013 (0.001, 0.002)

Table 1: Model comparison and posterior summaries of (a, b, c) for the CCP and the ECP

models. Posterior mean and 95% credible intervals.
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Figure 1: Reserve processes and Monte Carlo (MC) estimates of ruin probabilities for both the

CPP and ECPp models. Top left: Two random realizations of the reserve processes. Top right:

MC estimates of the probability of ruin as the initial capital u changes. Bottom: MC estimates

of the finite-horizon probability of ruin as the horizon T increases and for a choice of u = 4 (left)

and u = 10 (right). The MC estimates are based on 5000 iid realizations of the reserve process.
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Figure 2: Posterior distribution of dependence parameter c: (left) parametric construction and
(right) nonparametric construction.
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Figure 3: Monte Carlo estimates of ruin probabilities for both the CPP and ECPp fitted to the

MEPS data. Top: Ruin probability as a function of the initial capital u. Bottom: Finite horizon

ruin probability as the horizon T increases, for u = 20.
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Figure 4: Posterior predictive distribution for the aggregated claims in a year for one individual
(in thousands of dollars). (——) CPP, (· · ·) ECPp.
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