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Abstract

This thesis focuses on Markovian random models with a branching structure which
interacts with a random environment. These processes are widely used to model
random phenomena in nature such as: the size of an asexual population, the expansion
of a virus in a population, among others. In this work, we are not only interested in
models of population dynamics and virus expansion, but also in how they interact with
the environment. We are interested in how environment a�ects our original models.

This thesis is divided into three parts where our problems are framed. The first set
of results focuses on Galton-Watson processes in a varying environment. Based on a
two-spine decomposition technique, we provide a probabilistic argument of a Yaglom-
type limit for this family of processes. The result states that, when the process is in the
critical regime, a suitable normalisation of the process conditioned on non-extinction
converges in distribution to a standard exponential random variable.

The second part deals with an inhomogeneous contact process on a Galton-Watson
tree. The contact process is a simple model for the spread of an infection in a structured
population. Here, we consider a variant of the contact process on Galton-Watson trees,
where vertices are equipped with a random fitness which represents inhomogeneities
among individuals. In particular, we establish conditions under which the contact
process with fitness on Galton-Watson trees exhibits a phase transition. Furthermore,
we show that if we start with a finite configuration of infected vertices then, almost
surely, the configuration remains finite for all times.

In the last part of the thesis, we consider continuous state branching processes in a
Lévy environment. Here, we are interested in understanding the asymptotic behaviour
of the non-extinction and non-explosion probabilities for this family of processes. For
the explosion problem, we assume that the branching mechanism corresponds to the
negative of the Laplace exponent of a subordinator. We extend the characterisation
of the quenched Laplace exponent and derive a necessary and su�cient condition for
explosion. Further, the long-term behaviour of the non-explosion probability is studied
in the critical and subcritical explosion regimes. On the other hand, we also study
the speed of extinction of continuous state branching processes in subcritical Lévy
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environments. More precisely, when the associated Lévy process to the environment
drifts to minus infinity and, under a suitable exponential change of measure, the
resulting process either drifts to minus infinity or oscillates.
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Introduction

This thesis focuses on Markovian probabilistic models that interact with a random
environment. Markov processes are random processes that fulfill the property that,
conditionally to the current value, the future and the past are independent. These
processes are widely used to model random phenomena in nature such as: the size
of an asexual population, the expansion of a virus in a population, among others.
In this work, we are not only interested in models of population dynamics and virus
expansion, but also in how they interact with the environment. We are interested in
the knowledge of how environmental a�ect our original models. In other words, in
how the dynamics of a population are a�ected by the environment throughout their
reproductions laws or how the environment a�ects the dynamics of a virus in a given
population. As we can see, the area in which we carry out this research has a strong
biological motivation, especially in the areas of ecology and epidemiology. Here, we
are interested in three probabilistic models that interact with a random environment.
More precisely, this thesis is divided in three parts where our problems are framed.

• Part I: Galton-Watson processes in varying environment (Chapter 1).

• Part II: Contact processes with fitness on Galton-Watson trees (Chapter 2).

• Part III: Continuous-state branching processes in a Lévy environment (Chapters
3, 4 and 5).

Part I of this thesis is dedicated to the study of Yaglom’s limit for critical Galton-
Watson processes in varying environment. This part is a joint work with Sandra Palau
and the results have been published in

[17] N. Cardona-Tobón and S. Palau. Yaglom’s limit for critical Galton-Watson
process in varying environment: A probabilistic approach. Bernoulli, 27(3):1643-1265,
2021.
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Part II of this thesis deals with phase transitions for contact processes with fitness
on Galton-Watson trees. This part is based on a joint work with Marcel Ortgiese and
has resulted in the preprint

[19] N. Cardona-Tobón and M. Ortgiese. The contact process with fitness on
Galton-Watson trees. Preprint arXiv:2110.14537, 2021.

Part III of this thesis is dedicated to the study of the speed of the probability
of non-explosion and non-extinction for continuous-state branching process in a Lévy
environment. This part is based in a joint collaboration with Juan Carlos Pardo. All
the results here presented will be part of two forthcoming research papers one of them
is the following preprint.

[18] N. Cardona-Tobón and J.C. Pardo. Speed of extinction for continuous state
branching processes in subcritical Lévy environments: the strongly and intermediate
regimes Preprint arXiv:2112.13674, 2021.

Below, we briefly introduce the models studied in this thesis and also review the
results obtained during my PhD studies.

Part I: Galton-Watson processes in varying environ-
ment
A Galton Watson process models the size of a population in which, at every gen-
eration, each individual give births according to a fixed o�spring distribution and
independently of the other individuals. More precisely, a Galton-Watson process

Z = {Zn : n > 0} is a discrete-time Markov chain which evolves according to the
following recurrence formula

Z0 = 1 and Zn =
Zn≠1
ÿ

i=1
›

(n)
i

,

where {›
(n)
i

, i > 0} forms a family of independent and identically distributed random
variables with common distribution (pk, k > 0). For a complete overview of the theory
of Galton-Watson process the reader is referred to the monograph of Athreya [5].

Let m = qŒ
k=0 kpk be the mean of the reproduction law. A Galton-Watson process
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is called critical, subcritical or supercritical accordingly as m = 1, m < 1 or m >

1, respectively. It is well-known that Galton-Watson processes become extinct with
probability 1 if and only if m 6 1 and p1 < 1. Now, in order to describe the asymptotic
behaviour of (Zn, n > 0) in the critical and subcritical regimes, Yaglom [75] studied the
process Z conditioned on the event of non-extinction, i.e. on {Zn > 0}. When m < 1
and under a certain moment restriction, Yaglom proved that the law of {Zn|Zn > 0}

converges to a proper distribution. Nevertheless, in the case of m = 1, which is in
some sense the most interesting regime, the process {Zn, |Zn > 0} diverges to Œ.
Thus, a suitable normalization is needed to make the conditioned process to converge
to a positive non-degenerated limit. In other words, Yaglom’s theorem states that if
m = 1 and ‡

2 := qŒ
k=0(k ≠ 1)pk < Œ, we have

3

Zn

n
;P( · |Zn > 0)

4

(d)
≠æ (Y ;P) , as n æ Œ,

where Y is an exponential random variable with mean ‡
2
/2 (see for instance Kesten

et al. [46]). Under a third moment assumption, this result is originally due to Yaglom
[75]. Further, in the literature, we can find di�erent proofs of Yaglom’s theorem, see
e.g. Lyons et al. [55] and Geiger [31, 32]. More recently, Ren et al. [67], developed
another new proof using a two-spine decomposition technique.

By introducing a varying environment in the model, the reproduction laws will
change from generation to generation. In other words, di�erent individuals give birth
independently and their o�spring distributions coincide within each generation but
vary among generations. For example, think of a population having one year life
cycle. Each year, the weather conditions or the resource supply (the environment)
vary, which influences the reproductive success of the population. More precisely, for
a varying environment Q = (q1, q2, . . .) of probability measures on N0 = {0, 1, 2, . . .},
a Galton-Watson process Z

Q = {Z
Q

n
: n > 0} in a varying environment Q (GWVE

for short) is a Markov chain defined recursively as follows

Z
Q

0 = 1 and Z
Q

n
=

Z
Q
n≠1

ÿ

i=1
‰

(n)
i

, n > 1,

where {‰
(n)
i

: i, n > 1} is a sequence of independent random variables such that

P(‰(n)
i

= k) = qn(k), k œ N0, i, n > 1.

The variable ‰
(n)
i

denotes the o�spring of the i-th individual in the (n ≠ 1)-th
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generation. For a GWVE, we have a new classification which extends the one already
mentioned for classical Galton-Watson processes. To be more precise, denote by ÷

the probability of extinction, i.e ÷ := P(ZQ

n
= 0 for some n). Here, we exclude some

processes that will have unusual behaviour and we work with regular processes. In
other words, according with Kersting, [44], we say that a GWVE is regular if there
exists a constant c > 0 such that for all n > 1,

E
5

(‰(n)
i

)21{‰
(n)
i >2}

6

6 cE
5

‰
(n)
i

1{‰
(n)
i >2}

6

E
Ë

‰
(n)
i

-

-

-‰
(n)
i

> 1
È

.

The latter regularity assumption is considerably mild. As we will explain in the next
chapter. Now, we say that a regular GWVE is

• supercritial if ÷ < 1 and lim
næŒ

E[ZQ

n
] = Œ,

• asymptotically degenerate if ÷ < 1 and lim
næŒ

E[ZQ

n
] < Œ,

• critical if ÷ = 1 and lim
næŒ

E[ZQ

n
|Z

Q

n
> 0] = Œ,

• subcritical if ÷ = 1 and lim
næŒ

E[ZQ

n
|Z

Q

n
> 0] < Œ.

For further details about GWVEs, we refer to the monograph of Kersting and Vatutin
[45].

The first part of this thesis concerns with Yaglom’s theorem for Galton-Watson
processes in varying environment. In order to present our main result we first need to
introduce additional notation. Denote by {fn, n > 1} the corresponding sequence of
generating functions of {‰

(n)
i

: i, n > 1}, i.e. fn(s) := E[s‰
(n)
i ] for s œ [0, 1]. Define the

following two sequences,

E[ZQ

n
] = µn, and E[ZQ

n
(ZQ

n
≠ 1)]

E[ZQ
n ]2

=
n≠1
ÿ

k=0

‹k+1
µk

, n > 1,

where µ0 := 1 and for any n > 1,

µn := f
Õ
1(1) · · · f

Õ
n
(1), and ‹n := f

ÕÕ
n
(1)

f Õ
n
(1)2 .

Actually these quantities essentially dictate the behaviour of GWVEs (see Kersting
[44]). Given a varying environment Q, we define the sequence {a

Q

n
: n > 0} as

follows
a

Q

0 = 1, and a
Q

n
= µn

2

n≠1
ÿ

k=0

‹k+1
µk

, n > 1.
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Further, we assume the following condition

there exists c > 0 such that f
ÕÕÕ
n

(1) 6 cf
ÕÕ
n
(1)(1 + f

Õ
n
(1)), for any n > 1. (1)

We state now our main result of the first part of this thesis.

Theorema 0.0.1 (Yaglom’s limit). Let {Z
Q

n
: n > 0} be a critical GWVE that

satisfies condition (1). Then

A

Z
Q

n

a
Q
n

;P( · |Z
Q

n
> 0)

B

(d)
≠æ (Y ;P) , as n æ Œ,

where Y is a standard exponential random variable.

In the literature, we can find di�erent proofs of this result under stronger con-
ditions than ours and/or using analytical techniques. Probably the first proof was
carried out by Jagers [42]. He gave a proof of Yaglom’s limit under certain extra as-
sumptions. Afterwards, Bhattacharya and Perlman [14] presented a generalisation of
Jager’s result but with stronger conditions than the ones we consider here. Kersting
[44] provided another proof in a similar framework than ours, that we will explain in
more details in Chapter 1. Here, we provide a probabilistic proof of Yaglom’s limit
using the genealogies of the model rather than generating functions. Specifically, we
use a two-spine decomposition technique, which was introduced by Ren et al. [67] to
Yaglom’s limit for classical Galton-Watson processes. In particular, our arguments al-
low us to give a more intuitive explanation of why the limit must have an exponential
distribution and thus have a better understanding of the model.

Part II: Contact processes with fitness on Galton-
Watson trees
The contact process is a classical interacting particle system modelling the spread of an
infection in a given population. The population is modelled by a graph where vertices
represent individuals susceptible to the infection and the edges, the connections be-
tween them. Given the infection parameter ⁄ > 0, the dynamic of the contact process
is as follows: at any time, each vertex of the graph is either infected or healthy. Each
infected vertex infects each of its neighbours independently at rate ⁄ and is healed
at rate 1. Further, we assume that the infection and recovery events in the process
happen independently.
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The behaviour of the contact process depends on the infection parameter ⁄. In
other words, depending on the value of ⁄, the process could present di�erent phase
transitions. For an infinite rooted graph, there are two critical values of interest
0 6 ⁄1 6 ⁄2, which determine di�erent regimes where the contact process exhibits
extinction, weak survival or strong survival. In others words, in the extinction phase,
for ⁄ œ (0, ⁄1), the infection becomes extinct in finite time almost surely. In the
weak survival phase, when ⁄ œ (⁄1, ⁄2), the infection survives forever with positive
probability, and the root is infected finitely many times almost surely. Finally, in
the strong survival phase, for ⁄ œ (⁄2, Œ), the infection also survives forever with
positive probability, however in this regime the root is infected infinitely many times
with positive probability.

The phase diagrams of the contact processes on the integer lattice and on the
infinite d-ary tree, are well-understood (see [37, 64, 69]). Recent progress has been done
in more general graphs. Chatterjee and Durret [20] considered the contact process on
models of power law random graphs and studied the critical value. Afterwards, Huang
and Durret [41] and Bhamidi et al. [13] establish a necessary and su�cient criterion
for the contact process on Galton-Watson trees to exhibit the phase of extinction.

A natural generalization of the contact process is to introduce inhomogeneity into
the graph by associating a random fitness to each vertex that influences how likely the
vertex is to receive and to pass on the infection. Peterson [66] introduced the contact
process on a (deterministic) complete graph with random vertex-dependent infection
rates. In this part of this thesis, we are interested in study the contact process with
random weights in Galton-Watson trees. To present our main results, first we formally
define the model. To this end, let us denote by T ≥ GW(›) the Galton-Watson tree
rooted at fl with o�spring distribution L (›). We assume that 1 < E[›] < Œ. Denote
by V (T ) the set of vertices in T . We equip each vertex v œ V (T ) of the tree with
a random initial fitness. More precisely, let F(T ) := (Fv)vœV (T ) be a sequence of
i.i.d copies of a non-negative random variable. We denote by (T ,F(T )) this weighted
version of the tree T .

Definition 0.0.1. Let F(T ) := (Fv)vœV (T ) be a sequence of i.i.d. copies of a random

variable F taking values in [1, Œ). The inhomogeneous contact process on (T ,F(T ))
is a continuous-time Markov chain on the state space {0, 1}

V (T )
, where a vertex is

either infected (state 1) or healthy (state 0). We denote the process by

(Xt) ≥ CP
1

T ; 1A

2

,
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where 1A is the initial configuration in which the vertices in A µ V (T ) are initially

infected. Given the fitness F(T ) and ⁄ > 0, the process evolves according to the

following rules.

• For each v œ V (T ) such that Xt(v) = 1, the process Xt becomes Xt ≠ 1v with

rate 1.

• For each v œ V (T ) such that Xt(v) = 0, the process Xt becomes Xt + 1v with

rate

⁄
ÿ

v≥vÕ
FvÕFvXt(vÕ),

where Fv and FvÕ are the fitness associated to v and v
Õ
. The notation v ≥ v

Õ

means that vertices v and v
Õ

are connected by an edge in T .

Our first main result shows that if we start the inhomogeneous contact process
on (T ,F(T )) with a finite configuration, then almost surely the configuration remains
finite for all times.

Theorema 0.0.2. Assume that µ = E[›] < Œ. Consider (Xt) ≥ CP(T , 1A) the

inhomogeneous contact process on (T ,F(T )), started with any finite set A µ V (T )
infected. Then

P
1

|Xt| < Œ, ’t > 0
2

= 1.

Now, we define the critical values for the infection parameter ⁄. Given the tree
(T ,F(T )), we define the threshold between extinction and weak survival by

⁄1(T ,F(T )) := inf
Ó

⁄ : P
1

Xt ”= 1ÿ for all t > 0
-

-

- T ,F(T )
2

> 0
Ô

,

and the weak-strong survival threshold by

⁄2(T ,F(T )) := inf
;

⁄ : lim inf
tæŒ

P
1

fl œ Xt

-

-

- T ,F(T )
2

> 0
<

.

Similar arguments as those used in Pemantle [64, Proposition 3.1], allow us to see that
⁄1(T ,F(T )) and ⁄2(T ,F(T )) are constant for almost every (T ,F(T )) conditioned on
|T | = Œ. We denote by ⁄1 and ⁄2 these two constants.

Our second main result tell us that if the distribution of the product of › and the
fitness F has exponential tails, then the inhomogeneous contact process exhibits a
phase of extinction.
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Theorema 0.0.3. Consider the inhomogeneous contact process on the tree (T ,F(T )).
Suppose that only the root of the tree is initially infected. We assume that the distri-

bution of the product of › and the fitness F has exponential tails, i.e.,

E
5

e
c ›F

6

= M < Œ for some c, M > 0.

Then there exists ⁄0 > 0 such that for all ⁄ < ⁄0, the process dies out almost surely.

Our last main result of this part of the thesis shows that, under a condition on either
the fitness distribution or the o�spring distribution, there is no phase transition and
the process survives with positive probability for any choice of the infection parameter.

Theorema 0.0.4. Consider the inhomogeneous contact process on the tree (T ,F(T )).
Suppose that only the root of the tree is initially infected. Assume that › and F are

unbounded and one of the following two conditions holds

lim sup
fæŒ

logP(F > f)
log f

= ≠C1 for some C1 œ [0, Œ),

lim sup
kæŒ

logP(› = k)
k

= ≠C2, for some C2 œ [0, Œ),

Then ⁄1 = ⁄2 = 0, i.e., the process survives strongly for any ⁄ > 0.

Part III: Continuous-state branching processes in a
Lévy environment
Continuous state branching processes (CSBP for short) were introduced by Jirina [43]
and since then, they have been studied by several authors. These processes allow to
model the size of a su�ciently large population if it is assumed that environmental
factors do not a�ect the population. More precisely, a CSBP is a [0, Œ]- valued strong
Markov process Y = {Yt, t > 0} with probabilities {Px, x > 0} such that, it has càdlàg
paths and its law enjoys the branching property. That is, for all ◊ > 0 and x, y > 0

Ex+y

Ë

e
≠◊Yt

È

= Ex

Ë

e
≠◊Yt

È

Ey

Ë

e
≠◊Yy

È

.

Moreover, the law of Yt is completely characterised by the latter identity, i.e.

Ex

Ë

e
≠◊Yt

È

= e
≠xut(◊)

,
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where ut(◊) is a di�erentiable function in t satisfying

ˆut

ˆt
(◊) + Â(ut(◊)) = 0 and u0(◊) = ◊,

where the function Â is called the branching mechanism and satisfies the celebrated
Lévy-Khintchine formula,

Â(⁄) = ≠a⁄ + “
2
⁄

2 +
⁄

(0,Œ)

1

e
≠⁄x

≠ 1 + ⁄x1{x<1}
2

µ(dx), ⁄ > 0.

where a œ R, “ > 0, and µ is a measure supported in (0, Œ) satisfying
⁄

(0,Œ)
(1 · z

2)µ(dz) < Œ.

On the other hand, it is not di�cult to deduce that

Ex[Yt] = xe
≠Â

Õ(0+)t
, x, t > 0. (2)

This leads to a similar classification as in the discrete setting of Galton-Watson pro-
cesses. More precisely, the process Y is called supercritical if Â

Õ(0+) < 0, critical if
Â

Õ(0+) = 0 and subcritical if Â
Õ(0+) > 0. For a complete overview of the theory of

CSBPs the reader is referred to Li [51] and Kyprianou [50, Chapter 12].
Recently, this class of models has been enriched allowing environmental causes to

a�ect the law of reproduction of the population. These processes are known as branch-
ing processes in a random environment. The case where the environment is driven by
a Lévy process was constructed independently by He et al. [38] and Palau and Pardo
[58]. More precisely, let us define the space (�, F , (Ft)t>0,P) as the direct product
of the two probability spaces (�(b)

, F
(b)

, (F (b)
t )t>0,P(b)) and (�(e)

, F
(e)

, (F (e)
t )t>0,P(e))

were the branching and environment term are defined, respectively. Therefore, the
continuous-state branching process (Zt, t > 0) in a Lévy environment (St, t > 0) is
defined as the unique non-negative strong solution of the following stochastic di�er-
ential equation

Zt = Z0 + a

⁄

t

0
Zsds +

⁄

t

0

Ò

2“2ZsdB
(b)
s

+
⁄

t

0

⁄

[1,Œ)

⁄

Zs≠

0
zN

(b)(ds, dz, du)

+
⁄

t

0

⁄

(0,1)

⁄

Zs≠

0
z ÊN

(b)(ds, dz, du) +
⁄

t

0
Zs≠dSs,

where (B(b)
t , t > 0) is a (F (b)

t )t>0-adapted standard Brownian motion, N
(b)(ds, dz, du)
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is a (F (b)
t )t>0-adapted Poisson random measure on R3

+ with intensity dsµ(dz)du, and
ÊN

(b)(ds, dz, du) its compensated version. Further, (St, t > 0) is the Lévy process
defined as follows,

St = –t + ‡B
(e)
t +

⁄

t

0

⁄

(≠1,1)
(ez

≠ 1)ÊN
(e)(ds, dz) +

⁄

t

0

⁄

(≠1,1)c
(ez

≠ 1)N (e)(ds, dz),

where ‡ > 0, – œ R, (B(e)
t , t > 0) is a (F (e)

t )t>0 - adapted standard Brownian motion,
N

(e)(ds, dz) is a (F (e)
t )t>0 - Poisson random measure on R+ ◊R with intensity dsfi(dz)

and the Lévy measure fi satisfies
⁄

R
(1 · z

2)fi(dz) < Œ.

Another Lévy process (›t, t > 0) appears naturally in this model, which is strongly
related with the behaviour of Z. This process is defined as follows

›t = –t + ‡B
(e)
t +

⁄

t

0

⁄

(≠1,1)
z ÊN

(e)(ds, dz) +
⁄

t

0

⁄

(≠1,1)c
zN

(e)(ds, dz),

where
– := – ≠

‡
2

2 ≠

⁄

(≠1,1)
(ez

≠ 1 ≠ z)fi(dz).

In particular, under the condition |Â
Õ(0+)| < Œ, it is known that

Ez[Zt | S] = ze
›t , Pz -a.s,

see Bansaye et al. [7] . Similarly as in (2), the latter expression allows us to have a
classification for this family of processes depending on the behaviour of ›. To be more
precise, we say that the process Z is subcritical, critical or supercritical accordingly as
› drifts to ≠Œ, oscillates or drifts to +Œ. Further, under the condition |Â

Õ(0+)| <

Œ, we can compute the Laplace transform of e
≠›tZt (see [58, Proposition 2] or [38,

Theorem 3.4]). In other words, if (vt(s, ⁄, ›), s œ [0, t]) is the unique positive solution
of the following backward di�erential equation

ˆ

ˆs
vt(s, ⁄, ›) = e

›sÂ0(vt(s, ⁄, ›)e≠›s), vt(t, ⁄, ›) = ⁄ (3)

where Â0(⁄) = Â(⁄) ≠ ⁄Â
Õ(0+). Then for any ⁄ > 0 and t > s > 0, we have

E
5

exp{≠⁄Zte
≠›t}

-

-

-

-

S, F
(b)
s

6

= exp{≠Zse
≠›svt(s, ⁄, ›)}.
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Moreover, let us denote the random semigroup hs,t(⁄) = e
≠›svt(s, ⁄e

›t , ›) for all ⁄ > 0
and s œ [0, t]. Thus,

E
5

e
≠⁄Zt

-

-

-

-

S, F
(b)
s

6

= exp{≠Zshs,t(⁄)},

According to [38, Section 2], the mapping s ‘æ hs,t(⁄) is the unique positive pathwise
solution of the integral di�erential equation

hs,t(⁄) = e
›t≠›s⁄ ≠

⁄

t

s

e
›r≠›sÂ0

1

hr,t(⁄)
2

dr, 0 6 s 6 t. (4)

For a more complete overview of the theory of CSBPs in a Lévy environment the
reader is referred to Chapter 3.

Here we are interested in understanding the asymptotic behaviour of the non-
extinction and non-explosion probabilities for this family of processes, under more
general conditions than those existing in the literature. The long-term behaviour
of the non-extinction probability has been studied, for example, by Li and Xu [52],
Palau and Pardo [57] and Palau et al. [59], when the associated branching mechanism
corresponds to a stable Lévy process; since the survival probability can be expressed
explicitly in terms of the exponential functional of the Lévy process associated with
the environment. Recently Bansaye et al. [7] studied the speed of extinction of
CSBPs in a critical Lévy environment for more general branching mechanisms. More
precisely, the authors in [7] considered the case when the underlying Lévy process in
the environmental term satisfies the so-called Spitzer’s condition and the branching
mechanism is bounded from below by a stable branching mechanism.

In the following two sections we state the main results of this part of the thesis
regarding to the explosion problem and the long term behaviour for the probability of
non-extinction in CSBPs in a Lévy environment.

Explosion for CSBPs in a Lévy environment

In this section, we state our main results related to the explosion problem for CSBPs
in a Lévy environment. Here, we assume that the branching mechanism Â is given by
the negative of the Laplace exponent of a subordinator, i.e. Â(⁄) = ≠„(⁄), where „

is a concave, increasing and non-negative function satisfying

„(⁄) = ”⁄ +
⁄

(0,Œ)
(1 ≠ e

≠⁄x)µ(dx), ⁄ > 0,
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with
” := a ≠

⁄

(0,1)
xµ(dx) > 0 and

⁄

(0,Œ)
(1 · x)µ(dx) < Œ.

On the one hand, we study the law of the CSBP in a Lévy environment in the
non-finite mean case, i.e. when „

Õ(0+) = Œ. To be more precise, we deduce the
following result.

Theorema 0.0.5. Assume that Â(⁄) = ≠„(⁄) with „
Õ(0+) = Œ. For every z, ⁄, t > 0

and x œ R, we have

E(z,x)

5

exp
Ó

≠ ⁄Zte
≠›t

Ô

-

-

-

-

›

6

= exp
Ó

≠zvt(0, ⁄e
≠›0 , › ≠ ›0)

Ô

,

where for any ⁄, t > 0, the function vt : s œ [0, t] æ vt(s, ⁄e
≠›0 , › ≠ ›0) is an a.s.

solution of the backward di�erential equation

ˆ

ˆs
vt(s, ⁄, ›) = e

›sÂ

1

vt(s, ⁄, ›)e≠›s
2

, a.e. s œ [0, t]

and with terminal condition vt(t, ⁄, ›) = ⁄.

On the other hand, we provide necessary and su�cient conditions for the process
to be conservative, i.e. that the process does not explode in finite time, or in other
words that

Pz(Zt < Œ) = 1, for all t > 0,

where Pz denotes the law of Z starting in z > 0.

Proposition 0.0.6. Assume that Â(⁄) = ≠„(⁄). A continuous-state branching pro-

cess in a Lévy environment with branching mechanism Â is conservative if and only

if
⁄

0+

1
|Â(z)|dz = Œ.

Furthermore, we study the speed of the probability of non-explosion for CSBPs
in a Lévy environment, where the associated Lévy process either oscillates or drifts
to ≠Œ. First, we present the main result in the case when the environment satisfies
Spitzer’s condition, that is

1
t

⁄

t

0
P(e)(›s > 0)ds ≠æ fl œ (0, 1), as t æ Œ,

and the branching mechanism satisfies the following condition

there exists — œ (≠1, 0) and C < 0 such that Â(⁄) 6 C⁄
1+— for all ⁄ > 0. (5)
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In addition, let us assume
‚E(e)

Ë

H1e
H1

È

< Œ, (6)

where ‚E(e) denotes the expectation associated to the law ‚P(e) of the dual process
‚› = ≠› and H denotes its associated ascending ladder height, we refer to Chapter 3
for further details about the ladder height process.

Theorema 0.0.7 (Critical-explosion regime). Suppose that › satisfies Spitzer’s con-

dition with index fl and that Â satisfies condition (5). We also assume condition (6).
Then, for any z > 0, there exists 0 < C1(z) < Œ such that

lim
tæŒ

t
fl

¸(t)Pz(Zt < Œ) = C1(z),

where ¸ is a slowly varying function at Œ.

Denote by –1, fi and �›, the drift term, the Lévy measure and the Laplace exponent
of ›, respectively. We introduce the following real function

A›(x) := ≠–1 + fī
(≠)(≠1) +

⁄ ≠1

≠x

fī
(≠)(y)dy, for x > 0,

where fī
(≠)(≠x) = fi(≠Œ, ≠x). Recall that µ denotes the measure associated to the

branching mechanism. We also introduce the function

‚�⁄(u) :=
⁄

(0,Œ)
exp{≠⁄e

u
y}µ̄(y)dy,

where µ̄(y) = µ(y, Œ) Further, let us denote by E1 the exponential integral, i.e.,

E1(w) =
⁄ Œ

1

e
≠wy

y
dy, w > 0.

We can then formulate our second main result regarding to the case when the Lévy
process › drifts to ≠Œ.

Theorema 0.0.8 (Subcritical-explosion regime). Suppose that �Õ
›
(0+) < 0 and

⁄

(a,Œ)

y

A›(y) |d‚�⁄(y)| < Œ, for some a > 0. (7)

Then, for any z > 0, there exists 0 < C2(z) < Œ such that

lim
tæŒ

Pz(Zt < Œ) = C2(z).
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Denote by ‚› = ≠› the dual process. In particular, if E(e)
Ë

‚›1
È

< Œ, then the integral

condition (7) is equivalent to

⁄ Œ

0
E1(⁄y)µ̄(y)dy < Œ.

Extinction rates for CSBPs in a subcritical Lévy environment

In this section, we state our main results related to the long-term behaviour of the
non-extinction probability for CSBPs in a subcritical Lévy environment. Recall that
�› denotes Laplace exponent of ›. As it was observed in [52, 59], there is another phase
transition in such regime which depends on whether �Õ

›
(1) is less, equal or greater than

0. These regimes are known in the literature as: strongly, intermediate and weakly

subcritical regime, respectively.
In order to state our main results we need to introduce the extension of the func-

tional vt(s, ⁄, ›) to s Æ 0 that appears in He et al. [38, Section 5]. Let us consider an in-
dependent copy (›Õ

t
, t > 0) of the Lévy process (›t, t > 0), thus � = (�t, ≠Œ < t < Œ)

the time homogeneous Lévy process indexed by R is defined as follows: �0 = ›0 = 0
and

�t = ≠ lim
s¿≠t

›
Õ
s

for t < 0 and �t = ›t for t > 0.

Next, we use the definition of � to naturally extend the backward di�erential equation
(4) on s 6 0. Implicitly, it also follows that for s 6 0 the function s ‘æ hs,0(⁄) is the
unique positive pathwise solution to the equation

hs,0(⁄) = e
≠�s⁄ ≠

⁄ 0

s

e
�r≠�sÂ0

1

hr,0(⁄)
2

dr, s 6 0.

For the branching mechanism, we require two conditions: the so-called Grey’s
condition, i.e.

⁄ Œ

1

1
Â0(⁄)d⁄ < Œ, (8)

and the x log x moment condition for the Lévy measure µ, i.e.
⁄ Œ

1
u log uµ(du) < Œ. (9)

We state now our first main result of this part.

Theorema 0.0.9 (Strongly subcritical regime). Suppose that conditions (8) and (9)
hold. We assume exponential moments on › of order 1 and moreover that �Õ

›
(0) < 0
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and �Õ
›
(1) < 0. We also assume

⁄ Œ

0
E(e,1)

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

d⁄ < Œ.

Then for every z > 0, we have

lim
tæŒ

e
≠�›(1)tPz(Zt > 0) = zB2,

where

B2 = E(e,1)
5
⁄ Œ

0
exp

;

≠

⁄ 0

≠Œ
Â

Õ
0(hs,0(⁄))ds

<

d⁄

6

œ (0, Œ).

Our last main result deals with the intermediate subcritical regime. Here, we
assume that the branching mechanism satisfies condition

there exists — œ (0, 1] and C > 0 such that Â0(⁄) > C⁄
1+— for ⁄ > 0. (10)

We suppose that the Lévy measure µ satisfies the x log x moment condition (9). In
addition, our arguments require the existence of some exponential moments of the
underlying Lévy process ›, which will be explained and specified in Chapter 5.

Theorema 0.0.10 (Intermediate subcritical regime). Suppose that conditions (9) and

(10) hold. We assume exponential moments on › of order strictly bigger than 1 and

moreover that �Õ
›
(0) < 0 and �Õ

›
(1) = 0. Finally, we also require that for x < 0

⁄ Œ

0
E(e,1),ø

≠x

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0(hs,0(⁄))ds

<6

d⁄ < Œ.

Then for every z > 0, we have

lim
tæŒ

t
3/2

e
≠�›(1)tPz(Zt > 0) = zE(e,1)

Ë

H1
È

ˆ

ı

ı

Ù

2
fi�ÕÕ

›
(1)B3,

where (Ht, t > 0) denotes the ascending ladder process associated to › and

B3 = lim
xæ≠Œ

U
(1)(≠x)E(e,1),ø

≠x

5
⁄ Œ

0
exp

;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<

d⁄

6

.
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Galton-Watson processes in
varying environment



Chapter 1

Yaglom’s limit for critical GWVE

A Galton–Watson process in varying environment is a discrete time branching pro-
cess where the o�spring distributions vary among generations. Based on a two-spine
decomposition technique, we provide a probabilistic argument of a Yaglom-type limit
for this family of processes. The result states that, in the critical case, a suitable
normalisation of the process conditioned on non-extinction converges in distribution
to a standard exponential random variable. The chapter is organised as follows. In
Section 1, we recall the definition of Galton-Watson processes in varying environment
and present the main theorem of the chapter. In Section 2, we introduce the one-spine
and two-spine decompositions. With this in hand, we give an intuitive explanation
of the result and we explain why the limit must be exponential. In Section 3, we
give some properties of the measures associated with these decompositions and we
characterise them via their Laplace transform. Finally, Section 4 contains the proof
of Yaglom’s Theorem.

1.1 Introduction and main result
A Galton-Watson process in varying environment (GWVE) is a discrete time branch-
ing process where the o�spring distributions vary among generations, in other words
individuals give birth independently and their o�spring distributions coincide within
each generation. More precisely, a varying environment is a sequence Q = (q1, q2, . . .)
of probability measures on N0 = {0, 1, 2, . . .}. A Galton-Watson process Z

Q = {Z
Q

n
:

n > 0} in a varying environment Q is a Markov chain defined recursively as follows

Z
Q

0 = 1 and Z
Q

n
=

Z
Q
n≠1

ÿ

i=1
‰

(n)
i

, n > 1,
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where {‰
(n)
i

: i, n > 1} is a sequence of independent random variables such that

P(‰(n)
i

= k) = qn(k), k œ N0, i, n > 1.

The variable ‰
(n)
i

denotes the o�spring of the i-th individual in the (n ≠ 1)-th
generation. Its generating function is given by

fn(s) := E
5

s
‰

(n)
i

6

=
Œ

ÿ

k=0
s

k
qn(k), 0 6 s 6 1, n > 1.

Hence, by applying the branching property recursively, we deduce that the gener-
ating function of Z

Q

n
is given in terms of (f1, f2, . . .) as follows

E
Ë

s
Z

Q
n

È

= f1 ¶ · · · ¶ fn(s), 0 6 s 6 1, n > 1, (1.1)

where f ¶ g denotes the composition of f with g.
Moreover, by di�erentiating in s, we obtain

E[ZQ

n
] = µn, and E[ZQ

n
(ZQ

n
≠ 1)]

E[ZQ
n ]2

=
n≠1
ÿ

k=0

‹k+1
µk

, n > 1, (1.2)

where µ0 := 1 and for any n > 1,

µn := f
Õ
1(1) · · · f

Õ
n
(1), and ‹n := f

ÕÕ
n
(1)

f Õ
n
(1)2 =

Var
Ë

‰
(n)
i

È

E
Ë

‰
(n)
i

È2 +
Q

a1 ≠
1

E
Ë

‰
(n)
i

È

R

b ,

(1.3)
where Var

Ë

‰
(n)
i

È

is the variance of the variable. For further details about GWVEs,
we refer to the monograph of Kersting and Vatutin [45].

According with Kersting, [44], we say that a GWVE is regular if there exists a
constant c > 0 such that for all n > 1,

E
5

(‰(n)
i

)21{‰
(n)
i >2}

6

6 cE
5

‰
(n)
i

1{‰
(n)
i >2}

6

E
Ë

‰
(n)
i

-

-

-‰
(n)
i

> 1
È

.

He proved that a regular GWVE has extinction a.s, namely ÷ := P(ZQ

n
= 0 for some n)

= 1, if and only if qŒ
k=0

‹k+1
µk

= Œ or µn æ 0 as n æ Œ, [44, Theorem 1]. In
addition, he gave the following classification. If ÷ < 1 and lim

næŒ
E[ZQ

n
] = Œ, we say

that Z
Q is supercritical. Further, if ÷ < 1 and lim

næŒ
E[ZQ

n
] < Œ, the process Z

Q is
called asymptotically degenerate. On other hand, when ÷ = 1 we say that Z

Q is either
critical or subcritical if either lim

næŒ
E[ZQ

n
|Z

Q

n
> 0] = Œ or lim

næŒ
E[ZQ

n
|Z

Q

n
> 0] < Œ,
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respectively.
Furthermore, these regimes are characterised as follow (see [44, Proposition 1]):

A regular GWVE is

i. supercritical if and only if
Œ
q

k=0

‹k+1
µk

< Œ and lim
næŒ

µn = Œ,

ii. asymptotically degenerate if and only if
Œ
q

k=0

‹k+1
µk

< Œ and 0 < lim
næŒ

µn < Œ,

iii. critical if and only if
Œ
q

k=0

‹k+1
µk

= Œ and lim
næŒ

µn

n≠1
q

k=0

‹k+1
µk

= Œ,

iv. subcritical if and only if lim inf µn
næŒ

= 0 and lim inf
næŒ

µn

n≠1
q

k=0

‹k+1
µk

< Œ.

Kersting’s definition is an extension of the classical categorisation of branching
processes. Indeed, when the environment is constant, we have µk = µ

k and ‹k =
‡

2
/µ

2 + (1 ≠ 1/µ), for k > 1, where µ and ‡
2 are the mean and variance of the

o�spring distribution, respectively; we recover the original classification. We observe
that in this case, the asymptotically degenerate case is not possible.

Given a varying environment Q, we define the sequence {a
Q

n
: n > 0} as follows

a
Q

0 = 1, and a
Q

n
= µn

2

n≠1
ÿ

k=0

‹k+1
µk

, n > 1.

Kersting, [44, Theorem 4], showed that in the critical regime, a
Q

n
æ Œ and that

lim
næŒ

a
Q

n

µn

P(ZQ

n
> 0) = 1. (1.4)

This asymptotic behaviour is a generalisation of Kolmogorov’s theorem for Galton-
Watson processes with constant environment (see [47]).

In the rest of the chapter, we work with regular critical GWVE. Further, we assume
the following condition

there exists c > 0 such that f
ÕÕÕ
n

(1) 6 cf
ÕÕ
n
(1)(1 + f

Õ
n
(1)), for any n > 1. (A*)

Kersting proved that this condition implies that the GWVE is regular, see [44,
Proposition 2]. Moreover, he explained that Condition (A*) is a rather mild condi-
tion. Indeed, it is satisfied by most common probability distributions, for instance the
Poisson, binomial, geometric, hypergeometric, and negative binomial distributions.
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Another important example satisfying Condition (A*) are random variables that are
a.s. uniformly bounded by a constant.

We are ready to present our main result, which generalises Yaglom’s theorem for
classical Galton-Watson processes.

Theorema 1.1.1 (Yaglom’s limit). Let {Z
Q

n
: n > 0} be a critical GWVE that

satisfies Condition (A*). Then

A

Z
Q

n

a
Q
n

;P( · |Z
Q

n
> 0)

B

(d)
≠æ (Y ;P) , as n æ Œ,

where Y is a standard exponential random variable.

In the classical theory with constant environment, this result has several proofs, the
first one was given by Yaglom [75]. In [55], a probabilistic proof via a characterisation
of the exponential distribution was presented. Later on, Geiger characterised the
exponential random variable by a distributional equation and he presented another
proof of Yaglom’s limit based on that equation (see [31, 32]). Recently, Ren et al. [67],
developed yet another new proof using a two-spine decomposition technique.

When the environment is varying, Jagers [42] proved the convergence under extra
assumptions. Afterwards, Bhattacharya and Perlman [14] obtained the same result
with weaker assumptions than Jagers (but stronger than ours). Kersting [44] provided
yet another proof in a similar framework to ours, that we will explain below. An
extension in the presence of immigration and the same setting as Kersting’s has been
established in [34]. A multi-type version with analogous assumptions as Kersting’s can
be found in [25]. All these authors established the exponential convergence using an
analytical approach. The condition in Kersting [44] is the following. For every ‘ > 0
there is a constant c‘ < Œ such that

E
S

U(‰(n)
i

)21Ó

‰
(n)
i >c‘(1+E[‰(n)

i ])
Ô

T

V 6 ‘E
5

(‰(n)
i

)21{‰
(n)
i >2}

6

, for any n > 1.

He explained that a direct verification of this assumptions can be cumbersome. There-
fore, he introduced Condition (A*) which is easier to handle and implies the latter
condition. For this reason, we prefer to work directly under Assumption (A*), which
is good enough for our purposes.

In this manuscript, we give a probabilistic argument of Yaglom’s limit for GWVE.
It is based on a two spine decomposition method and a characterisation of the expo-
nential distribution via a size-biased transform and is close in spirit to that of [67].
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A one-spine decomposition is already known in the literature (see [45, Section 1.4]).
We believe that it is possible to use a one-spine decomposition to prove Yaglom-type
limit for GWVE, but we could not find a proof with this approach in the literature.
However, we decided to tackle the proof with a two spines decomposition. The reason
comes from the classical theory of Galton-Watson processes in constant environment.
Consider the most recent common ancestor (MRCA) of the particles at generation n.
When the environment is constant, Geiger [32] showed that conditioned on the event
of non-extinction at generation n, asymptotically there are exactly two children of
the MRCA with at least one descendant at generation n. Based on this intuition,
it is natural to consider a two spine decomposition whose spines correspond to the
genealogical lines of these two individuals.

The authors in [67] created a two-spine decomposition technique for Galton-Watson
processes in constant environment that cannot be applied directly into our settings.
Here, associated to each Z

Q

n
, we construct a Galton-Watson tree in varying environ-

ment up to time n with two marked genealogical lines. This tree can be decomposed
in subtrees along these lines. A key point is the distribution of the generation of the
most recent common ancestor of these genealogical lines, here denoted by Kn. When
the environment is constant, Kn has uniform distribution on {0, . . . , n ≠ 1} and the
subtrees are independent Galton-Watson trees. When the environment varies, this last
property does not hold anymore. In order to match the above decomposition with that
at the exponential distribution, it is fundamental to know the law of Kn explicitly.
Thus, we determine the distribution of Kn that makes the method work. Moreover,
we identify the subtrees with Galton-Watson trees in a modified environment. In the
next section, we explain this in further detail.

Our contribution is that our proof provides further understanding on why the limit
must be an exponential random variable. An important part of our approach is in
studying random trees and being able to adequately select inside them two marked
genealogical lines. We believe that one can adapt this decomposition technique to
establish a Yaglom-type limit for branching processes in random environment, i.e.,
when the environment is given by a sequence of random probability measures on
N0. If the random environment is an i.i.d. sequence of probability measures, the
Yaglom-type limit theorem under a quenched approach is known in the literature
[45, Theorem 6.2]. In particular, they showed that when the environment is given
by linear fractional distributions, the Yaglom-type limit is an exponential random
variable. Then, for these and other distributions the construction has to be the same
but, for the two genealogical lines, one has to find the distribution of the generation
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of their most recent common ancestor that makes the method work. Furthermore,
by using the approach of several spines decomposition it would be possible to study
the genealogy of Galton-Watson processes in varying environment. For the moment
this technique has only been done in the constant environment case (see [36]). These
possible applications highlights the potential and relevance of our methodology.

1.2 Outline of the proof
In this section, we provide an intuitive explanation of the result and explain why the
limit must be an exponential random variable. First, we explain the one-spine and
two-spines decompositions. Then, we relate them with a size-biased characterisation
of the exponential random variable.

Recall that given a random variable X and a Borel function g such that P(g(X) >
0) = 1, and E[g(X)] œ (0, Œ), we say that W is a g(X)-transform of X if

E[f(W )] = E[f(X)g(X)]
E[g(X)] ,

for each positive Borel function f . If g(x) = x, we also call it the size-biased

transform.

Observe that the law of a non-negative random variable X conditioned on being
strictly positive can be described in terms of its size-biased transform. More precisely,
for each ⁄ > 0,

E
Ë

1 ≠ e
≠⁄X

| X > 0
È

=
⁄

⁄

0

E
Ë

Xe
≠sX

È

P(X > 0) ds = E [X | X > 0]
⁄

⁄

0
E

Ë

e
≠sẊ

È

ds, (1.5)

where Ẋ is the size-biased transform of X. Recall that a sequence of non-negative
random variables converges in distribution if and only if their Laplace transforms
converge. As a consequence, we obtain the following lemma

Lemma 1.2.1. Let {Xn : n > 0} be a sequence of non-negative random variables.

Then the variables conditioned on being strictly positive {Xn ;P(· | Xn > 0)}n>0

converge in distribution to a strictly positive random variable Y if and only if

E [Xn | Xn > 0] æ E [Y ] and Ẋn converges in distribution to Ẏ , where Ẋn

and Ẏ are the size-biased transforms of Xn and Y , respectively.

By Lemma 1.2.1, in order to prove Theorem 1.1.1 we need to study the size-biased
process Ż

Q := {Ż
Q

n
: n > 0}. Recall that there is a relationship between Galton-
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Watson processes in environment Q and Galton-Watson trees in environment Q.
In the tree, any particle or individual in generation i gives birth to particles in
generation i + 1 according to qi+1. The variable Z

Q

n
is the number of particles at

generation n in the tree. In a similar way, Ż
Q

n
is the population size at generation

n of some random tree. According to Kersting and Vatutin [45, Sections 1.4.1 and
1.4.2], the tree associated to Ż

Q is a size-biased tree in varying environment Q.
More precisely, for each i > 1, let q̇i be the size-biased transform of qi,

q̇i(k) = k

f
Õ
i
(1)qi(k), k œ N0. (1.6)

The size-biased tree in environment Q is constructed as follows:

(i) We first establish an initial marked particle,

(ii) the marked particle in generation i œ N0 gives birth to particles in generation
i + 1 according to q̇i+1. Uniformly, we select one of these particles as the
marked particle. All the others particles are unmarked,

(iii) any unmarked particle in generation i œ N0 gives birth to unmarked particles
in generation i + 1 according to qi+1, independently of other particles.

The marked genealogical line is called spine. This construction is known as the
one-spine decomposition; see Figure 1.1a below. The constant environment case was
done by Lyons, Pemantle and Peres [55]. According to Kersting and Vatutin, Ż

Q

n
is

the number of particles at generation n in this tree.

0

1

2

3

n = 4

Generation O↵spring distributions

q1 q̇1

q2

q3 q̇3

q4 q̇4

q̇2

q5 q̇5

(a) One-spine decomposition

0

Kn = 1

2

3

n = 4

Generation O↵spring distributions

q1 q̇1

q2

q3 q̇3

q4 q̇4

q̈2

q5 q̇5

(b) Two-spine decomposition

Fig. 1.1 Spine decompositions

Now, we want to construct a random tree up to generation n with two marked
genealogical lines or spines. Denote by Kn the generation of the most recent common
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ancestor of the lines. Note that before Kn there is only one spine and in genera-
tion Kn + 1 a second spine is created. Since the o�spring distribution is varying
among generations, Kn should depend on the environment. We assume that in this
construction, Kn has the following distribution

P(Kn = r) := ‹r+1
µr

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

, 0 6 r 6 n ≠ 1, (1.7)

where µn and ‹n are defined in (1.3). Thus, by (1.3), generations with larger
o�spring mean or larger o�spring variance are more probably to be chosen as Kn. In
generation Kn, we need to have an o�spring distribution with two or more individuals.
We denote by q̈i the qi(qi ≠ 1)-transform of qi given by

q̈i(k) = k(k ≠ 1)qi(k)
‹if

Õ
i
(1)2 , k œ N0, i = 1, . . . , n. (1.8)

We define a X(X ≠ 1)-type size-biased tree in environment Q up to time n as
the tree constructed as follows:

(i) we first establish an initial marked particle,

(ii) select Kn according to (1.7),

(iii) the marked particle in generation Kn gives birth to particles according to
q̈Kn+1. Uniformly without replacement, we select two of these particles as the
marked particles in generation Kn + 1. The other particles are unmarked,

(iv) any marked particle in generation i œ {0, . . . , n≠1}\Kn gives birth to particles
in generation i + 1 according to q̇i+1. Uniformly, select one of these as the
marked particle. All the other particles are not marked,

(v) any unmarked particle in generation i œ {0, . . . , n≠1} gives birth to unmarked
particles in generation i + 1 according to qi+1, independently of other particles.

We call this construction as the two-spine decomposition; see Figure 1.1b. Ren et.
al [67] provided a two spine decomposition for Galton-Watson processes in a constant
environment. In this case, the distribution of Kn is uniform on {0, . . . , n≠1}. Using
that the environment is constant we can recover their construction.

With these constructions, we can give an intuitive explanation of why the limit
must be an exponential random variable, we will make this intuition rigorous in the
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following sections. For any 0 6 k 6 n, let Z̈
Q

k
be the population size at the k-th gen-

eration in the previous tree. From the constructions of the size-biased trees (see Figure
1.1), we see that we can decompose the particles associated to Z̈

Q

n
into descendants

attached to the longer spine and descendants attached to the shorter spine. The de-
scendants attached to the longer spine are approximately distributed as the population
in the n-th generation of a size-biased tree with environment Q, while the descen-
dants of the shorter spine are approximately distributed as the population in genera-
tion n≠(Kn +1) of a size-biased tree with environment QKn+1 := (qKn+2, qKn+3, . . .).
By construction, the two subpopulations are independent. Therefore, we have roughly
that

Z̈
Q

n

(d)
¥ Ż

Q

n
+ Ż

QKn+1
n≠(Kn+1), n > 1, (1.9)

where the right-hand side of the equation is an independent sum. If we normalise with
a

Q

n
, we obtain

Z̈
Q

n

a
Q
n

(d)
¥

Ż
Q

n

a
Q
n

+
a

QKn+1
n≠(Kn+1)

a
Q
n

Ż
QKn+1
n≠(Kn+1)

a
QKn+1
n≠(Kn+1)

, n > 1. (1.10)

Kersting and Vatutin [45, Lemma 1.2] proved that Ż
Q

n
is the size-biased transform

of Z
Q

n
. In this work, we provide a precise meaning of equation (1.9), we prove that

Z̈
Q

n
is the Z

Q

n
(ZQ

n
≠ 1)-transform of Z

Q

n
(see Proposition 1.3.1), that

(aQ

n
)≠1

a
QKn+1
n≠(Kn+1)

(d)
≠æ U, as n æ Œ,

where U is a uniform random variable on [0, 1] (see Proposition 1.4.1), and that Ż
Q

n
/a

Q

n

converges in distribution to a random variable Ẏ (see Proposition 1.4.2).
Since Z̈

Q

n
is the (ŻQ

n
≠ 1)-transform of Ż

Q

n
, we have that Z̈

Q

n
/a

Q

n
converges in

distribution to Ÿ , the Ẏ -transform of Ẏ . Hence, by Lemma 1.2.1, if we take limits
in (1.10), we see that Z

Q

n
/a

Q

n
conditioned on being strictly positive converges in

distribution to a random variable Y that satisfies

Ÿ
(d)= Ẏ + U · Ẏ

Õ (1.11)

where Ẏ and Ẏ
Õ are both Y -transforms of Y , Ÿ is a Y

2-transform of Y , and
U is a uniform random variable on [0, 1] independent of Ẏ and Ẏ

Õ. Ren et. al.
[67, Lemma 1.3], showed that a variable Y is exponentially distributed with mean
1 if and only if (1.11) holds. Therefore, Z

Q

n
/a

Q

n
must converge in distribution to a

standard exponential random variable.
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1.3 Size-biased trees
In this section, we study the size-biased trees defined in the previous section. We
associate them to probability measures in the set of rooted trees. For this purpose,
we introduce the so-called Ulam-Harris labeling. Let U be the set of finite sequences
of strictly positive integers, including ÿ. For u œ U , we define the length of u

by |u| := n, if u = u1 · · · un, where n > 1 and by |ÿ| := 0 if u = ÿ. If u and
v are two elements in U , we denote by uv the concatenation of u and v, with
the convention that uv = u if v = ÿ. The genealogical line of u is denoted
by [ÿ, u] = {ÿ} fi {u1 · · · uj : j = 1, . . . , n}. Let s µ U , its most recent common
ancestor is the unique element v œ fluœs[ÿ, u] with maximal length and its generation
is denoted by Ks.

A rooted tree t is a subset of U that satisfies ÿ œ t, [ÿ, u] µ t for any
u œ t, and if u œ t and i œ N satisfy that ui œ t then, uj œ t for all
1 6 j 6 i. Denote by T = {t : t is a tree}, the subspace of rooted trees. The
vertex ÿ is called the root of the tree. For any u œ t, we define the number of
o�spring of u by lu(t) = max{i œ Z+ : ui œ t}. The height of t is defined by
|t| = sup{|u| : u œ t}. For any n œ N and t, t̃ trees, we write t n= t̃ if they
coincide up to height n. The population size in the n-th generation of the tree t is
denoted by Xn(t) = #{u œ t : |u| = n}.

A Galton-Watson tree in the environment Q = (q1, q2, . . .) is a T -valued random
variable T such that

Gn(t) := P(T n= t) =
Ÿ

uœt: |u|<n

q|u|+1(lu(t)),

for any n > 0 and any tree t. As we said before, the process Z = {Z
Q

n
: n > 0}

defined as Z
Q

n
= Xn(T) is a Galton-Watson process in environment Q.

Now, we deal with the one-spine decomposition. This construction builds a tree
along a distinguished path. More precisely, a spine or distinguished path v on a tree
t is a sequence {v

(k) : k = 0, 1, . . . , |t|} µ t (or {v
(k) : k = 0, 1, . . .} µ t if |t| = Œ)

such that v
(0) = ÿ and v

(k) = v
(k≠1)

j for some j œ N, for any 1 6 k 6 |t|. We
denote by Ṫ , the subspace of trees with one spine

Ṫ = {(t, v) : t is a tree and v is a spine on t}

and by Tn = {t œ T : |t| = n} and Ṫn = {(t, v) œ Ṫ : |t| = n} the restriction of T

and Ṫ to trees with height n.



12 Yaglom’s limit for critical GWVE

We are going to construct the probability distribution of the size-biased tree in
the environment Q on the state space T . First, we need to define a probability
distribution on Ṫ . Recall the construction of the size-biased tree in the previous
section; individuals along the spine, {u œ t : u œ v}, have o�spring distribution q̇|u|+1

given by (1.6), and from their o�spring we select one uniformly as the spine individual
in the next generation. Individuals outside the spine, {u œ t : u /œ v}, have o�spring
distribution q|u|+1. Then, the size-biased tree can be seen as a Ṫ -valued random
variable (Ṫ, V) with distribution

P((Ṫ, V) n= (t, v)) :=
Ÿ

uœv: |u|<n

q̇|u|+1(lu(t)) 1
lu(t)

Ÿ

uœt\v: |u|<n

q|u|+1(lu(t)),

for any n > 0 and any (t, v) œ Ṫn. One readily checks that this measure is a
probability on Ṫ by using the definition of q̇ and the fact that Gn is a probability
measure. In a similar way, we can write

P((Ṫ, V) n= (t, v)) = 1
µn

· Gn(t), (t, v) œ Ṫ .

Hence, by summing over all the possible spines, we obtain the distribution of the
size-biased Galton-Watson tree in environment Q on T

Ġn(t) := P(Ṫ n= t) =
ÿ

v:(t,v)œṪn

P((Ṫ, V) n= (t, v)) = 1
µn

Xn(t) · Gn(t),

for any n > 0 and any t œ Tn (see also [45, Lemma 1.2]). Define the process
Ż

Q = {Ż
Q

n
: n > 0} as Ż

Q

n
= Xn(Ṫ), for each n > 1. Then, by using the

measure Ġn we can see that the process {Ż
Q

m
: 0 6 m 6 n} is a Z

Q

n
-transform of

{Z
Q

m
: 0 6 m 6 n}, in other words

E
Ë

g(ŻQ

1 , . . . , Ż
Q

n
)
È

=
E

Ë

Z
Q

n
g(ZQ

1 , . . . , Z
Q

n
)
È

E
Ë

Z
Q
n

È , for all bounded functions g.

Now we consider the probability distribution associated to the X(X ≠ 1)-type
size-biased tree up to time n on the state space Tn. As we did before, we define a
measure on

T̈n :=
Ó

(t, v, ṽ) : (t, v), (t, ṽ) œ Ṫn, v”=ṽ
Ô

, n œ N,
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the subspace of trees with height n and two di�erent spines. Given a (t, v, ṽ) œ T̈n,
we denote by Kv,ṽ = max{r < n : v r= ṽ} the generation of the most recent common
ancestor of v fi ṽ.

Recall the construction of a X(X ≠ 1)-type size-biased tree in the previous sec-
tion; (i) consider an initial spine individual, (ii) select the generation of the most
recent common ancestor, Kv,ṽ, according to (1.7), (iii) the spine individual u in that
generation has o�spring distribution q̈|u|+1 given by (1.8). From its o�spring we
select uniformly without replacement two as spine individuals in the next generation,
(iv) the spine individuals in the other generations, {u œ v fi ṽ : |u| ”= Kv,ṽ}, have
o�spring distribution q̇|u|+1 given by (1.6). From its o�spring we select uniformly one
as the spine individual in the next generation, (v) finally, individuals outside the spine,
{u œ t : u /œ v fi ṽ}, have o�spring distribution q|u|+1. Then, the X(X ≠ 1)-type
size-biased tree up to time n can be seen as a T̈n-valued random variable (T̈, V, ÊV)
with distribution

P((T̈, V, ÊV) n= (t, v, ṽ))

: =
‹Kv,ṽ+1

µKv,ṽ

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1
Ÿ

uœvfiṽ: Kv,ṽ=|u|
q̈|u|+1(lu(t)) 2

lu(t)(lu(t) ≠ 1)
Ÿ

uœvfiṽ: Kv,ṽ ”=|u|<n

q̇|u|+1(lu(t)) 1
lu(t)

Ÿ

uœt\(vfiṽ): |u|<n

q|u|+1(lu(t)),

for any (t, v, ṽ) œ T̈n. Here, the first two terms in the right-hand side of the equation
are associated with step (ii). The first product is associated with step (iii). Then, in
the second line, the first product is obtained with (iv). Finally, we use (v) to obtain
the last product. By using the definition of q, q̇ and q̈, one can readily verify that
the previous expression defines a probability measure on T̈n. Moreover, we have

P((T̈, V, ÊV) n= (t, v, ṽ)) = 2
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

Gn(t),

for any (t, v, ṽ) œ T̈n. Then, by summing over all the possible two spines, we obtain
that the X(X ≠ 1)-type size-biased tree up to time n is a Tn-valued random variable
T̈ with law

G̈n(t) := P(T̈ n= t) = 1
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

Xn(t)(Xn(t) ≠ 1) · Gn(t), (1.12)

for any t œ Tn. Define the process Z̈
Q = {Z̈

Q

m
: 0 6 m 6 n} by Z̈

Q

m
= Xm(T̈).
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Opposite to what happens with (Ġn : n > 1), by construction, the measures
(G̈n : n > 1) are not consistent in the sense that G̈n is not a restriction of G̈n+1 to
the tree with size n. More precisely, in the size-biased tree, the change of measure
is intuitively a martingale since the tree under this measure has one spine throughout
all generations. While, in the X(X ≠ 1)-type size-biased tree, if we restrict a tree
with two spines at time n to the previous generations it is possible to lose one spine.
Indeed, the tree will have only one marked particle in all the generations before Kv,ṽ.
Then, the change of measure in the next proposition is not a martingale change of
measure, not even in the case of constant environment [67, Theorem 1.2]. However,
it allows us to conclude that {Z̈

Q

m
: 0 6 m 6 n} is a Z

Q

n
(ZQ

n
≠ 1)-transform of

{Z
Q

m
: 0 6 m 6 n}.

Proposition 1.3.1. Let {Z
Q

n
: n > 0} be a GWVE and for any n œ N0, let

Z̈
Q = (Z̈Q

m
: 0 6 m 6 n) be the process associated with the X(X ≠ 1)-type size-biased

tree up to time n. Then, for any bounded function g : Zn

+ æ R,

E[g(Z̈Q

1 , . . . , Z̈
Q

n
)] = E[ZQ

n
(ZQ

n
≠ 1)g(ZQ

1 , . . . , Z
Q

n
)]

E[ZQ
n (ZQ

n ≠ 1)]
. (1.13)

Proof. Fix n > 0 and recall that for each m 6 n, Z
Q

m
= Xm(T) under the measure

Gn and Z̈
Q

m
= Xm(T) under the measure G̈n. Hence, by (1.12)

E[g(Z̈Q

1 , . . . , Z̈
Q

n
)] = G̈n[g(X1(T), . . . , Xn(T))]

= 1
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

Gn [Xn(T)(Xn(T) ≠ 1)g(X1(T), . . . , Xn(T))]

= 1
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

E
Ë

Z
Q

n
(ZQ

n
≠ 1)g(ZQ

1 , . . . , Z
Q

n
)
È

.

By taking g © 1, we deduce that

E[ZQ

n
(ZQ

n
≠ 1)] = µ

2
n

n≠1
ÿ

k=0

‹k+1
µk

,

which implies the result.

In the reminder of this section, we study some properties of the previous decom-
positions. We first introduce the notation to refer to shifted environments. Let q be
a probability measure on N0 such that q({0, 1, . . . , r ≠ 1}) = 0 for some r œ N. We
define the probability measure [q ≠ r] in N0 by [q ≠ r](i) = q(i + r) for all i œ N0.
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Given a probability measure q and an environment Q = (q1, q2, ...), we denote

q ü Q := (q, q1, q2, . . .).

For any m œ N0, as in Section 1.2 we set

Qm := (qm+1, qm+2, ...).

We can compute the Laplace transform of Z̈
Q

n
in terms of the Laplace transform

of Ż
Q

n
and Ż

Qm+1
n≠(m+1), as indicated below. The proof follows similar arguments as

those used in [67, Proposition 2.1], although the presence of varying environment leads
to significant changes.

Proposition 1.3.2. Fix n > 1. Let {Ż
·
m

: m 6 n} and {Z̈
·
m

: m 6 n} be the

population size of the size-biased tree and the X(X ≠ 1)-type size-biased tree up to

time n. Then, we have the following decomposition, for each ⁄ > 0

E
Ë

exp
Ó

≠⁄Z̈
Q

n

ÔÈ

= E
Ë

exp
Ó

≠⁄Ż
Q

n

ÔÈ

n≠1
ÿ

m=0
P(Kn = m)E

Ë

exp
Ó

≠⁄Ż
Qm+1
n≠(m+1)

ÔÈ

g(n, m, ⁄),

where the function g is defined as follows

g(n, m, ⁄) :=
E

Ë

exp
Ó

≠⁄Z
[q̈m+1≠2]üQm+1
n≠m

ÔÈ

E
Ë

exp
Ó

≠⁄Z
[q̇m+1≠1]üQm+1
n≠m

ÔÈ , 0 6 m 6 n ≠ 1, 0 6 ⁄. (1.14)

Proof. Let Ṫ be a size-biased Galton-Watson tree in environment Q up to time n.
We can decompose Ṫ into subtrees with roots along the spine V; see Figure 1.2a.
More precisely, for every 0 6 k 6 n, there is a v

(k)
œ V with |v

(k)
| = k and a

random tree tk œ T such that

v
(k) tk = {u œ Ṫ : |[ÿ, u] fl V| = k} and Ṫ =

n
h

k=0
v

(k) tk,

where g denotes the disjoint union. Note that Xn(Ṫ) =
n
q

k=0
Xn≠k(tk). In the

size-biased tree, each individual along the spine gives birth according to q̇· and one of
its o�spring is the spine individual in the next generation. Then, it follows that the
subtrees tk, 0 6 k 6 n, are independent Galton-Watson trees with environment
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[q̇k+1 ≠ 1] ü Qk+1. Therefore,

E
Ë

exp
Ó

≠⁄Ż
Q

n

ÔÈ

=
n

Ÿ

k=0
E

Ë

exp
Ó

≠⁄Z
[q̇k+1≠1]üQk+1
n≠k

ÔÈ

, ⁄ > 0, n œ N0. (1.15)

v(0) = ;

v(2)

v(3)

v(4)

t0 t1t2 t3 t4

0

1

2

3

n = 4

Generation

v(1)

(a) Size-biased tree

v(0) = ;

v(1)

v(2)

v(3)

v(4)

t0

t1

t2t3 t4

0

Kn = 1

2

3

n = 4

ṽ(2)

ṽ(3)

ṽ(4)t̃2 t̃3t̃4

Generation

(b) X(X ≠ 1)-type size-biased tree

Fig. 1.2 Subtrees along the spine(s).

Let T̈ be a X(X ≠ 1)-type size-biased Galton-Watson tree up to time n. In a
similar way, we can decompose T̈ in subtrees with roots along the spines; see Figure
1.2b. Denote by V and ÊV, the associated spines and recall that

Kn = max{r < n : V r= ÊV}.

We can form a partition of T̈ in the sense that

T̈ =
A

n
h

k=0
v

(k)tk

B

h

Q

a

n
h

k=1+Kn

ṽ
(k)t̃k

R

b and Xn(T̈) =
n

ÿ

k=0
Xn≠k(tk)+

n
ÿ

k=1+Kn

Xn≠k(t̃k),

(1.16)
where, for every 0 6 k 6 Kn, v

(k)
œ V fl ÊV and tk œ T are such that |v

(k)
| = k

and
v

(k) tk = {u œ T̈ : |[ÿ, u] fl (V fi ÊV)| = k};

and, for every Kn < k 6 n, v
(k)

œ V, ṽ
(k)

œ ÊV and tk, t̃k œ T satisfy |v
(k)

| = k =
|ṽ

(k)
|,

v
(k) tk = {u œ T̈ : |[ÿ, u] fl V| = k} and ṽ

(k) t̃k = {u œ T̈ : |[ÿ, u] fl ÊV| = k}.

Observe that by the branching property, the subtrees are independent. The spine
individual at generation Kn = m has o�spring distribution q̈m+1, and from its
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o�spring we select two as the spine individuals in the next generation. Then the
subtree tm is a Galton-Watson tree with environment [q̈m+1 ≠ 2] ü Qm+1. The other
subtrees {tk : 0 6 k 6 n, k ”= m} and {t̃k : m < k 6 n} are Galton-Watson trees
with environment [q̇k+1 ≠ 1] ü Qk+1. Therefore, by using the decomposition (1.16),
we have

E
Ë

exp
Ó

≠⁄Z̈
Q

n

ÔÈ

=
n≠1
ÿ

m=0
P(Kn = m)E

Ë

exp
Ó

≠⁄Z
[q̈m+1≠2]üQm+1
n≠m

ÔÈ

◊

n
Ÿ

k=0,k ”=m

E
Ë

exp
Ó

≠⁄Z
[q̇k+1≠1]üQk+1
n≠k

ÔÈ

n
Ÿ

k=m+1
E

Ë

exp
Ó

≠⁄Z
[q̇k+1≠1]üQk+1
n≠k

ÔÈ

.

Finally, if we apply equation (1.15) for environments Q and Qm+1, we obtain the
result. In other words,

E
Ë

exp
Ó

≠⁄Z̈
Q

n

ÔÈ

=
n≠1
ÿ

m=0
P(Kn = m)E

Ë

exp
Ó

≠⁄Z
[q̈m+1≠2]üQm+1
n≠m

ÔÈ

◊
E

Ë

exp
Ó

≠⁄Ż
Q

n

ÔÈ

E
Ë

exp
Ó

≠⁄Z
[q̇m+1≠1]üQm+1
n≠m

ÔÈE
Ë

exp
Ó

≠⁄Ż
Qm+1
n≠(m+1)

ÔÈ

.

The distribution of the previous processes can be expressed via the generating
functions (f1, f2, . . .) associated to Q = (q1, q2, . . .). For each 0 6 m 6 n and
s œ [0, 1] we define

fm,n(s) := [fm+1 ¶ . . . ¶ fn](s),

and fn,n(s) := s. The generating function of Z
Q

n
is equal to f0,n. For the others,

we note that for every s œ [0, 1] and 0 6 m < n,

f
Õ
m,n

(s) =
n

Ÿ

l=m+1
f

Õ
l
(fl,n(s)), f

ÕÕ
m,n

(s) = f
Õ
m,n

(s)2
n

ÿ

l=m+1

f
ÕÕ
l
(fl,n(s))

f
Õ
l
(fl,n(s))2 r

l≠1
j=m+1 f

Õ
j
(fj,n(s))

,

(1.17)
where f

Õ
n,n

(s) = 1 and f
ÕÕ
n,n

(s) = 0.

Lemma 1.3.3. Let n > 1 and Q be a varying environment. Let (Z ·
m

: 0 6 m 6 n),
(Ż ·

m
: 0 6 m 6 n) and (Z̈ ·

m
: 0 6 m 6 n) be a GWVE, a sized-biased GWVE and

a X(X ≠ 1)-type sized-biased GWVE up to time n. Then, for any 0 6 m < n and

⁄ > 0,

E
Ë

exp
Ó

≠⁄Z
[q̇m+1≠1]üQm+1
n≠m

ÔÈ

= 1
f

Õ
m+1(1)f

Õ
m+1(fm+1,n(e≠⁄)), (1.18)
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E
Ë

exp
Ó

≠⁄Z
[q̈m+1≠2]üQm+1
n≠m

ÔÈ

= 1
‹m+1f

Õ
m+1(1)2 f

ÕÕ
m+1(fm+1,n(e≠⁄)), (1.19)

E
Ë

exp
Ó

≠⁄Ż
Q

n

ÔÈ

= 1
µn

f
Õ
0,n

(e≠⁄)e≠⁄
, (1.20)

E
Ë

exp
Ó

≠⁄Ż
Qm+1
n≠(m+1)

ÔÈ

= µm+1
µn

f
Õ
m+1,n

(e≠⁄)e≠⁄
, (1.21)

E
Ë

exp
Ó

≠⁄Z̈
Q

n

ÔÈ

= 1
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

f
ÕÕ
0,n

(e≠⁄)e≠2⁄
. (1.22)

Proof. Denote by (gm+1, fm+2, fm+3, . . . ) the generating functions of the environment
[q̇m+1 ≠ 1] ü Qm+1 = ([q̇m+1 ≠ 1], qm+2, qm+3, . . . ), where q̇m+1 is given in (1.6). Note
that,

gm+1(s) = 1
f

Õ
m+1(1)

Œ
ÿ

k=1
ks

k≠1
qm+1(k) = 1

f
Õ
m+1(1)f

Õ
m+1(s).

Then we can deduce (1.18), i.e.

E
Ë

exp
Ó

≠⁄Z
[q̇m+1≠1]üQm+1
n≠m

ÔÈ

= gm+1¶fm+2¶· · ·¶fn(e≠⁄) = 1
f

Õ
m+1(1)f

Õ
m+1(fm+1,n(e≠⁄)),

where we use the probability generating function of a GWVE given in (1.1). The proof
of (1.19) follows similar arguments. Recall the definition of q̈m+1 in (1.8). It is enough
to see that the generating function of [q̈m+1 ≠ 2], denoted by hm+1, is

hm+1(s) = 1
‹m+1f

Õ
m+1(1)2

Œ
ÿ

k=2
k(k ≠ 1)sk≠2

qm+1(k) = 1
‹m+1f

Õ
m+1(1)2 f

ÕÕ
m+1(s).

In order to prove (1.20), note that Ż
Q

n
is a size-biased transform of Z

Q

n
. Then,

by (1.5)

⁄

⁄

0
E

Ë

exp
Ó

≠sŻ
Q

n

ÔÈ

ds =
E

Ë

1 ≠ exp
Ó

≠⁄Z
Q

n

Ô

| Z
Q

n
> 0

È

E
Ë

Z
Q
n | Z

Q
n > 0

È =
E

Ë

1 ≠ exp
Ó

≠⁄Z
Q

n

ÔÈ

E
Ë

Z
Q
n

È ,

for all ⁄ > 0. Di�erentiating the previous equation with respect to ⁄ and using the
generating function of Z

Q

n
, we obtain

E
Ë

exp
Ó

≠⁄Ż
Q

n

ÔÈ

= 1
µn

d
d⁄

(1 ≠ f0,n(e≠⁄)) = 1
µn

f
Õ
0,n

(e≠⁄)e≠⁄
.

The identity (1.21) is obtained similarly to (1.20) but instead of working with the
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original environment Q we use the shifted environment Qm+1.
Finally, in order to obtain (1.22) we use the decomposition presented in Proposition

1.3.2

E
Ë

e
≠⁄Z̈

Q
n

È

= E
Ë

e
≠⁄Ż

Q
n

È

n≠1
ÿ

m=0
P(Kn = m)E

Ë

exp
Ó

≠⁄Ż
Qm+1
n≠(m+1)

ÔÈ

E
Ë

exp
Ó

≠⁄Z
[q̈m+1≠2]üQm+1
n≠m

ÔÈ

E
Ë

exp
Ó

≠⁄Z
[q̇m+1≠1]üQm+1
n≠m

ÔÈ .

Remember that Kn has distribution (1.7). Hence, substituting the previous Laplace
transforms (i.e. equations (1.18),(1.19) and (1.20)) and simplifying, we get

E
Ë

e
≠⁄Z̈

Q
n

È

=
f

Õ
0,n

(e≠⁄)
µn

e
≠⁄

n≠1
ÿ

m=0

‹m+1
µm

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1
µm+1
µn

◊
f

Õ
m+1,n

(e≠⁄)e≠⁄

‹m+1f
Õ
m+1(1)

f
ÕÕ
m+1(fm+1,n(e≠⁄))

f
Õ
m+1(fm+1,n(e≠⁄))

=e
≠2⁄

1
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

f
Õ
0,n

(e≠⁄)
n≠1
ÿ

m=0
f

Õ
m+1,n

(e≠⁄)f
ÕÕ
m+1(fm+1,n(e≠⁄))

f
Õ
m+1(fm+1,n(e≠⁄)) .

Note that for all s œ [0, 1] and 0 6 m < n,

f
Õ
m+1,n

(s) =
n

Ÿ

l=m+2
f

Õ
l
(fl,n(s)) =

r

n

l=1 f
Õ
l
(fl,n(s))

r

m+1
l=1 f

Õ
l
(fl,n(s))

=
f

Õ
0,n

(s)
f

Õ
m+1(fm+1,n(s)) r

m

l=1 f
Õ
l
(fl,n(s)) .

Then,

E
Ë

e
≠⁄Z̈

Q
n

È

=e
≠2⁄

1
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

f
Õ
0,n

(e≠⁄)2

◊

n≠1
ÿ

m=0

f
ÕÕ
m+1(fm+1,n(e≠⁄))

f
Õ
m+1(fm+1,n(e≠⁄))2 r

m

l=1 f
Õ
l
(fl,n(e≠⁄))

=e
≠2⁄

1
µ2

n

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

f
ÕÕ
0,n

(e≠⁄).

This completes the proof.

The next lemma provides the uniform convergence of the function g defined in
(1.14). It is essentially saying that if we start a critical Galton-Watson process with
[q̈· ≠ 2] or [q̇· ≠ 1], the distribution at large times does not change a lot. The reader
will find its importance in the next Section. In particular, from Proposition 1.3.2, the
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lemma gives the precise meaning of equation (1.9).

Lemma 1.3.4. Suppose that Condition (A*) is fulfilled. Then, for any ⁄ > 0,

lim
næŒ

sup
06m<n

sup
sœ[0,⁄]

A

1 ≠ g

A

n, m,
s

a
Q
n

BB

= 0.

Proof. By applying Lemma 1.3.3 , we have that for any s œ [0, ⁄] and 0 6 m 6 n≠1,

g

A

n, m,
s

a
Q
n

B

= f
Õ
m+1(1)

f
Õ
m+1(fm+1,n(e≠s/a

Q
n ))

f
ÕÕ
m+1(fm+1,n(e≠s/a

Q
n ))

f
ÕÕ
m+1(1) .

The proof is thus complete as soon as we can show the following uniform convergences

lim
næŒ

sup
06m<n

sup
sœ[0,⁄]

Q

a1 ≠
f

Õ
m+1(fm+1,n(e≠s/a

Q
n ))

f
Õ
m+1(1)

R

b = 0, (1.23)

lim
næŒ

sup
06m<n

sup
sœ[0,⁄]

Q

a1 ≠
f

ÕÕ
m+1(fm+1,n(e≠s/a

Q
n ))

f
ÕÕ
m+1(1)

R

b = 0. (1.24)

We shall start with (1.23). With the help of the Mean Value Theorem for f
Õ
m+1 and

using that f
ÕÕ
m+1 is increasing, we obtain

0 6 sup
06m<n

sup
sœ[0,⁄]

Q

a1 ≠
f

Õ
m+1(fm+1,n(e≠s/a

Q
n ))

f
Õ
m+1(1)

R

b

6 sup
06m<n

sup
sœ[0,⁄]

f
ÕÕ
m+1(1)

f
Õ
m+1(1)

1

1 ≠ fm+1,n(e≠s/a
Q
n )

2

.

Kersting [44, Equation 23] showed that under Condition (A*), there exists c > 0
such that

f
ÕÕ
k
(1) 6 cf

Õ
k
(1)(1 + f

Õ
k
(1)), for all k > 1. (1.25)

Thus

sup
06m<n

sup
sœ[0,⁄]

Q

a1 ≠
f

Õ
m+1(fm+1,n(e≠s/a

Q
n ))

f
Õ
m+1(1)

R

b

6 sup
06m<n

sup
sœ[0,⁄]

c(1 + f
Õ
m+1(1))

1

1 ≠ fm+1,n(e≠s/a
Q
n )

2

.

For similar argument to those given above, using Condition (A*), and upon an
adjustment of the value of the constant, we can get the same upper bound for the
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left-hand side supremums in (1.24). Therefore, it is enough to prove

lim
næŒ

sup
06m<n

sup
sœ[0,⁄]

(1 + f
Õ
m+1(1))(1 ≠ fm+1,n(e≠s/a

Q
n )) = 0. (1.26)

Let ⁄ > 0. By the Mean Value Theorem for fm+1,n and using that f
Õ
m+1,n

is an
increasing function, we get for any 0 6 s 6 ⁄ and 0 6 m < n

0 6 (1 + f
Õ
m+1(1))

1

1 ≠ fm+1,n(e≠s/a
Q
n )

2

6 (1 + f
Õ
m+1(1))f Õ

m+1,n
(1)(1 ≠ e

≠s/a
Q
n ).

Observe that by Taylor’s approximation, e
≠s/a

Q
n = 1 ≠

s

a
Q
n

+ yn where yn > 0 is the
remainder error term. Then, for s œ [0, ⁄] and 0 6 m < n

0 6 (1 + f
Õ
m+1(1))

1

1 ≠ fm+1,n(e≠s/a
Q
n )

2

6 (1 + f
Õ
m+1(1)) µn

µm+1

⁄

a
Q
n

=
A

1
µm+1

+ 1
µm

B

µn

a
Q
n

⁄. (1.27)

Now, we decompose the left-hand side of (1.26) into two limits where the supremum
is taken over two separate sets. Recall that in the critical case, given an ‘ > 0 there
exists N > 0 such that

1

a
Q

k

2≠1 6 ‘ for any k > N . Then, we take the two sets as
{m < N} and {N 6 m < n}. For the first limit, we observe

sup
06m<N

sup
sœ[0,⁄]

(1 + f
Õ
m+1(1))

1

1 ≠ fm+1,n(e≠⁄/a
Q
n )

2

6 µn

a
Q
n

⁄ max
06m<N

A

1
µm+1

+ 1
µm

B

.

By criticality, µn/a
Q

n
æ 0 as n æ 0. Then,

lim
næŒ

sup
06m<N

sup
sœ[0,⁄]

(1 + f
Õ
m+1(1))

1

1 ≠ fm+1,n(e≠⁄/a
Q
n )

2

= 0. (1.28)

For the second limit, we note that for any 0 6 m 6 n,

a
Q

m

µm

= 1
2

m≠1
ÿ

k=0

‹k+1
µk

6 1
2

n≠1
ÿ

k=0

‹k+1
µk

= a
Q

n

µn

.

Then, by (1.27) and using that N 6 m < n we get

sup
N6m<n

sup
sœ[0,⁄]

(1 + f
Õ
m+1(1))

1

1 ≠ fm+1,n(e≠⁄/a
Q
n )

2

6 ⁄ sup
N6m<n

A

1
a

Q

m+1
+ 1

a
Q
m

B

6 2‘⁄.
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Therefore,

lim
næŒ

sup
N6m<n

sup
sœ[0,⁄]

(1 + f
Õ
m+1(1))

1

1 ≠ fm+1,n(e≠⁄/a
Q
n )

2

= 0,

which together with the limit (1.28) gives us (1.26). This concludes the proof.

1.4 Proof of the main result
As we explained in the outline of the proof, in this chapter we provide a probabilistic
argument of a Yaglom-type limit for critical GWVEs. In the previous section we
deduced that Z̈

Q

n
is the Z

Q

n
(ZQ

n
≠ 1)-transform of Z

Q

n
and that equation (1.9)

holds. Here, we prove the other remaining steps, contained in Proposition 1.4.1 and
Proposition 1.4.2. First, we present these propositions. Then, using all the tools that
we deduced, we provide the proof for our main result. Finally, we prove the two
forthcoming propositions.

Recall the definition of Kn in (1.7). Given the environment Q, we define

An,m :=
a

Qm+1
n≠(m+1)

a
Q
n

, for 0 6 m < n.

Proposition 1.4.1. Let Z
Q

be a critical GWVE satisfying Condition (A*). Then

An,Kn

(d)
≠æ U, as n æ Œ,

where U is an uniform random variable on [0, 1].

Using the previous proposition, we can show the following.

Proposition 1.4.2. Let Ż
Q = {Ż

Q

n
: n > 0} be a size-biased GWVE. Then,

(aQ

n
)≠1

Ż
Q

n

(d)
≠æ Ẏ as n æ Œ,

where Ẏ is the size-biased transform of a standard exponential random variable.

We have all the ingredients to prove Yaglom’s Theorem under Assumption (A*).

Proof of Theorem 1.1.1. According to Lemma 1.2.1, in order to deduce Theorem 1.1.1,
it is enough to show that (aQ

n
)≠1

Ż
Q

n

(d)
≠æ Ẏ and E

Ë

(aQ

n
)≠1

Z
Q

n
| Z

Q

n
> 0

È

≠æ 1 as
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n æ Œ, where Ẏ is the size-biased transform of an exponential random variable.
The first limit holds by Proposition 1.4.2. For the second limit, we observe that

E
C

Z
Q

n

a
Q
n

-

-

-

-

-

Z
Q

n
> 0

D

=
E

Ë

Z
Q

n

È

a
Q
nP

1

Z
Q
n > 0

2 = µn

a
Q
nP

1

Z
Q
n > 0

2 ,

which goes to 1 according to (1.4). Therefore, Theorem 1.1.1 holds.

This chapter is completed as soon as we prove Propositions 1.4.1 and 1.4.2. We
start with Proposition 1.4.1.

Proof of Proposition 1.4.1. In order to obtain this result, it is enough to deduce

lim
næŒ

P (An,Kn 6 y) = y, y œ [0, 1]. (1.29)

Denote by (f̃1, f̃2, . . . ) the generating functions associated with the environment
Qm+1. They can be written in terms of the original environment as f̃k = fm+1+k,
for k > 1. Then, by definition

µ̃k = f
Õ
m+2(1) · · · f

Õ
m+1+k

(1) = µm+1+k

µm+1
and ‹̃k = f

ÕÕ
m+1+k

(1)
f

Õ
m+1+k

(1)2 = ‹m+1+k.

Hence,

a
Qm+1
n≠(m+1) = µ̃n≠(m+1)

2

n≠(m+1)≠1
ÿ

k=0

‹̃k+1
µ̃k

= µn

2

n≠1
ÿ

j=m+1

‹j+1
µj

,

and

An,m =
a

Qm+1
n≠(m+1)

a
Q
n

=
n≠1
ÿ

j=m+1

‹j+1
µj

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

= 1 ≠

m
ÿ

j=0

‹j+1
µj

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

,

where in the last equality, we completed the sum. Then,

P
Q

aAn,Kn = 1 ≠

m
ÿ

j=0

‹j+1
µj

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1R

b = P (An,Kn = An,m) = P (Kn = m)

= ‹m+1
µm

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

.

(1.30)

Note that {An,m : m = 0, . . . , n ≠ 1} µ [0, 1] is a decreasing sequence with
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An,n≠1 = 0. Then, we can associate it to the partition

P
(n) = {0 = �(n)

0 < �(n)
1 < . . . < �(n)

n≠1 < �(n)
n

= 1}

defined by �(n)
k

= An,n≠k≠1, for any 0 6 k < n, with �(n)
n

= 1. The norm of the
partition is defined by

||P
(n)

|| = max
16k6n

Ó

�(n)
k

≠ �(n)
k≠1

Ô

= max
06m6n≠1

Y

]

[

‹m+1
µm

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1Z

^

\

.

Since P
(n) is a partition, for each y œ [0, 1) there exists ln := l(y, n) œ

{0, 1, . . . , n ≠ 1} such that �(n)
ln

6 y < �(n)
ln+1. Then, by (1.30)

P (An,Kn 6 y) =
ln

ÿ

k=0
P

1

An,Kn = �(n)
k

2

=
n≠1
ÿ

m=n≠ln≠1

‹m+1
µm

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

= �(n)
ln+1.

It is easy to deduce that in order to prove (1.29), we must prove that �(n)
ln+1 æ y as

n æ Œ. We always choose ln such that y œ [�(n)
ln

, �(n)
ln+1). Therefore, it is enough

to show that ||P
(n)

|| æ 0 as n æ Œ.
From inequality (1.25), we see that for each n > 1,

‹n

µn≠1

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

= f
ÕÕ
n
(1)

f Õ
n
(1)

A

µn

n≠1
ÿ

k=0

‹k+1
µk

B≠1

6 c(1 + f
Õ
n
(1))

A

µn

n≠1
ÿ

k=0

‹k+1
µk

B≠1

= c

A

µn

n≠1
ÿ

k=0

‹k+1
µk

B≠1

+ c

A

µn≠1

n≠2
ÿ

k=0

‹k+1
µk

+ ‹n

B≠1

.

Since we are in the critical regime and ‹n > 0 for all n > 1, both summands in
the right-hand side of the last equality go to zero as n æ Œ. In other words, given
‘ > 0 there exists N > 1 such that

‹m+1
µm

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

6 ‹m+1
µm

A

m
ÿ

k=0

‹k+1
µk

B≠1

6 ‘, for any N 6 m < n. (1.31)

On the other hand, by criticality, for any fixed m 6 N , there is a Mm œ N such that

‹m+1
µm

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1

6 ‘, for any n > Mm. (1.32)
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We define M = N ‚max{Mm : m 6 N}. Then, by (1.31) and (1.32), for any n > M

||P
(n)

|| = max
06m<n

Y

]

[

‹m+1
µm

A

n≠1
ÿ

k=0

‹k+1
µk

B≠1Z

^

\

6 ‘,

and the claim holds.

Now, we present a result whose relevance will become clear in the proof of Propo-
sition 1.4.2. Intuitively, the first statement is an extension of the fact that An,Kn

converges in distribution to U . The limit of B
(n)
3 is an extension of the fact that

g

1

n, m, s/a
Q

n

2

converges uniformly to 1. For the purpose of seeing the intuition in
the statement of B

(n)
2 , we normalise Ż

Qm+1
n≠(m+1) with the correct constant correspond-

ing to the shifted environment. Then, B
(n)
2 infers that at large times the distributions

of the processes Ż
Q

n
/a

Q

n
and Ż

Qm+1
n≠(m+1)/a

Qm+1
n≠(m+1) do not vary much.

Lemma 1.4.3. Let Q be a varying environment satisfying Condition (A*) and {Ż
·
n

:
n > 0} be a size-biased GWVE. Define

B
(n)
1 =

⁄

⁄

0

A

E
C

exp
I

≠sU
Ż

Q

n

a
Q
n

JD

≠

n≠1
ÿ

m=0
P(Kn = m)E

C

exp
I

≠sAn,m

Ż
Q

n

a
Q
n

JDB

ds,

B
(n)
2 =

⁄

⁄

0

n≠1
ÿ

m=0
P(Kn = m)

Q

aE
C

exp
I

≠sAn,m

Ż
Q

n

a
Q
n

JD

≠ E
S

Uexp

Y

]

[

≠s
Ż

Qm+1
n≠(m+1)

a
Q
n

Z

^

\

T

V

R

b ds,

B
(n)
3 =

⁄

⁄
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n≠1
ÿ

m=0
P(Kn = m)E

S

Uexp

Y

]

[

≠s
Ż

Qm+1
n≠(m+1)

a
Q
n

Z

^

\

T

V

A

1 ≠ g

A

n, m,
s

a
Q
n

BB

ds,

where U is an uniform random variable on [0, 1] independent of Ż
Q

. Then,

lim sup
næŒ

|B
(n)
1 | = lim sup

næŒ
|B

(n)
2 | = lim sup

næŒ
|B

(n)
3 | = 0.

Proof. We start with B
(n)
1 . Recall the partition

P
(n) = {�(n)

0 < �(n)
1 < . . . < �(n)

n≠1 < �(n)
n

}

given in the proof of Proposition 1.4.1 and that P(Kn = m) = �(n)
n≠m ≠�(n)

n≠m≠1. Then

b
(n)
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Ż
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Ż
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⁄ 1

0
E

C

exp
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Ż
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a
Q
n

JD
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n≠1
ÿ

m=0
(�(n)

n≠m ≠ �(n)
n≠m≠1)E

C

exp
I

≠sAn,m

Ż
Q

n

a
Q
n

JD

.
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By decomposing [0, 1] into the subintervals [�(n)
n≠m≠1, �(n)

n≠m], m = 0, . . . , n ≠ 1, we
get

b
(n)
1 (s) =

n≠1
ÿ

m=0

⁄ �(n)
n≠m

�(n)
n≠m≠1

E
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Ż
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�(n)
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E
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Ż
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a
Q
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du.

Now, by Lemma 1.3.3, the Laplace transform of Ż
Q

n
can be expressed in terms of f

Õ
0,n

.
Since x ‘æ f

Õ
0,n

(e≠⁄x)e≠⁄x is a decreasing function, and u, An,m œ [�(n)
n≠m≠1, �(n)

n≠m]
for m = 0, . . . , n ≠ 1, we deduce

|b
(n)
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Õ
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e
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Q
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e
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Õ
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Q
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Q
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R
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≠s�(n)
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Q
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The last sum can be bounded by the norm of the partition multiplied by a telescopic
sum with �(n)

0 = 0 and �(n)
n

= 1. Therefore
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(n)
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Õ
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Õ
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Õ
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(1)||P (n)
|| = ||P

(n)
||.

Since the norm of the partition goes to zero as n æ Œ (see the proof of Proposition
1.4.1), we get the result for B

(n)
1 ,

lim sup
næŒ

|B
(n)
1 | 6 lim sup

næŒ

⁄

⁄

0
|b

(n)
1 (s)| ds 6 lim sup

næŒ
⁄||P

(n)
|| = 0.

Now we deal with B
(n)
2 . By Lemma 1.3.3, the Laplace transform of Ż

Q

n
and

Ż
Qm+1
n≠m≠1 can be expressed in terms of f

Õ
0,n

and f
Õ
m+1,n

, respectively. Then,
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e
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e
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Q
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2

e
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Q
n .

Using first the Fundamental Theorem of Calculus and then the Mean Value Theorem
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in the functions f0,n and fm+1,n, we deduce that
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Q
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(1.33)

where › œ

1

e
≠⁄An,m/a

Q
n , 1

2

and ÷ œ

1

e
≠⁄/a

Q
n , 1

2

. Now, we shall find ‚B
(n)
2 and ÂB

(n)
2

such that ‚B
(n)
2 æ 0, ÂB

(n)
2 æ 0 as n æ Œ and
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⁄
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Ë
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(n)
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È
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The fact that f
Õ
0,m

and f
Õ
m,n

are increasing functions and (1.33) imply the following
lower bound
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Õ
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On the other hand, for the upper bound, observe that µm+1 = f
Õ
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that fl,n(e≠⁄/a
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where in the equality we use (1.17). By (1.33) and (1.34), the previous inequality
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implies that
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Then, (1.34) holds. Now, we show that the limit of ‚B
(n)
2 and ÂB

(n)
2 is zero as n æ Œ.

Recall that 0 6 An,Kn 6 1 and a
Q

n
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By Dominated Convergence Theorem, we have that ‚B
(n)
2 æ 0 and ÂB

(n)
2 æ 0 as

n æ Œ. Therefore, B
(n)
2 has the same behaviour. Since the limit is zero we also

have that |B
(n)
2 | æ 0 as n æ Œ.

Finally, we deal with B
(n)
3 . Given an ‘ > 0, by Lemma 1.3.4, there exists M > 0
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Hence, for n > M ,
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Since ‘ is arbitrary, we get that lim sup
næŒ |B

(n)
3 | = 0.

For the proof of Proposition 1.4.2, we need the following two lemmas, which the
reader can find in [67, Lemma 3.1 and Lemma 3.2]. The first lemma compares the
generating functions of two variables with the generating functions of their size-biased
transforms. The second lemma is similar to Grönwall’s Lemma.
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Lemma 1.4.4. Let X and W be two non-negative random variables with mean µ.

Let F and G be functions such that E
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e
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Finally, we present the last proof in this chapter.

Proof of Proposition 1.4.2. We define the bounded function
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Thanks to the characterisation (1.11), we may choose F (⁄) = E[e≠⁄UẎ ], where U is
an uniform variable on [0, 1] independent of Ẏ . Then, by Proposition 1.3.2, we have
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where B
(n)
1 , B

(n)
2 and B

(n)
3 are defined in Lemma 1.4.3 and
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with U being a uniform random variable on [0, 1] independent of Ẏ and Ż
Q.

Then, by Lemma 1.4.3 and the Dominated Convergence Theorem, we obtain

M(⁄) 6 2 lim sup
næŒ

⁄

⁄

0

-

-

-

-

-

E
Ë

e
≠sUẎ
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By Lemma 1.4.5, M © 0 which implies that Ż
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converges weakly to Ẏ .



Part II

Contact processes with fitness on
Galton-Watson trees



Chapter 2

The contact process with fitness on
Galton-Watson trees

The contact process is a simple model for the spread of an infection in a structured
population. We consider a variant of this process on Galton-Watson trees, where
vertices are equipped with a random fitness representing inhomogeneities among in-
dividuals. In this chapter, we establish conditions under which the contact process
with fitness on Galton-Watson trees exhibits a phase transition. We prove that if
the distribution of the product of the o�spring and the fitness has exponential tails
then the survival threshold is strictly positive. Further, we show that, under certain
conditions on either the fitness distribution or the o�spring distribution, there is no
phase transition and the process survives with positive probability for any choice of
the infection parameter. A similar dichotomy is known for the contact process on a
Galton-Watson tree. However, we see that the introduction of fitness means that we
have to take into account the combined e�ect of fitness and o�spring distribution to
decide which scenario occurs. The chapter is organised as follows. In Section 2.1, we
give an introduction to the contact processes. In Section 2.2, we define the contact
process with fitness and we state our main results. Further, in this section we give
an overview of the proofs of the main results. In Section 2.3, we present some useful
properties of the contact process. Section 2.4 is devoted to the proof of our first main
result. Section 2.5 is devoted to some results regarding to contact process with fitness
on finite stars. Finally, in Section 2.6, we prove our second main result.
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2.1 Introduction
The contact process on a graph is a model that describes the spread of an infection
in a population, and it is among the most studied particle systems. The model is
described informally as follows. The vertices of the graph represent individuals that
are susceptible to the infection and the edges depict the connections between them. We
assume that infection and recovery events happen independently from vertex to vertex.
The recovery rate is constant and the intensity of infection depends on a constant ⁄ >

0. The contact process is sometimes referred to as the susceptible–infected–susceptible
(SIS) epidemic model.

The behaviour of the contact process depends on the infection parameter ⁄. There-
fore it is natural to ask when there exists a critical value of ⁄ for which the contact
process exhibits a phase transition. For an infinite rooted graph, there are two critical
values of interest 0 6 ⁄1 6 ⁄2, which determine di�erent regimes where the contact
process exhibit extinction, weak survival or strong survival. In others words, in the
extinction phase, for ⁄ œ (0, ⁄1), the infection becomes extinct in finite time almost
surely. In the weak survival phase, when ⁄ œ (⁄1, ⁄2), the infection survives forever
with positive probability, and the root is infected finitely many times almost surely.
Finally, in the strong survival phase, for ⁄ œ (⁄2, Œ), the infection also survives forever
with positive probability, however in this regime the root is infected infinitely many
times with positive probability. On the other hand, for a finite graph, the infection
dies out almost surely in finite time. An interesting question here is e.g. how long the
process survives expressed in terms of the size of the graph. See for instance [54] for
a general introduction to the topic.

There are several works in the literature where phase transitions have been studied
for di�erent graphs. The first known work is by Harris [37], he showed that the contact
process on the integer lattice Zd (for any d > 1) does not exhibit a weak survival phase,
that is to say, 0 < ⁄1(Zd) = ⁄2(Zd) < Œ. In other words, if ⁄ < ⁄1 the contact process
on Zd, started with the origin infected, dies out with probability 1 and survives forever
with positive probability if ⁄ > ⁄1. For a complete account, the reader is referred to
the book of Liggett [54].

One of the first analysis on graphs other than Zd was carried out by Pemantle
[64] on infinite d-ary tree Td. He showed that the contact process on Td for d > 3
with the root initially infected satisfies 0 < ⁄1(Td) < ⁄2(Td) < Œ. This result was
later extended to the case d = 2 by Liggett [53]. Afterwards Stacey [69] gave a short
proof which works for all d > 2. The contact process has also been studied on certain
non-homogeneous classes of graphs. Chatterjee and Durret [20] considered the contact
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process on models of power law random graphs and studied the critical value. To be
more specific, consider a power law random graph such that the degree of a vertex is
k with probability pk ≥ Ck

≠–, as k æ Œ for some constant C > 0. The authors in
[20] showed that the critical value of the infection parameter is zero for any – > 3
contradicting mean-field calculations as previously obtained in [61, 62].

Much less is known about the contact process on random trees. Huang and Durret
[41] showed that for the contact process on Galton-Watson trees with the root initially
infected, the critical value for local survival is ⁄2 = 0 if the o�spring distribution L (›)
is subexponential, i.e., if E[ec›] = Œ for all c > 0. Shortly afterwards, Bhamidi et
al. [13] proved that on Galton-Watson trees, ⁄1 > 0 if the o�spring distribution L (›)
has an exponential tail, i.e., if E[ec›] < Œ for some c > 0. These two results give
a complete characterisation on the existence of extinction phase on Galton-Watson
trees.

A natural generalization of the contact process is to introduce inhomogeneity into
the graph by associating a random fitness to each vertex that influences how likely
the vertex is to receive and to pass on the infection. Peterson [66] introduced the
contact process on a (deterministic) complete graph with random vertex-dependent
infection rates. In this model, the rate at which the infection travels along the edge
depends on the vertex weights. More precisely, under a second moment assumption
on the weights, he proved that there is a phase transition at ⁄c > 0 such that for
⁄ < ⁄c the contact process dies out in logarithmic time, and for ⁄ > ⁄c the contact
process lives for an exponential amount of time. The way that the infection rates
were chosen by Peterson was inspired by inhomogeneous random graphs as introduced
by Chung and Lu [23], where, given a sequence of vertex weights, the probability
that there is an edge connecting two vertices is proportional to the product of the
weights. Xue [72, 74] studied the contact process with random vertex weights with
bounded support on oriented lattices. In particular, the author investigates in [72] the
asymptotic behaviour of the critical value when the lattice dimension grows. Later,
Pan et al. [60] extended his result to the case of regular trees. The reader is also
referred to [71, 73] for further results about the contact process with random weights
and bounded support on regular graphs.

In this chapter, we are interested in understanding the interplay between the in-
homogeneous contact process as considered by [66] with a more structured graph and
therefore consider the model on a Galton-Watson tree. We focus on Galton-Watson
trees, since these can be often used to describe the local geometry of random graphs
and standard techniques should apply to translate our results to random graphs. A
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natural interest is then to study the phase diagram of this model and to understand
how the extra randomness changes the characterisation of whether a phase transition
occurs or not.

The main contribution of this chapter is to understand the phase transition of
the contact process with fitness on Galton-Watson trees. Our first result shows the
existence of a phase transition when the distribution of the product of o�spring and
fitness has exponential tails. In other words, if F the fitness associate to a vertex,
we prove that if L (›F) has exponential tails, then the survival threshold is strictly
positive. The second results tell us that, under certain condition on either the o�spring
distribution or on the fitness distribution, we have that the process survives strongly
(with positive probability).

In our setting, the fitness has a significant e�ect on the behaviour of the model as a
whole. For instance, if we consider the standard contact process on a Galton-Watson
tree, where the o�spring distribution has exponential tails, then, as mentioned ear-
lier, the process exhibits the phase transition, so in particular the process dies out for
small enough ⁄. However, if the random i.i.d. fitness values is su�ciently heavy-tailed,
then irrespectively how light the tails of the o�spring distribution are (as long as it
has unbounded support), then the process no longer has a phase of extinction. In
other words, the presence of fitness guarantees that the infection survives forever with
positive probability regardless of the value of ⁄. Similarly, just the fact that there
is a random fitness with unbounded support (without any tail assumptions) means
that certain o�spring distribution with lighter tails lead to the lack of a phase transi-
tion, even if the classical model with the same o�spring distribution would exhibit a
subcritical phase.

2.2 Definitions and main results
In this section, we briefly introduce the primary notions and discuss the main results
in the manuscript.

Let us denote by T ≥ GW(›) the Galton-Watson tree rooted at fl with o�spring
distribution L (›). We assume that µ = E[›] > 1, which makes T survive forever with
positive probability. Denote by V (T ) the set of vertices in T . We equip each vertex v œ

V (T ) of the tree with a random initial fitness. More precisely, let F(T ) := (Fv)vœV (T )

be a sequence of i.i.d copies of a non-negative random variable. For example, we assign
fitness values Ffl, Fv1 , Fv2 . . . to the vertices fl, v1, v2, . . . , respectively. We denote by
(T ,F(T )) this weighted version tree. When the context is clear we simply denote the
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weighted tree by T .

Definition 2.2.1. Let F(T ) := (Fv)vœV (T ) be a sequence of i.i.d. copies of a random

variable F taking values in [1, Œ). The inhomogeneous contact process on (T ,F(T ))
is a continuous-time Markov chain on the state space {0, 1}

V (T )
, where a vertex is

either infected (state 1) or healthy (state 0). We denote the process by

(Xt) ≥ CP
1

T ; 1A

2

,

where 1A is the initial configuration, where the vertices in A µ V (T ) are initially

infected. Given the fitness values and ⁄ > 0, the process evolves according to the

following rules:

• For each v œ V (T ) such that Xt(v) = 1, the process Xt becomes Xt ≠ 1v at

rate 1.

• For each v œ V (T ) such that Xt(v) = 0, the process Xt becomes Xt + 1v at rate

⁄
ÿ

v≥vÕ
FvÕFvXt(vÕ),

where Fv and FvÕ are the fitness values associated to v and v
Õ
. The notation

v ≥ v
Õ

means that vertices v and v
Õ

are connected by an edge in T .

Notation: We use the notation 0 for the all-healthy state, i.e., 0 = 1ÿ. We also
often identify any state {0, 1}

V (T ) with the subset of V (T ) consisting of the vertices
that have state 1 (i.e. the infected vertices). For example, when we write fl œ Xt,
it means that the root of the tree is infected at time t. We use the conditional
probability measure PT ,F(·) := P

1

· | T ,F(T )
2

with associated expectation operator
ET ,F[·] := E

Ë

· | T ,F(T )
È

. For any set A, we write |A| to denote its cardinality.
Now, we define the critical values for the infection parameter ⁄. Given the tree

(T ,F(T )), we define the threshold between extinction and weak survival by

⁄1(T ,F(T )) := inf
Ó

⁄ : PT ,F
1

Xt ”= 0 for all t > 0
2

> 0
Ô

,

and the weak-strong survival threshold by

⁄2(T ,F(T )) := inf
;

⁄ : lim inf
tæŒ

PT ,F
1

fl œ Xt

2

> 0
<

.

By using the same arguments as those used in Proposition 3.1 in Pemantle [64], we see
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that ⁄1(T ,F(T )) and ⁄2(T ,F(T )) are constant for almost every (T ,F(T )) conditioned
on |T | = Œ. We denote by ⁄1 and ⁄2 these two constants.

Let („Xt) denote the contact process with constant fitness. More precisely, infected
individual v recovers from its infection after an exponential time with mean 1, inde-
pendently of the status of its neighbours, while healthy individual v becomes infected
at a rate that is proportional to the number of infected neighbours, i.e., a rate

⁄
ÿ

v≥vÕ

„Xt(vÕ),

where the sum is over the neighbours v
Õ of v. We may thus identify („Xt) with a

particular case of our model where we take F © 1. Further, note that the requirement
F > 1 a.s. and the monotonicity of the contact process ensures that „Xt µ Xt for
all t > 0, if we start with the same initial configuration (see Section 2.3 for further
details regarding to the monotonicity property). According to [41, Theorem 1.4] and
[13, Theorem 1], the process („Xt) always survives (at least weakly) and thus also (Xt),
for all su�ciently large ⁄.

Throughout this chapter, we shall suppose that, µ = E[›] < Œ. This condition
guarantees that the set of infected vertices at every time is finite a.s. (see Theo-
rem 2.3.2).

Theorema 2.2.1. Consider the inhomogeneous contact process on the tree (T ,F(T )).
Suppose that only the root of the tree is initially infected. We assume that the distri-

bution of the product of › and the fitness F has exponential tails, i.e.,

E
5

e
c ›F

6

= M < Œ for some c, M > 0. (A)

Then there exists ⁄0 > 0 such that for all ⁄ < ⁄0, the process dies out almost surely.

Remark 2.2.1. Note that Assumption (A) implies that the distributions of › as well
as that of F have exponential tails. Indeed, for c > 0 as in the assumption and n > 1
we have

E
5

e
c F1{F6n}

6

= E
5

e
c F1{F6n}1{›>1}

6

+ E
5

e
c F1{F6n}1{›=0}

6

6 E
5

e
c F›1{F6n}

6

+ P(› = 0)E
5

e
c F1{F6n}

6

.

Now taking limits, as n æ Œ, and appealing to the Monotone Convergence Theorem,
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we deduce that

E
5

e
c F

6

6
E

5

e
c F›

6

1 ≠ P(› = 0) < Œ.

Similarly, we have that E
Ë

e
c ›

È

< Œ for some c > 0. Intuitively, we need at least
exponential tails on the degree distribution as well as in the fitness distribution in
order to control the number of vertices with high degree and vertices with high fitness.
If we control such vertices the infection will persist for a short time around them and
thus extinction will be almost surely.

Furthermore, observe that in general assuming exponential tails for the distribution
of › and F does not imply exponential tails for the distribution of ›F , unless the
respectively other random variable is almost surely bounded. To see why, consider for
instance the case when F satisfies that there exists Âc > 0 such that E[eÂc F ] = Œ and
› has unbounded support. Observe that

E
5

e
≠c›F

6

=
Œ

ÿ

k=0
E

5

e
≠ckF

6

P(› = k).

Now, since › has unbounded support, for all c > 0 we can take k > 0 large enough
such that ck > Âc and P(› = k) > 0, which implies that

E
5

e
≠c›F

6

> E
5

e
≠ÂcF

6

P(› = k) = Œ.

Theorema 2.2.2. Consider the inhomogeneous contact process on the tree (T ,F(T )).
Suppose that only the root of the tree is initially infected. Assume that › and F are

unbounded and one of the following two conditions holds

lim sup
fæŒ

logP(F > f)
log f

= ≠C1 for some C1 œ [0, Œ), (B)

lim sup
kæŒ

logP(› = k)
k

= ≠C2, for some C2 œ [0, Œ), (C)

Then ⁄1 = ⁄2 = 0, i.e., the process survives strongly for any ⁄ > 0.

Remark 2.2.2. The assumption that the fitness is lower bounded from below by 1,
allows us, as mentioned earlier, to compare our model with the contact process with
constant fitness. This, together with the monotonicity property is used at various
places in the proofs. For instance, in our proof of Theorem 2.2.1, we use this assump-
tion in order to control the expected survival times of the contact process, see Lemma
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2.4.1 below. However, this is the only part in the proof where we use this assump-
tion, so it seems plausible that we can improve this argument. On the other hand,
in Theorem 2.2.2 the lower bound of the fitness helps us to study the persistence of
the infection in a finite star using the monotonicity of the process and results already
known in the literature for the standard contact process (see Lemma 2.5.4 below).

Remark 2.2.3. The behaviour of the contact process on the tree (T ,F(T )) together
with the o�spring distribution satisfying Assumption (C) in Theorem 2.2.2 is similar
but not exactly the same to the behaviour of the contact process with constant fitness,
i.e. when F © 1. More precisely, as mentioned earlier, Huang and Durret [41] showed
that the contact process with constant fitness and under the condition E[ec›] = Œ for
all c > 0 or equivalently

lim sup
kæŒ

logP(› = k)
k

= 0,

exhibits only the strong survival phase (see [41, Theorem 1.4]). Roughly speaking,
this condition tells us that the tree has high degree vertices in which the infection
persists for long time, allowing the process to always survive.

Note that the influence of the fitness changes means that there are situations when
the inhomogeneous contact is always supercritical, whereas the standard contact pro-
cess on a Galton-Watson tree would exhibit a phase transition. Indeed this can be
achieved in the following two ways for unbounded fitness and o�spring distributions:
either suppose the o�spring distribution has exponential moments but the fitness sat-
isfies Assumption (B) above or suppose the o�spring distribution satisfies Assumption
(C) for some C2 > 0 and the fitness is unbounded. Then, in both cases the o�spring
distribution has exponential moments, so the standard contact process has a phase
transition, while Theorem 2.2.2 guarantees that the inhomogeneous contact process is
always supercritical.

Remark 2.2.4. Note that there are cases not captured by either of the two conditions
in Theorem 2.2.1 and Theorem 2.2.2. For example, consider the following distributions
for the o�spring and the fitness:

P(› = k) = ÷ e
≠k

–
, k œ N and – > 1,

P(F > f) = e
≠f

—
, f > 1 and — œ (0, 1],

where ÷ is the normalizing constant. It is not di�cult to see that, both distributions
fulfill neither Assumption (B) nor (C) of Theorem 2.2.2. Moreover, the distribution
of ›F does not satisfy Assumption (A) of Theorem (2.2.1). In fact, for all c > 0 there
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exists k > 0 large enough such that

E
5

e
c ›F

6

> E
5

e
c kF

6

P(› = k) = Œ.

So far we have not been able to prove a general result about the phase transition when
the distribution of ›F satisfies

E
5

e
c ›F

6

= Œ, for all c > 0.

Having a result under the latter condition and combining it with Theorem 2.2.1,
would give us the complete characterisation on the existence of a phase transition of
the contact process on Galton-Watson trees with fitness. Nonetheless, this problem
requires di�erent techniques to those developed here and is currently on-going research.

Main ideas of proofs. In this section, we give a short overview of the proofs of
the main theorems before giving the full proofs.

The proof of Theorem 2.2.1 is based on two main ideas which we adapt from [13],
where it is used for the standard contact process. First, we use a recursive analysis
on Galton-Watson trees that allows us to control the expected survival times. To this
end, we consider the contact process on the finite tree TL which corresponds to the
restriction of T to the first L generations. The first goal is to show that, for small
enough ⁄, the expected survival time of CP(TL; 1fl) is bounded from above uniformly
in L. As in [13], we use a coupling, where we add an extra vertex only adjoined to
the root that is always infected. In this way, the process on the subtrees rooted in the
children of the root can by independence be compared to the full process on a tree
(with extra root) restricted to L ≠ 1 vertices (see Lemma 2.4.1 below).

The second idea is to study the probability that the infection set of CP(TL; 1fl)
goes deeper that a given height. More precisely, we prove that the probability that
the infection travels deeper than a given heigh decays exponentially in the height
(similarly as in [13]). The main strategy is to investigate the stationary distribution
of another modification of the original contact process in finite Galton-Watson trees
and relate it to the extinction time. Finally, we can establish our result by combining
the two ideas.

The proof of Theorem 2.2.2 is based on techniques developed by Pemantle in [64].
He used these techniques to show an upper bound for the threshold value ⁄2 for the
contact process with constant fitness defined on Galton-Watson trees. Furthermore,
when the o�spring distribution is given by the following distribution P(› = k) = ce

≠k
“

with c > 0 and “ < 1, he proved that ⁄2 = 0. More recently, this strategy was
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extended by Durrett and Huang in [41, Theorem 1.4] in order to show that ⁄2 = 0 if
L (›) has subexponential tails. The same strategy holds in our case but we need to
take extra care because of the presence of fitness.

First we estimate the survival time for the contact process with fitness on a finite
star. For the case with constant fitness, Berger et al. in [9] showed that the infection
can survive for time e

cd in a star of size d with positive probability for some c > 0.
Now, in the case with fitness we prove that, if the root of the star is initially infected,
it will keep a large number of infected leaves for a long time with probability very close
to 1 if the fitness is large enough (see Lemma 2.5.4). With this in hand, we study the
contact process in a star where a single path of a given length is added to some leaf of
the star (see Lemma 2.5.6). The intuitive strategy for the proof of Theorem 2.2.2 is
to push the infection to stars with high size and fitness in a suitable generation. As a
next step we bring the infection back to the root appealing to Lemma 2.6.2 given by
Pemantle in [64].

Overview of structure. The remaining chapter is structured as follows. In Sec-
tion 2.3 the graphical representation for the contact process is introduced as well as
some other useful properties. In particular, we will also see that started with a single
infected vertex, the set of infected vertices stays finite at all times. Section 2.4 is
devoted to the proof of Theorem 2.2.1. In Section 2.5, we prove preliminary results re-
garding to contact process with fitness on finite stars, needed for our purpose. Finally,
in Section 2.6 the proof of Theorem 2.2.2 is completed.

2.3 Properties of the inhomogeneous contact pro-
cess

In this section we provide an equivalent description of our model by a convenient
graphical representation based on the construction given in [54, Chapter 1] for the case
of constant fitness. We point out some properties which are direct consequences of
the construction. Further, we show that under the assumption E[›] < Œ, the contact
process does not explode in finite time almost surely, so that the set of infected vertices
at any time is finite almost surely.

Recall that V (T ) denotes the set of vertices in T . Denote by E(T ) = {(u, v) :
u, v œ V (T )} the set of directed edges. Conditionally on the fitness values F(T ), let
{Nv}vœV (T ) be i.i.d. Poisson (point) processes with rate 1 and {N(v,u)}(v,u)œE(T ) i.i.d.
Poisson processes with rate ⁄FvFu. All the Poisson processes are mutually indepen-
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dent. For each v œ V (T ), a recovery symbol ú is placed at the point (v, t) œ T ◊[0, Œ),
at each event time t of Nv. For each (v, u) œ E(T ), an infection arrow ≠æ is placed
from (v, t) to (u, t), at each event time t of N(v,u). Then, given any initial condition,
the contact process can be defined as follows: an infected vertex v infects another
vertex u at a time t if t is in N(v,u). Similarly, an infected vertex recovers any time
that is in Nv.

One advantage of the graphical construction is that it provides a joint coupling
of the processes with di�erent infection rules or di�erent initial states. We state two
useful facts about the contact process that we will use later in our proofs and that are
consequence of using the graphical representation and the fact that we can e.g. easily
couple Poisson process with di�erent rates.

• Monotonicity in infection rates. Let F1(T ) = (F1
v
)vœV (T ) and F2(T ) = (F2

v
)vœV (T )

be sequences of fitness such that F
1
v
6 F

2
v

a.s. for all v œ V (T ). Let (X1
t
) ≥

CP((T ,F1(T )); 1A) and (X2
t
) ≥ CP((T ,F2(T )); 1A), for any A µ V (T ). Then,

we can couple both processes, such that for any t > 0, we have X
1
t
6 X

2
t
, i.e.,

X
1
t
(v) 6 X

2
t
(v), for all v œ V (T ),

(see e.g. [66, Section 1.2] for the case of the contact process with fitness in a
completely deterministic graph).

• Consider (X1
t
) ≥ CP(T ; 1A), with any A µ V (T ). Let I be any subset of [0, Œ).

Define (X2
t
) to be a coupled process of (X1

t
) that has the same initial state,

infection and recoveries, except that the recoveries at a fixed vertex v œ V (T )
are ignored at times t œ I. Then, we can couple both processes, such that for all
t > 0, we have X

1
t
6 X

2
t
, i.e.,

X
1
t
(v) 6 X

2
t
(v), for all v œ V (T ),

(see for instance [13, Lemma 2.2] for the case of the contact process with constant
fitness).

The next result that we show is that if we start with a finite configuration, then
almost surely the configuration remains finite for all times. Our argument adapts the
proof of Durret [27, Theorem 2.1] to our setting with the additional di�culty that the
underlying graph is random and we have unbounded rates.
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Let r be an arbitrary non-negative integer. Let denote by Vr the set of vertices in
generation r in the tree T , i.e.,

Vr = {v œ V (T ) : d(fl, v) = r}, (2.1)

where d(·, ·) is the graph distance between two vertices in the tree. Let t0 be a positive
number. Define the graph Gt0 , a spanning subgraph of the Galton-Watson tree T , by
saying that two vertices u, v in V (T ) with d(fl, u) < d(fl, v) that are neighbours in T

are also neighbours in Gt0 if
N(u,v)

1

[0, t0]
2

> 1.

Let denote by Ct0(v) the vertex set of the connected component of v in the graph
Gt0 . We will first show that if t0 is small enough, then the component sizes in Gt0 are
finite. Then, we will make the connection to the contact process as follows: If we start
with only the root infected, then by the graphical construction and the fact that we
are working on a tree, every vertex that has been infected by time t0 in the contact
process is contained in Ct0(fl).

Lemma 2.3.1. Assume that µ = E[›] < Œ. If t0 is small enough, then for any finite

¸ œ N, we have

P
A

-

-

-

-

-

€

vœ
t¸

r=0 Vr

Ct0(v)
-

-

-

-

-

< Œ

B

= 1.

Proof. We start by showing that |Ct0(fl)| < Œ almost surely. For this result, by
Borel-Cantelli, it su�ces to show that

Œ
ÿ

r=0
P

1

Ct0(fl) fl Vr ”= ÿ

2

< Œ.

We begin by denoting the set of non-intersecting paths of length r in the tree (T ,F(T ))
started at the root as follows

Cr = {v = (v0, . . . , vr) : vi œ Vi, i œ {0, . . . , r}}.

Note that with this notation v0 = fl and the number of paths of length r corresponds
to the number of vertices in generation r, that is, |Cr| = |Vr|.

Let c = (v0, . . . , vr) œ Cr be a path of length r in (T ,F(T )). For each i œ {0, . . . , r},
by definition of Gt0 , we have that the probability that the vertices vi≠1 and vi are
connected in Gt0 is

1 ≠ exp
1

≠⁄Fvi≠1Fvit0
2

.
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Thus, conditioning on (T ,F(T )), the probability that there is a vertex in generation
r that is also in Ct0(fl) is

PT ,F
1

Ct0(fl) fl Vr ”= ÿ

2

6 |Vr| max
vœCr

r
Ÿ

i=1

3

1 ≠ exp
1

≠⁄Fvi≠1Fvit0
2

4

.

For an upper bound on the maximum in the right-hand side above, we have to show
that with su�ciently high probability, each path has su�ciently many disjoint pairs
of vertices when Fvi≠1Fvi is bounded by a large (but finite) constant. More precisely,
let k be a positive constant, which we will choose at the end, and define the following
event

Er =
;

’v = (v0, . . . , vr) œ Cr :
-

-

-

-

;

i = 0, . . . ,

9

r

2

:

≠ 1 : Fv2iFv2i+1 6 k

<
-

-

-

-

> 1
2

9

r

2

:<

,

where ÁxË denotes the ceiling of the number x. On the event Er fl {|Vr| 6 (2µ)r
} and

taking t0 = t0(µ, ⁄, k) su�ciently small, we have

PT ,F
1

Ct0(fl) fl Vr ”= ÿ

2

6 (2µ)r max
vœCr

Ár/2Ë≠1
Ÿ

i=0

1

1 ≠ e
≠⁄kt0

2

6 (2µ)r
1

1 ≠ e
≠⁄kt0

2Ár/2Ë 6
31

2

4r

.

Therefore, together with the previous upper bound we obtain

P
1

Ct0(fl) fl Vr ”= ÿ

2

6 P
3

{Ct0(fl) fl Vr ”= ÿ} fl Er fl {|Vr| 6 (2µ)r
}

4

+ P
3

{|Vr| > (2µ)r
}

4

+ P
3

E
c

r
fl {|Vr| 6 (2µ)r

}

4

6
31

2

4r

+ P
3

{|Vr| > (2µ)r
}

4

+ P
3

E
c

r
fl {|Vr| 6 (2µ)r

}

4

.

What remains is to show that the second and third probability on the right-hand side
are also summable. In order to control the number of vertices at level r, we can use
Markov’s inequality, to deduce that

P
3

|Vr| > (2µ)r

4

6
E

Ë

|Vr|

È

(2µ)r
6

31
2

4r

.

Furthermore, we bound

P
3

E
c

r
fl {|Vr| 6 (2µ)r

}

4

6 (2µ)rP
3

-

-

-

-

;

i = 0, . . . ,

9

r

2

:

≠ 1 : F2iF2i+1 > k

<
-

-

-

-

> 1
2

9

r

2

:4

,

where F0, . . . , Fr are i.i.d random variables with same distribution as F . Moreover,
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we observe that the random variable

-

-

-

-

;

i = 0, . . . ,

9

r

2

:

≠ 1 : F2iF2i+1 > k

<
-

-

-

-

=
Ár/2Ë≠1

ÿ

i=0
1{F2iF2i+1>k}

has a binomial distribution Bin(Ár/2Ë, pk) where pk = P(F0F1 > k). Note that
as k æ Œ, we have that pk æ 0. By using a large deviation bound for binomial
distributions, see e.g. [70, Corollary 2.20], for k large enough such that pk <

1
2 , we

obtain

P
Q

a

Ár/2Ë≠1
ÿ

i=0
1{F2iF2i+1>k} > 1

2

9

r

2

:

R

b 6 exp
3

≠

9

r

2

:

Ipk
(1/2)

4

,

where
Ipk

(1/2) = pk ≠
1
2 ≠

1
2 log

A

pk

1/2

B

.

In addition, since pk æ 0 so that Ipk
(1/2) æ Œ, we can choose k = k(µ) arbitrary

large such that 2µe
≠ 1

2 Ipk (1/2) 6 1/2. Therefore, we obtain that

P
3

E
c

r
fl {|Vr| 6 (2µ)r

}

4

6 (2µ)r exp
3

≠
r

2Ipk
(1/2)

4

6
31

2

4r

.

Putting the pieces together, we deduce that

Œ
ÿ

r=0
P

1

Ct0(fl) fl Vr ”= ÿ

2

6 3
Œ

ÿ

r=0

31
2

4r

< Œ,

which implies by the Borel-Cantelli lemma, that almost surely, for r su�ciently large
Ct0(fl) fl Vr = ÿ with probability 1, so that |Ct0(fl)| is finite almost surely.

The same argument shows that almost surely for each v œ V¸, we have that Ct0(v)
restricted to the vertices in the subtree of T rooted at v is finite. This immediately
implies the statement of the lemma, as t

¸

r=0 Vr is finite almost surely.

Theorema 2.3.2. Assume that µ = E[›] < Œ. Consider (Xt) ≥ CP(T , 1A) started

with any finite set A µ V (T ) infected, the inhomogeneous contact process on (T ,F(T )).
Then

P
1

|Xt| < Œ, ’t > 0
2

= 1.

Proof. Let t0 be as given in Lemma 2.3.1. Since the initial configuration of the contact
process is finite, we can find a su�ciently large and finite k such that A µ

t

k

r=0 Vr, so
that by the graphical construction, we have that Xt µ fi

vœfik
r=0Vr

Ct0(v) for all t œ [0, t0].
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Then according to Lemma 2.3.1, we have that

P
1

|Xt| < Œ, ’t œ [0, t0]
2

= 1.

Let us now define a spanning subgraph G2t0 of T as follows: two neighbouring vertices
u, v in T with d(fl, u) < d(fl, v) are connected if

N(u,v)
1

[t0, 2t0]
2

> 1.

As before, let Ct0(fl) be the connected component of fl in the graph Gt0 . For each
v œ Ct0(fl), we denote by C2t0(v) the connected component of v in the graph G2t0 . We
observe that by the graphical construction

Xt µ
€

vœCt0 (fl)
C2t0(v), for all t œ [t0, 2t0].

Then we can argue that by the independence of Gt0 and G2t0 (due to the independence
of the increments of the Poisson point processes), for any k > 1,

P
A

-

-

-

-

-

€

vœCt0 (fl)
C2t0(v)

-

-

-

-

-

< Œ

B

> P
A

-

-

-

-

-

€

vœfik
r=0Vr

C2t0(v)
-

-

-

-

-

< Œ, |Ct0(fl)| 6 k

B

= E
C

PT ,F

A
-

-

-

-

-

€

vœfik
r=0Vr

C2t0(v)
-

-

-

-

-

< Œ

B

PT ,F
1

|Ct0(fl)| 6 k

2

D

> P
A

-

-

-

-

-

€

vœfik
r=0Vr

C2t0(v)
-

-

-

-

-

< Œ

B

≠ P
1

|Ct0(fl)| > k

2

= 1 ≠ P
1

|Ct0(fl)| > k

2

.

Letting k tends to Œ and appealing to Lemma 2.3.1 we deduce that the right-hand
side converges to 1, which implies that

P
1

|Xt| < Œ, ’t œ [t0, 2t0]
2

= 1.

Iterating the argument we can conclude that P
1

|Xt| < Œ, ’t œ [nt0, (n + 1)t0]
2

= 1
for all non-negative integers n and thus the proof is completed.
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2.4 Proof of Theorem 2.2.1
This section is devoted to proving Theorem 2.2.1. The proof follows similar arguments
as those used in Bhamidi et. al. [13, Theorem 1], although the presence of fitness
leads to significant changes. The proof will consist of a series of lemmas. We begin by
defining the contact process on a rooted tree with an extra parent added to the root.
This modified process allows us to obtain our first result, Lemma 2.4.1, which states
that for small enough ⁄ the survival time of the original process in any tree restricted
to the first L generations is bounded by a constant uniform in L. Afterwards, we
define a suitable delayed version of the contact process. Using this delayed version,
we shows that the probability that the infection in the original contact process travels
deeper than a given height decays exponentially in the height, see Lemma 2.4.3 below.
At the end of this section, we will combine the previous results to establish Theorem
2.2.1.

First we set up some extra notations for this section. Let D denote the degree
of the root fl and let v1, . . . , vD be the children of fl with fitness Fv1 , . . . , FvD . Let
Tv1 , . . . , TvD be the subtrees rooted in v1, . . . , vD respectively. We denote by TL the
tree obtained by the restricting of the tree T to the first L generations. Denote by T

+
L

the tree TL, but with an extra parent fl
+ for the vertex fl. We will assume that fl

+ has
constant fitness, i.e., Ffl+ = 1. Let CPfl+(T +

L
; 1fl) denote the contact process in the

tree T
+

L
with the extra root fl

+. This process has the same infection and recovery rates
as CP(TL; 1fl), but the extra parent fl

+ is permanently infected and does not have a
recovery clock attached to itself. Since the state of the root fl

+ never changes, we will
throughout specify the state of CPfl+(T +

L
; 1fl) by specifying the state restricted to TL,

so that 0 denotes the state where the only infected vertex is fl
+.

The first step to prove Theorem 2.2.1 is to show that for any L, the expected
excursion time for the contact process over TL is bounded from above uniformly in L

if the parameter ⁄ is small enough.

Lemma 2.4.1. Suppose that › and Ffl satisfy Assumption (A). For L œ N, let RL be

the first time when CP(TL; 1fl) reaches state 0. Then there exists a constant ⁄0 > 0
such that for any ⁄ 6 ⁄0 and L,

E
Ë

RL

È

6 e
1/2 E

Ë

F
2
fl

È1/2
.

Proof. Let SL be the first time when CPfl+(T +
L

; 1fl) reaches state 0 on TL. By the
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monotonicity of the contact process and since Ffl > 1 a.s., we observe that

E
Ë

RL

È

6 E
Ë

FflRL

È

6 E
Ë

FflSL

È

.

Let us now introduce a modification of the contact process CPfl+(T +
L

; 1fl), where
the recoveries at the root only occur when none of its descendants are infected. We
denote the process by (ÊXt) ≥ ÁCPfl+(T +

L
; 1fl). Let ÂSL be the first time when (ÊXt)

reaches the all-healthy state on TL. By ignoring the recovery attempts of the root
when any vertices other than fl and fl

Õ are infected, we can couple the processes such
that SL 6 ÂSL. Hence, it su�ces to establish the claimed upper bound for E[Ffl

ÂSL].
Let denote by T

+
vi

the tree rooted at vi and can now treat fl as the extra permanently
infected parent of vi. Define SL≠1 and S

i

L≠1 to be the first time when CPfl+(T +
L≠1; 1fl)

and CPfl(T +
vi

; 1vi) reaches state 0, respectively. Note that SL≠1
(d)= S

i

L≠1. We shall
bound E[FflSL] in terms of E[FflSL≠1]. Define the following product chain

(X¢
t

) ≥ CP¢
fl

1

TL; 1vi

2

:=
1

¢
D

j=1,j ”=i
CPfl

1

T
+

vj
; 0

22

¢ CPfl

1

T
+

vi
; 1vi

2

,

and denote by ÂS
¢
i

the first time when this product chain when restricted to fi
D

j=1Tvj

reaches 0 started from 1vi . Further, define ÂS
¢ as the following average

ÂS
¢ = 1

D

D
ÿ

i=1
Fvi

ÂS
¢
i

. (2.2)

Now, given the tree (TL,F(TL)), we can control the expectation of ÂSL by the
expectation of ÂS

¢ using the process (ÊXt) ≥ ÁCPfl+(T +
L

; 1fl). If we start with ÊX0 = 1fl,
then the next step in the chain is either that the root recovers or the root infects one
of its children. Moreover, an excursion to 0 of (ÊXt) can be described as follows:

• Possibility 1. We have reached S̃L as soon as fl recovers before infecting one of
its children. Conditioning on (TL,F(TL)) this event happens with probability

p := 1
1 + ⁄Ffl

q

D

j=1 Fvj

.

Also p is the expected waiting time to see the recovery of fl conditional on this
event happening first.

• Possibility 2. The root fl infects any of its children, let say vi, before fl recovers.
The child vi is selected with probability proportional to the fitness of the root’s
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children, i.e., with probability
Fvi

q

D

i=1 Fvi

.

The expected time for fl infects vi is p (conditional on this happening first). Since
fl stays infected until everyone is healthy, we then need to wait for an excursion
to 0 of the product chain (X¢

t ) ≥ CP¢
fl

(TL; 1vi). When this excursion finishes
we are back to the same starting point and either follow possibility 1 or 2.

Note that we have reached S̃L when we finally follow possibility 1. Hence, by splitting
according to the number of times we have to go through the di�erent possibilities, we
obtain

ETL,F
Ë

ÂSL

È

=
Œ

ÿ

k=0
p (1 ≠ p)k

Y

]

[

(k + 1)p + k
1

q

D

i=1 Fvi

D
ÿ

j=1
FvjETL,F

5

ÂS
¢
j

6

Z

^

\

=
Œ

ÿ

k=0
p (1 ≠ p)k

I

(k + 1)p + k
D

q

D

i=1 Fvi

ETL,F

5

ÂS
¢

6

J

,

where in the last equality we use the definition of ÂS
¢ given in (2.2). This series can

be computed explicitly. Indeed, we have

ETL,F

5

ÂSL

6

= p
2

Œ
ÿ

k=0
(1 ≠ p)k (k + 1) + p

D
q

D

i=1 Fvi

ETL,F

5

ÂS
¢

6 Œ
ÿ

k=0
(1 ≠ p)k

k

= 1 + p
D

q

D

i=1 Fvi

ETL,F

5

ÂS
¢

6(1 ≠ p)
p2 = 1 + ⁄DFflETL,F

5

ÂS
¢

6

.

Then, by tower property of the conditional expectation we deduce

E
Ë

ÂSL|D, Ffl

È

= 1 + ⁄DFflE
5

ÂS
¢

|D, Ffl

6

. (2.3)

On the other hand, we will find an estimate for the term on the right-hand side
above by relating it to the stationary distributions of the product chain defined before.
Let fi

(D) be the stationary distribution of the product chain CP¢
fl

(TL) and fii the
stationary distribution of CPfl(T +

vi
). These stationary distributions are related in the

following way
fi

(D) = ¢
D

i=1fii. (2.4)

Note that, for each fixed i œ {1, . . . , D}, the rate of leaving the state 0, and the
expected return time to 0 of the chain CPfl(T +

vi
) are given by

qi(0) := ⁄FflFvi and mi(0) := (⁄FflFvi)≠1 + ETvi ,F
Ë

S
i

L≠1
È

,
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respectively. The stationary distribution fii(0) corresponds to the fraction of time that
CPfl(T +

vi
) is at state 0. It can be calculated as the reciprocal of the product between

the rate of leaving the state 0, and the expected return time to 0 (see for example [56,
Theorem 3.5.3]). In other words, for each i = 1, . . . , D, we deduce that

fii(0) = 1
1 + ⁄FflFviETvi ,F

Ë

S
i

L≠1
È .

Similarly, the stationary distribution fi
(D)(0) corresponds to the fraction of time that

CP¢
fl

(TL) is at state 0 and it is given by (qD(0)mD(0))≠1, where

qD(0) := ⁄Ffl

D
ÿ

i=1
Fi and mD(0) = 1

qD(0) +
D

ÿ

i=1

⁄FflFvi

qD(0) ETL,F

5

ÂS
¢
i

6

,

and correspond to the rate of leaving 0 and the expected return time to 0 of CP¢
fl

(TL),
respectively. Hence, the reasoning above and the definition of ÂS

¢ show that

fi
(D)(0) = 1

1 + ⁄DFflETL,F

5

ÂS¢
6 .

Putting the pieces together and using (2.4), we deduce that

1 + ⁄DFflETL,F

5

ÂS
¢

6

=
D
Ÿ

i=1

3

1 + ⁄FflFviETvi ,F

5

S
i

L≠1

64

.

Then taking expectation conditionally on D and Ffl, we have

1 + ⁄DFflE
Ë

ÂS
¢

|D, Ffl

È

= E
C

D
Ÿ

i=1

3

1 + ⁄FflE
5

FviS
i

L≠1|Tvi ,F(Tvi)
64

-

-

-

-

D, Ffl

D

=
D
Ÿ

i=1

3

1 + ⁄FflE
5

FviS
i

L≠1

64

.

Plugging this back into (2.3), we get

E
Ë

ÂSL|D, Ffl

È

=
3

1 + ⁄FflE [FflSL≠1]
4

D

6 exp
3

⁄DFflE [FflSL≠1]
4

.

Then taking expectation over D and Ffl, and applying the Cauchy-Schwarz inequality,
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we deduce that

E
Ë

FflSL

È

6 E
Ë

Ffl
ÂSL

È

6 E
5

Ffl exp
3

⁄DFflE [FflSL≠1]
46

6 E
Ë

F
2
fl

È1/2
E

5

exp
3

2⁄DFflE [FflSL≠1]
461/2

.

(2.5)

For the last part of the proof we use an inductive argument over L appealing to our
assumption that DFfl has exponential tails, i.e., E[ec›Ffl ] = M < Œ for some c, M > 0.
We know that the latter assumption implies that Ffl has finite moments, thus we can
define finite constants K and ⁄0 by

K = E
Ë

F
2
fl

È1/2
e

1/2
· max{log M, 1}, ⁄0 = c

2K
.

For the base case in the induction, observe that the random variable S0 corresponds
to the first time when CPfl+(T +

0 ; 1fl) reaches state 0 on T0, in other words, when the
recovery clock attached to fl rings. Therefore, S0 is exponentially distributed with
parameter 1. Hence, since S0 does not depend on Ffl, we get

E
Ë

FflS0
È

= E[Ffl]E[S0] = E[Ffl] 6 E
Ë

F
2
fl

È1/2
e

1/2
.

To prove the inductive step, we assume E[FflSL≠1] 6 e
1/2E[F2

fl
]1/2 holds. First, note

that for any ⁄ 6 ⁄0, the definition of the constant K implies that

2⁄E
Ë

FflSL≠1
È

c
6

E
Ë

FflSL≠1
È

K
6

E
Ë

F
2
fl

È1/2
e

1/2

E
Ë

F2
fl

È1/2
e1/2 · max{log M, 1}

= 1
max{log M, 1}

6 1.

Thus, g(x) = x
2⁄
c E[FflSL≠1] is a concave function. By Jensen’s inequality and the expo-

nential tails of DFfl, we obtain for any ⁄ 6 ⁄0,

E
5

exp
3

2⁄DFflE [FflSL≠1]
46

= E
C

exp
A

cDFfl

2⁄E [FflSL≠1]
c

BD

6 exp
I

log M
2⁄E [FflSL≠1]

c

J

.
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From the inductive hypothesis and the definition of K, we have for all ⁄ 6 ⁄0,

E
5

exp
3

2⁄DFflE [FflSL≠1]
46

6 exp
I

log M
2⁄e

1/2E[F2
fl
]1/2

c

J

6 exp
I

log M
1

max{log M, 1}

J

6 e.

Therefore, plugging this back into (2.5), we deduce the following inequality which
holds for all ⁄ 6 ⁄0 and L,

E
Ë

FflSL

È

6 E
Ë

F
2
fl

È1/2
E

5

exp
3

2⁄DFflE [FflSL≠1]
461/2

6 e
1/2E

Ë

F
2
fl

È1/2
.

This concludes the proof.

The following result is a preparatory lemma describing the stationary mass of
the empty state of a suitably defined delayed version of the contact process and the
reader will see its importance later. Following [13] we introduce the delayed contact
process. Let T„ denote a finite tree rooted at a vertex „ and set T = T„ \ {„}. For
x œ {0, 1}

V (T) define the depth of x in T„ by

r

1

x; T„

2

= max{d(„, u) : x(u) = 1},

where d(·, ·) denotes the graph distance between two vertices in the tree and where we
define r(0; T) = 0.

Further, let us denote by Qxy the transition rate from state x to state y of CP„(T„).
For a fixed ◊ œ (0, 1), the delayed contact process DP„(T„) is a continuous-time
Markov chain on {0, 1}

V (T) with transition rates given by

Q
(◊)
xy

= ◊
r(x; T„)

Qxy. (2.6)

Note that the process DP„(T„) takes longer to change from state x to state y than
CP„(T„). Moreover, the delayed contact process spends more time in the states with
greater depth. The following result use similar ideas to those used in the proof of [13,
Proposition 3.6], but adapted to our setting.

Lemma 2.4.2. Suppose that › and Ffl satisfy Assumption (A). Let L be an arbitrary

non-negative integer. Let ‹
◊

TL
denote the stationary distribution of DPfl+(T +

L
). Then

there exist K, ⁄0 > 0 such that K⁄0 < 1 and for all ⁄ 6 ⁄0 and L,

E
5

‹
◊

TL
(0)≠1

6

6 2,
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where ◊ œ (0, 1) is given by ◊ = K⁄.

Recall that v1, . . . , vD denote the children of the root fl and Tv1 , . . . , TvD the subtrees
rooted in these children.

Proof. Consider (Xt) ≥ DPfl+(T +
L

; 1fl) the delayed contact process. We denote by
(ÊXt) ≥ ÁDPfl+(T +

L
; 1fl) the following modification of the previous process. The process

(ÊXt) shares the same infection and recovery clocks as (Xt) except in the root fl. A
recovery attempt at fl at time t is only valid if ÊXt = 1fl, so that there no other
infected vertices apart from fl and fl

+. Let S
◊

L
and ÂS

◊

L
be the first excursion time when

the delayed process DPfl+(T +
L

; 1fl) and the modified delayed process ÁDPfl+(T +
L

; 1fl)
reaches state 0, respectively. Further, let ÂS

◊

i
denote the first time when DPfl(TL; 1vi)

becomes 0, and ÂS
◊ is the following average

ÂS
◊ = 1

D

D
ÿ

i=1
Fvi

ÂS
◊

i
. (2.7)

An excursion to 0 of (ÊXt) ≥ ÁDPfl+(T +
L

; 1fl) started from the initial configuration
ÊX0 = 1fl can be described as follows:

• Possibility 1. We terminate if fl recovers before infecting any of its children.
Recall that r(1fl, T

+
L

) = 1. From the definition of the transition rates in the
delayed contact process, the probability that fl recovers before infecting any of
its children conditionally on (TL,F(TL)) is given by

p := ◊

◊ + ◊⁄Ffl

q

D

j=1 Fvj

= 1
1 + ⁄Ffl

q

D

j=1 Fvj

.

Furthermore, the expected waiting time to see the recovery of fl is

1
◊ + ◊⁄Ffl

q

D

j=1 Fvj

= ◊
≠1

p,

conditionally on the fitness and on the event that the recovery happens first.

• Possibility 2. The root fl infects any of its children, say vi, before the recovery of
fl happens. Conditioning on the fitness, the vertex vi is selected with probability
proportional to the fitness of the root’s children, i.e., with probability

Fvi
q

D

j=1 Fvj

.
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Since in the modified delayed contact process (ÊXt), the root fl stays infected
until everyone is healthy, we need to wait for an excursion to 0 in the subtree
Tvi . The expected waiting time to this excursion is ETL,F[ ÂS

◊

i
], conditionally on

vertex vi being infected first. When this excursion finishes, we come back to the
initial state and follow either possibility 1 or 2.

Note that we have reached state 0 as soon as the process follows possibility 1. Hence,
by splitting according to the number of times the process follows possibility 2 before
finally taking possibility 1, we obtain the expected excursion time to 0 of (ÊXt), given
the tree (TL,F(TL)), as

ETL,F

5

ÂS
◊

L

6

=
Œ

ÿ

k=0
p (1 ≠ p)k

S

U

1
◊

(k + 1)p + k
q

D

i=1 Fvi

D
ÿ

j=1
FvjETL,F

5

ÂS
◊

j

6

T

V

=
Œ

ÿ

k=0
p (1 ≠ p)k

C

1
◊

(k + 1)p + kD
q

D

i=1 Fvi

ETL,F

5

ÂS
◊

6

D

,

where in the last equality we use the definition of ÂS
◊ given in (2.7). Similarly as in

Lemma 2.4.1, we can explicitly calculate the previous series and obtain

ETL,F
Ë

ÂS
◊

L

È

= 1
◊

1

1 + ◊⁄DFflETL,F
Ë

ÂS
◊
È2

6 1
◊

1

1 + ⁄DFflETL,F
Ë

ÂS
◊
È2

, (2.8)

where in the last inequality we use that ◊ < 1.
Now, we shall find an upper bound for ETL,F[ ÂS

◊

L
] in terms of ETvi ,F[S◊

L≠1]. In order to
do this, we will establish a relationship between ETL,F[ ÂS

◊] and the stationary distribu-
tion of the delayed contact process. Denote by S

◊,i

L≠1 the first time when DPfl(T +
vi

; 1vi)
becomes 0. For DPfl(T +

vi
), the rate of leaving the state 0 and the expected return

time to 0 are given by

q
◊

i
(0) := ◊

r(0;T +
vi )⁄FflFvi = ⁄FflFvi and m

◊

i
(0) :=

1

q
◊

i
(0)

2≠1
+ ETvi ,F

5

S
◊,i

L≠1

6

.

Similarly, for the process DPfl(TL) we also find these two quantities

q
◊(0) := ◊

r(0;T +
L )

⁄Ffl

D
ÿ

i=1
Fvi = ⁄Ffl

D
ÿ

i=1
Fvi ,

and

m
◊(0) := 1

q◊(0) +
D

ÿ

i=1

⁄FflFvi

q◊(0) ETL,F

5

ÂS
◊

i

6

,
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where we recall that ÂS
◊

i
is the first time when the modified process ÁDPfl(TL; 1vi) reaches

the completely recovered state 0. Let Â‹
◊

TL
and ‹

◊

Tvi
be the stationary distribution of

DPfl(TL) and DPfl(T +
vi

), respectively. Also, we define ‹
¢
TL

:= ¢
D

j=1‹
◊

Tvj
. Therefore, we

have

Â‹
◊

TL
(0) = 1

1 + ⁄DFflETL,F
Ë

ÂS◊

È , ‹
¢
TL

(0) =
D
Ÿ

i=1

1

1 + ⁄FflFviETvi ,F

5

S
◊,i

L≠1

6 . (2.9)

We can write each state x œ �L := {0, 1}
V (fiD

i=1Tvi ) of DPfl(TL) as x = (xi)D

i=1,
where xi œ �i := {0, 1}

V (Tvi ). Let fiTvi
the stationary distribution CPfl(T +

vi
) and

fi
¢
TL

:= ¢
D

i=1fiTvi
. Thanks to the relation (2.6) we can write the stationary distributions

Â‹
◊

TL
(x) and ‹

¢
TL

(x) in terms of fi
¢
TL

and fiTui
, respectively. More precisely,

Â‹
◊

TL
(x) =

◊
≠r(x;TL)

fi
¢
TL

(x)
q

yœ�L
◊≠r(y;TL)fi¢

TL
(y) =

◊
≠r(x;TL) r

D

i=1 fiTvi
(xi)

q

yœ�TL
◊≠r(y;TL) r

D

i=1 fiTvi
(yi)

,

and similarly

‹
¢
TL

(x) =
D
Ÿ

i=1

C

◊
≠r(xi;Tvi )

fiTvi
(xi)

q

yiœ�i
◊

≠r(yi;Tvi )
fiTvi

(yi)

D

=
◊

≠
qD

i=1 r(xi;Tvi ) r

D

i=1 fiTvi
(xi)

q

yœ�L
◊

≠
qD

i=1 r(yi;Tvi ) r

D

i=1 fiTvi
(yi)

.

Furthermore, for x = (xi)D

i=1 œ �L with xi œ �i, we deduce that

r

1

x; TL

2

= max
Ó

r

1

xi; Tvi

2

: i = 1, . . . , D

Ô

6
D

ÿ

i=1
r

1

xi; Tvi

2

,

which implies ‹
¢
TL

(0) 6 Â‹
◊

TL
(0). Using this fact together with (2.9), and plugging back

into (2.8), we obtain that

ETL,F
Ë

ÂS
◊

L

È

6 1
◊

1

1 + ⁄DFflETL,F
Ë

ÂS
◊
È2

6 1
◊

D
Ÿ

i=1

3

1 + ⁄FflFviETvi ,F

5

S
◊,i

L≠1

64

.

Taking expectations conditionally only on D and Ffl, we get

E
Ë

ÂS
◊

L
|D, Ffl

È

6 1
◊

D
Ÿ

i=1

3

1 + ⁄FflE
Ë

FviS
◊,i

L≠1
È

4

.

Moreover, taking account the monotonicity of the contact process, we have S
◊

L
6 ÂS

◊

L
,
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which implies

E
Ë

S
◊

L
|D, Ffl

È

6 1
◊

D
Ÿ

i=1

3

1 + ⁄FflE
Ë

FflS
◊

L≠1
È

4

6 1
◊

1

1 + ⁄FflE
Ë

FflS
◊

L≠1
È2

D

6 1
◊

exp
3

⁄DFflE
Ë

FflS
◊

L≠1
È

4

.

Thus taking expectations over D and Ffl and appealing to the Cauchy-Schwarz in-
equality, we obtain

E
Ë

FflS
◊

L

È

6 1
◊
E

5

Ffl exp
3

⁄DFflE
Ë

FflS
◊

L≠1
È

46

6 1
◊
E

Ë

F
2
fl

È1/2
E

5

exp
3

2⁄DFflE
Ë

FflS
◊

L≠1
È

461/2
. (2.10)

Now, we shall apply an inductive argument over L to bound E
Ë

FflS
◊

L

È

. We assume
that E

Ë

e
c›F

È

= M for some c, M > 0, and define the following constants

K = max

Y

_

]

_

[

2 · 21/2E
Ë

F
2
fl

È1/2
log M

c log 2 ,

2 · 21/2E
Ë

F
2
fl

È1/2

c
, 21/2E

Ë

F
2
fl

È1/2

Z

_

^

_

\

, ⁄0 = 1
2K

,

and for any ⁄ 6 ⁄0 we set ◊ = ⁄K. In particular note that choosing these constants
guarantees that ◊ < 1. For the base case L = 0, note that S

◊

0 is an exponential random
variable with parameter ◊ that is independent of Ffl. Therefore,

E
Ë

FflS
◊

0
È

= E
Ë

Ffl

È

E
Ë

S
◊

0
È

6 1
◊
E

Ë

F
2
fl

È1/2 6 1
◊
E

Ë

F
2
fl

È1/2 6 1
◊

21/2E
Ë

F
2
fl

È1/2
,

so that the base case holds. Next, we assume E[FflS
◊

L≠1] 6 ◊
≠121/2E

Ë

F
2
fl

È1/2
. Then we

have
2⁄E

Ë

FflS
◊

L≠1
È

c
6

2 · 21/2
⁄E

Ë

F
2
fl

È1/2

c⁄K
6

2 · 21/2E
Ë

F
2
fl

È1/2

cK
6 1.

Hence, g(x) = x
2⁄
c E[F◊

fl SL≠1] is a concave function, which permits us to apply Jensen’s
inequality to deduce

E
5

exp
3

2⁄DFflE
Ë

FflS
◊

L≠1
È

46

= E
S

Uexp
Q

acDFfl

2⁄E
Ë

FflS
◊

L≠1
È

c

R

b

T

V

6 exp
Q

alog M

2⁄E
Ë

FflS
◊

L≠1
È

c

R

b = M

2·21/2E[F2
fl ]1/2

cK 6 2,

where the last inequality is due to the definition of K. Plugging this back into (2.10),
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for any L and all ⁄ 6 ⁄0 with ◊ = K⁄, we have

E
Ë

FflS
◊

L

È

6 1
◊

21/2E
Ë

F
2
fl

È1/2
. (2.11)

Finally, ‹
◊

TL
(0) the stationary distribution of DPfl+(T +

L
) in state 0, is (q(0)m(0))≠1,

where

q(0) = r
(0,T +

L )
⁄FflFfl+ = ⁄Ffl and m(0) = 1

q(0) + ETL,F
Ë

S
◊

L

È

,

and recall that S
◊

L
is the first time when (Xt) ≥ DPfl+(T +

L
; 1fl) reaches 0. Thus,

‹
◊

TL
(0) = 1

1 + ⁄FflETL,F
Ë

S
◊

L

È = 1
1 + ⁄ETL,F

Ë

FflS
◊

L

È .

Taking expectation over the tree and the fitness in the reciprocal of the last expression
and using (2.11), we we deduce the following inequality which holds for all ⁄ 6 ⁄0 and
L,

E
5

‹
◊

TL
(0)≠1

6

= 1 + ⁄E
Ë

FflS
◊

L

È

6 1 +
⁄21/2E

Ë

F
2
fl

È1/2

◊
6 1 +

21/2E
Ë

F
2
fl

È1/2

K
6 2.

This concludes the proof.

Recall that SL was defined in Lemma 2.4.1 as the first time when CPfl+(T +
L

; 1fl)
reaches the state 0 on TL. Let

H = max
Ó

r

1

Xt, T
+

L

2

: t œ [0, SL]
Ô

be the maximal depth that the contact process reaches until the time SL. In the next
lemma, we study the probability that the contact process in a given tree (TL,F(TL))
travels deeper than a given height in the tree. Essentially the proof mimics the steps
of [13, Theorem 3.4]. However, we present it here for the sake of completeness.

Lemma 2.4.3. Suppose that › and Ffl satisfy Assumption (A). Let L be a non-

negative integer. There exist constants K, ⁄0 > 0 such for all ⁄ 6 ⁄0, h > 0 and

m > 0, we have

PTL,F
1

H > h

2

6 2m(K⁄)h

with probability at least 1 ≠ m
≠1

over the choice of (TL,F(TL)).

Proof. Let L be a non-negative integer and assume h > 0 and m > 0. We define the
constants K, ⁄0 and ◊ as were defined in Lemma 2.4.2. We denote by fiTL and ‹

◊

TL
the
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stationary distributions of CPfl+(T +
L

) and DPfl+(T +
L

), respectively. Notice that, by
Markov’s inequality and Lemma 2.4.2, for any ⁄ 6 ⁄0 we have

P
1

‹
◊

TL
(0)≠1 > 2m

2

6
E

Ë

‹
◊

TL
(0)≠1

È

2m
6 1

m
. (2.12)

We denote by Ah the set of states in (TL,F(TL)) with depth at least h until the time
SL, i.e.,

Ah =
Ó

x œ {0, 1}
V (TL) : r

1

x; T
+

L

2

> h

Ô

.

Using the above arguments and the transition rate of the delayed contact process, we
deduce the following inequality which holds for all ⁄ 6 ⁄0 and on the event ‹

◊

TL
(0)≠1 >

2m,
fiTL(Ah)
fiTL(0) =

q

xœAh
◊

r(x;T +
L )

‹
◊

TL
(x)

‹
◊

TL
(0) 6 ‹

◊

TL
(Ah)

‹
◊

TL
(0) ◊

h 6 2m◊
h
,

By (2.12), this inequality thus holds with probability 1 ≠ m
≠1 over the choice of

(TL,F(TL)).
On the other hand, if (Xt) ≥ CPfl+(T +

L
) hits Ah, the expected time needed for Xt

to escape from Ah is at least 1. Indeed, we must wait for a recovery exponential clock
rings. In other words, if

“L(h) :=
-

-

-{t œ [0, SL] : Xt œ Ah}

-

-

-,

where | · | denotes the Lebesgue measure, then

ETL,F
Ë

“L(h) | H > h

È

> 1.

Therefore, for any ⁄ 6 ⁄0, we obtain

PTL,F
1

H > h

2

6 ETL,F
Ë

“L(h) | H > h

È

PTL,F
1

H > h

2

= ETL,F
Ë

“L(h)1{H>h}
È

6 ETL,F
Ë

“L(h)
È

6 fiTL(Ah)
fiTL(0) 6 2m(K⁄)h

,

with probability 1 ≠ m
≠1 over the choice of (TL,F(TL)).

We are now ready to move to the proof of the main theorem of this section.

Proof of Theorem 2.2.1. We consider the K and ⁄0 as defined in Lemma 2.4.2. Let
⁄ œ (0, ⁄0] so that in particular K⁄ < 1. Let ” be any small number and h a constant
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such that (K⁄)h = ”
2

8 . Further, denote by Eh the event that the infection set of
CP(T ; 1fl) does not go deeper that h before dying out. Hence, by Lemma 2.4.3 and
setting m = 4”

≠1, we obtain that

P(Eh) > 1 ≠ 2m(K⁄)h = 1 ≠ 2m
”

2

8 = 1 ≠ ”.

On the other hand, let R and Rh denote the first time when CP(T ; 1fl) and
CP(Th; 1fl) reaches state 0, respectively. Under the event Eh these two times are
the same. Thus the above reasoning and Lemma 2.4.1 imply that

E
Ë

R | Eh

È

= E
Ë

Rh | Eh

È

=
E

Ë

Rh1Eh

È

P(Eh) 6
E

Ë

Rh

È

P(Eh) 6
e

1/2 E
Ë

F
2
fl

È1/2

1 ≠ ”
< Œ.

Finally, for (Xt) ≥ CP(T ; 1fl), note that

P
1

Xt ”= 0 for all t > 0
2

= P
1

R = Œ

2

= P
1

{R = Œ} fl Eh

2

+ P
1

{R = Œ} fl E
c

h

2

.

Furthermore, we have that P({R = Œ} fl Eh) = 0 and P(Ec

h
) 6 ”. Therefore, we get

the following inequality which holds for all ” > 0

P
1

Xt ”= 0 for all t > 0
2

6 ”.

We conclude that for all ⁄ 6 ⁄0 the process (Xt) ≥ CP(T ; 1fl) dies out almost
surely.

2.5 Finite Stars
In this section, we show some results for the inhomogeneous contact process on stars
which will be used in the proof of Theorem 2.2.2 in the next section. Although any
finite graph is eventually trapped in the state of zero infection, the stars are able to
maintain the infection for a long time. Here we will show that, if the root of the star
is initially infected, the star will keep a large number of infected leaves for a long time
with probability very close to 1.

Some of our results in this section are inspired by results obtained by Huang and
Durret in [40, Section 2]. However, we had to adapt their arguments to take advantage
of the fact that we can have a large fitness value associated to the root of the star.

We start this section by proving a lower bound for the probability to transfer the
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infection from one vertex to another in a graph consisting of a single path conditionally
on the associated fitness values.

Lemma 2.5.1. Let r be an arbitrary non-negative integer and f > 1 a real number.

Let Cr be a graph consisting of a single path of length r on the vertices v0, . . . , vr with

associated fitness values F(Cr) := {Fv0 , . . . , Fvr}. Consider (Xt) ≥ CP(Cr; 1v0) the

contact process on Cr where v0 is initially infected. Then there exists a constant “ > 0
such that

PF
1

vr œ X2r

2

= P
1

vr œ X2r | F(Cr), v0 œ X0
2

>
1

1 ≠ e
≠“r

2

r
Ÿ

i=1

⁄Fvi≠1Fvi

1 + ⁄Fvi≠1Fvi

.

Moreover,

P
1

vr œ X2r | Fv0 > f, Fvr > f

2

>
1

1 ≠ e
≠“r

2

C⁄,f

A

⁄

⁄ + 1

B

r

,

where

C⁄,f :=
A

⁄ + 1
⁄

B2 A

⁄f

1 + ⁄f

B2

. (2.13)

Proof. We emphasize here that the notation PF
1

·

2

corresponds to the conditional
probability on the fitness and also that we start with v0 initially infected. Let r be an
arbitrary non-negative integer. First, we need to establish some appropriate notation.
We define the sequence of times (si)i>0 by setting s0 = 0 and for i œ {1, . . . , r} defining

si := inf{s > si≠1 : vi≠1 recovers or infects vi at time s}.

Denote T = q

r

i=1 ti where ti := si ≠ si≠1. Also denote the events

Bi := {vi≠1 infects vi before recovering} and B =
r

‹

i=1
Bi.

We begin by noting that from the definition of the event B and the definition of T we
can obtain the following lower bound

PF
1

vr œ X2r

2

> PF
1

B fl {T 6 2r}

2

= PF
1

T 6 2r | B

2

PF(B). (2.14)

Now, we shall establish lower bounds for the two probabilities on the right-hand side
above. Conditioning on the fitness and also on the event {vi≠1 œ Xsi≠1}, we know that
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the probability that vi≠1 infects vi before recovering is given by

P{Fvi≠1 ,Fvi }
1

Bi | vi≠1 œ Xsi≠1

2

= ⁄Fvi≠1Fvi

1 + ⁄Fvi≠1Fvi

.

where here we denote by P{Fvi≠1 ,Fvi }(·) the conditional probability P(· |{Fvi≠1 , Fvi}).
This implies that

PF(B) =
r

Ÿ

i=1
P{Fvi≠1 ,Fvi }

1

Bi | vi≠1 œ Xsi≠1

2

=
r

Ÿ

i=1

⁄Fvi≠1Fvi

1 + ⁄Fvi≠1Fvi

. (2.15)

On the other hand, by an application of Markov’s inequality and by the definition
of B and T , for any ◊ > 0,

PF
1

T > 2r | B

2

= PF
1

e
◊T > e

2◊r

-

-

- B

2

6 e
≠2◊rEF

Ë

e
◊T

| B

È

6 e
≠2◊r

r
Ÿ

i=1
E{Fvi≠1 ,Fvi }

5

e
◊ti

-

-

-

-

Bi fl {vi≠1 œ Xsi≠1}

6

By conditioning on the event Bi fl {vi≠1 œ Xsi≠1} we obtain that ti has an exponential
distribution with parameter (1+⁄Fvi≠1Fvi). Therefore, we can couple ti with a random
variable ·i with an exponential distribution with parameter 1 such that ti 6 ·i almost
surely. Then, following the standard argument for a large deviation bound, we obtain
that

PF
1

T > 2r | B

2

6 e
≠2r◊+r log „(◊)

,

where „(◊) = E[e◊·i ]. Now, note that

lim
◊æ0

log(„i(◊))
◊

= E[·i] = 1.

Therefore, by choosing ◊ > 0 small enough, we can deduce that there exists “ > 0
such that

PF
1

T > 2r | B

2

6 e
≠r“

, (2.16)

Plugging (2.15) and (2.16) back into (2.14), we now see that

PF
1

vr œ X2r

2

>
1

1 ≠ e
≠“r

2

r
Ÿ

i=1

⁄Fvi≠1Fvi

1 + ⁄Fvi≠1Fvi

.

For the second part, we fix f > 1. Then, on the event {Fv0 > f, Fvr > f} and
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using that Fvi > 1, we obtain

r
Ÿ

i=1

⁄Fvi≠1Fvi

1 + ⁄Fvi≠1Fvi

>
A

⁄

1 + ⁄

B

r≠2 A

⁄f

1 + ⁄f

B2

,

which yields the desired result.

Let Gk be a star of size k, that is, Gk consists of a root fl and k other vertices each
connected only to fl, denoted by v1, . . . , vk. Let (Xt) ≥ CP(Gk; 1fl) denote the contact
process on Gk with the root initially infected. Define (X0

t
) to be the modification of

(Xt) in such a way that the fitness values for the leaves satisfy Fv1 = · · · = Fvk
= 1

and the fitness of the root is Ffl = f > 1. Note that, the contact process (X0
t
) may

be considered as a contact process without fitness and with rate parameter ⁄̃ := ⁄f .
Now, on the event {Ffl > f} and taking into account that the random variable F

takes values in [1, Œ), we have

⁄f 6 ⁄Fvj Ffl for every j = 1, . . . , k.

Thus by monotonicity of the contact process in the rate parameter, as discussed in
Section 2.3, we have X

0
t

µ Xt on the event {Ffl > f}. Moreover, on a star the
dynamics of X

0
t

are the same as that of a standard contact process, but where the
infection rate is ⁄f . In particular, we can use some of the results in Section 2 of Huang
and Durret [41] (see also [20, Lemma 2.2]) describing the persistence of the infection
on a star. Some of the results can be taken over directly, however, others need to be
adapted so that we can make full use of the fact that we have the extra flexibility of
making f large enough.

When considering the process (X0
t
), write the state of the star as (m, n) where m

is the number of infected leaves and n = 0 or 1 if the center is healthy or infected,
respectively. Throughout, we will write �0

t
µ X

0
t

for the set of infected leaves. Also,
we will write P(m,n) if we are conditioning on X

0
0 = (m, n).

As in [20, 41], we will reduce the dynamics to a one-dimensional chain, by concen-
trating on the first coordinate (i.e. we will count the number of infected leaves). As a
first step, we will ignore the times when the centre is not infected and as a second step
we will stop the dynamics when we reach a certain level L of infected leaves. We can
then define a suitable time-homogenous Markov chain that lower bounds the number
of infected leaves (running on a clock ignoring times when the centre is not infected).

To deal with the number of leaves that recover while the root is not infected, we
note that when the state is (m, 0) for some m > 0, the next event will occur after an
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exponential time with mean 1/(m⁄f + m). The probability that the root is reinfected
first is ⁄f/(⁄f + 1). Denote by N the number of infected leaves that will recover
while the center is healthy. Thus N has a shifted geometric distribution with success
probability ⁄f/(⁄f + 1), i.e.

P
1

N = j

2

=
A

1
⁄f + 1

B

j
A

⁄f

⁄f + 1

B

, j 6 k. (2.17)

Recall that we are considering a star of size k. Fix ⁄ > 0, k > 1 and f > 1 and set a
cut-o� level

L =
G

⁄fk

1 + 2⁄f

H

. (2.18)

If we modify the chain so that the infection rate is 0 when the number of infected
leaves is > L, then we can couple the number of infected leaves to a process (Yt)t>0

with the following dynamics

jump at rate
Yt æ Yt ≠ 1, L

Yt æ min{Yt + 1, L}, ⁄f(k ≠ L)
Yt æ Yt ≠ N, 1,

(2.19)

so that the process (Yt) stays below the number of infected leaves (ignoring times when
the centre is not infected) as long as the original process has not hit the state (0, 0)
yet. For convenience, we do not stop the process after hitting a state below 0 and
instead we are careful to apply the coupling only up to the hitting of (0, 0).

The following lemma allows to show that |�0
t
| hits level L before the process dies

out with high probability. Also, we show that the first time (Yt) hits L has small
expectation. Our result is similar to [41, Lemma 2.5] and [20, Lemma 2.3], however
we need to adapt their arguments to give useful estimates also for large fitness.

To formalize these statements, denote for the original chain for any A > 0,

TA = inf{t > 0 : |�0
t
| > A}, T0,0 = inf{t > 0 : X

0
t

= (0, 0)}.

Moreover, for (Yt) define for A > 0,

T
Y

A
= inf{t > 0 : Yt > A} and R

Y

0 = inf{t > T
Y

1 : Yt 6 0}.

In the following lemma, we will also consider the embedded discrete time process
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(Zn) of (Yt) obtained by looking at Yt only at its jump times. This process has the
property that for f large enough (1+⁄f/2)≠Zn is a supermartingale while Zn œ (0, L).
The proof follows from similar arguments as those used in [41, Lemma 2.1].

Lemma 2.5.2. Let ⁄ > 0 be fixed. Consider the stochastic process (Yt) defined in

(2.19) and the contact process (X0
t
). Then for f and k large enough we have

P(0,1)
1

TL > T0,0
2

6 c

⁄fk1/3 and E0
Ë

T
Y

L

È

6 ‚c

⁄f
,

for some positive constants c and ‚c.

Remark 2.5.1. Note that [41, Lemma 2.5] also states a result for the conditional
expected value of TL. In their proof the authors ignore times when the root is not
infected, so that their result for the expected value is really only for T

Y

L
. However, the

estimate on the probability is only true for the original process and not for Yt. We
fix this omission by bounding the the times when the root is not infected in the next
lemma.

Proof of Lemma 2.5.2. Let ⁄ > 0, k > 1 and f > 1 and define

K =
G

⁄(fk)1/3

1 + 2⁄f 1/3

H

.

Recall the definition of the constant L given in (2.18). Observe that K 6 L and
K æ Ák

1/3
/2Ë as f æ Œ. We begin by observing that

P(0,1)
1

TK < T0,0
2

>
K≠1
Ÿ

j=0

(k ≠ j)⁄f

1 + (k ≠ j)⁄f + j
,

where the term in the product corresponds to the probability that |�0
t
| jumps upwards

K times before either the root or one of the leaves recovers. From the latter inequality
and using [28, Lemma 3.4.3], we have

P(0,1)
1

TK > T0,0
2

6
K≠1
Ÿ

j=0
1 ≠

K≠1
Ÿ

j=0

(k ≠ j)⁄f

1 + (k ≠ j)⁄f + j
6

K≠1
ÿ

j=0

1 + j

1 + (k ≠ j)⁄f + j

6
K≠1
ÿ

j=0

1 + j

(k ≠ j)⁄f
6 K

2

(k ≠ K)⁄f
,

where in the last inequality we have used that {(1 + j)/(k ≠ j), j = 0, . . . , K ≠ 1} is



2.5 Finite Stars 65

an increasing finite sequence. Using the definition of K we can see that

P(0,1)
1

TK > T0,0
2

6 c1⁄(fk)2/3

(1 + 2⁄f 1/3)(k + 2⁄f 1/3k ≠ ⁄(fk)1/3)f 6 c2
⁄fk1/3 ,

where c1 and c2 are positive constants.
Now, we use the jump process (Zn) and the fact that for f large enough the process

(1 + ⁄f/2)≠Zn is a supermartingale while Zn œ (0, L). We denote by T
Z

L
and R

Z

0 the
analogous stopping time and return time for the process (Zn), respectively. Note that,
since (Zn) is obtained from (Yt) by looking it only at its jump times, we see that
{T

Y

L
> R

Y

0 } = {T
Z

L
> R

Z

0 }. By an application of the Optional Stopping Theorem
with the bounded stopping time · · n where · = R

Z

0 · T
Z

L
, we get

EK

5

1

1 + ⁄f/2
2≠Z··n

6

6 EK

5

1

1 + ⁄f/2
2≠Z0

6

.

By letting n æ Œ, we deduce

EK

5

1

1 + ⁄f/2
2≠Z·

6

6
1

1 + ⁄f/2
2≠K

,

which implies

PK

1

R
Z

0 < T
Z

L

2

+
3

1 ≠ PK

1

R
Z

0 < T
Z

L

2

4

1

1 + ⁄f/2
2≠L 6

1

1 + ⁄f/2
2≠K

.

Discarding the second term on the left-hand side, it follows that

PK

1

R
Z

0 < T
Z

L

2

6
1

1 + ⁄f/2
2≠K

. (2.20)

To go back to the unmodified process, we use that {T0,0 < TL} µ {R
Z

0 < T
Z

L
}, so that

we can apply (2.20). Combined with the strong Markov property we obtain

P(0,1)
1

TL > T0,0
2

6 P(0,1)
1

TK > T0,0
2

+ P(0,1)
1

TL > T0,0 | TK < T0,0
2

P(0,1)
1

TK < T0,0
2

6 P0
1

T
Y

K
> R

Y

0
2

+ P(K,1)
1

TL > T0,0
2

6 P0
1

T
Y

K
> R

Y

0
2

+ PK

1

R
Z

0 < T
Z

L

2

.

Then, combining with the above estimates, we have the first claim of the lemma, that
is to say, for f and k large enough

P(0,1)
1

TL > T0,0
2

6 c2
⁄fk1/3 +

1

1 + ⁄f/2
2≠K 6 c3

⁄fk1/3 ,
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for some positive constant c3.
To deal with the second claim of the lemma, recall the random variable N defined

in (2.17) with E0[N] = (⁄f)≠1. From the definition of the process (Yt), we deduce that
before time T

Y

L
,

E0
Ë

Yt

È

=
3

≠ L + ⁄f(k ≠ L) ≠
1

⁄f

4

t.

Thus the process (Yt ≠ µ⁄,f t) with µ⁄,f := ≠L + ⁄f(k ≠ L) ≠ (⁄f)≠1 is a martingale
before time T

Y

L
. An application of the Optimal Stopping Theorem with the bounded

stopping time T
Y

L
· t, tell us that

E0
Ë

YT
Y
L ·t

È

≠ µ⁄,fE0
Ë

T
Y

L
· t

È

= E0[Y0] = 0.

Furthermore, since E0[YY
Y

L ·t] 6 L, it follows that for f and k large enough

E0
Ë

T
Y

L
· t

È

= L

µ⁄,f

= 1
≠1 + ⁄fkL≠1 ≠ (⁄fL)≠1 6 c4

⁄f
,

Taking t æ Œ we get E0
Ë

T
Y

L

È

6 c4/⁄f .

By combining the two results of the previous lemma with an estimate on the time
that the root of the star is not infected, we can show that the process reaches L

infected leaves before time 1 with high probability for large f .

Lemma 2.5.3. Let Gk be a star with leaves v1, . . . , vk and root fl. Consider the contact

process (X0
t
) ≥ CP(Gk; 1fl). Let ⁄ > 0 be fixed. Then for f and k large enough, we

have

P(0,1)
1

TL > 1
2

6 ‚c1
⁄f

+ c

⁄fk1/3

where ‚c1 and c are positive constants.

Proof. Fix ⁄ > 0. Recall the process (Yt) given in (2.19) and its corresponding stopping
times T

Y

L
and R

Y

0 . We begin by letting the stochastic process (�t)t>0 denote the number
of infected leaves, where we ignore times when the root is not infected. Let us now
introduce the stopping time T

�
L

= inf{t > 0 : �t > L}. Then, by definition we have
TL > T

�
L

a.s.. Moreover, on the event that TL < T0,0, we have that T
�
L
6 T

Y

L
.

Observe that the following inequalities hold

P(0,1)
1

TL > 1
2

6 P(0,1)
1

TL > 1, T
�
L

> 1/2
2

+ P(0,1)
1

TL > 1, T
�
L

< 1/2
2

6 P(0,1)
1

T
�
L

> 1/2
2

+ P(0,1)
1

TL > 1, T
�
L

< 1/2
2

.

(2.21)
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Our objective is now to find upper bounds for both probabilities on the right-hand
side above. First, we deal with the first of these probabilities. Since we have that

P(0,1)
1

T
�
L

> 1/2
2

6 P(0,1)
1

TL > T0,0
2

+ P(0,1)
1

T
�
L

> 1/2, TL < T0,0
2

6 c

⁄fk1/3 + P0(T Y

L
> 1/2

2

,

where we used the first part of Lemma 2.5.2. By the second part of the same lemma
and Markov’s inequality, we also have that

P0(T Y

L
> 1/2

2

6 2E0[T Y

L
] 6 2‚c

⁄f
.

Combining, we obtain

P(0,1)
1

T
�
L

> 1/2
2

6 c

⁄fk1/3 + 2‚c

⁄f
.

To estimate the second term in (2.21), let ¸t denote the amount of time until t that
the process (X0

t
) spends in the states when the root is not infected, i.e.

¸t =
-

-

-{s 6 t : X
0
s

= (j, 0), for some j œ {0, 1, . . . , k}

-

-

-,

where | · | denotes the Lebesgue measure here. Note that as TL = T
�
L

+ ¸TL , it follows
that

P(0,1)
1

TL > 1, T
�
L

< 1/2
2

6 P(0,1)
1

T
�
L

< 1/2, ¸TL > 1/2
2

. (2.22)

Now, we recall the random variable N defined in (2.17). Denote by mt the number of
times that the process (�t) jumps down by N until time t. Note that if the state is
(i, 0) with i > 1, then the time until either the next jump down or when the root is
infected is given by an exponential random variable with distribution Exp(i(1 + ⁄f)).
Such a random variable is stochastically dominated by another random variable that
has distribution Exp(1 + ⁄f). Hence, each time period when the root is healthy can
be dominated by

N
ÿ

i=1
Ei,

where for each i = 1, . . . ,N the random variables Ei have Exp(1 + ⁄f) distributions.
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Thus on the event, {T
�
L

< 1/2}, we deduce that

¸TL 6
m

T �
L

ÿ

j=1

Nj
ÿ

i=1
E

(j)
i

6
m1/2
ÿ

j=1

Nj
ÿ

i=1
E

(j)
i

,

where the random variables E
(j)
i

have Exp(1 + ⁄f) distributions and Nj are random
variables with the same distribution as N. It follows that

P(0,1)
1

T
�
L

< 1/2, ¸TL > 1/2, m1/2 < Á⁄fË

2

6 P(0,1)

Q

a

Á⁄fË
ÿ

j=1

Nj
ÿ

i=1
E

(j)
i

>
1
2

R

b

6 2Á⁄fËE(0,1)
Ë

N
È

E(0,1)
Ë

E1
È

6 2(⁄f + 1) 1
⁄f

1
1 + ⁄f

= 2 1
⁄f

.

In addition, note that the random variable m1/2 has a Poisson distribution with pa-
rameter 1/2. Then appealing to Markov’s inequality, we obtain

P(0,1)
1

m1/2 > Á⁄fË

2

6 1
Á⁄fË

E(0,1)[m1/2] 6
1

2⁄f
.

Therefore

P(0,1)
1

TL > 1, ¸TL < 1/2
2

6 P(m1/2 > Á⁄fË) + P(0,1)
1

TL > 1, ¸TL < 1/2, m1/2 < Á⁄fË

2

6 5
2⁄f

.

Putting the pieces together back into (2.21), we obtain

P(0,1)
1

TL > 1
2

6 P(0,1)
1

T
�
L

> 1/2
2

+ P(0,1)
1

TL > 1, T
�
L

< 1/2
2

6 2‚c

⁄f
+ c

⁄fk1/3 + 5
2⁄f

6 ‚c1
⁄f

+ c

⁄fk1/3 ,

for some positive constant ‚c1. This concludes the proof.

The following lemma, proved by Huang and Durrett in [41], will be useful for our
next result.

Lemma 2.5.4 ([41, Lemma 2.4]). Let k be an arbitrary non-negative integer and

f > 1 a real number. Let Gk be a star with leaves v1, . . . , vk and root fl. Consider the

contact process (X0
t
) ≥ CP(Gk; 1{fl,v1,...,vL}) where fl and L = Á⁄fk/(1 + 2⁄f)Ë leaves
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are initially infected. Then, for any ‘ œ (0, 1/2), we have

P(L,1)

3

inf
06t6S

|X
0
t
| 6 ‘L

4

6 (3 + ⁄f)(1 + ⁄f/2)≠‘L
,

where

S = (1 + ⁄f/2)L(1≠2‘)

2k(2 + ⁄f) = 1
4k

(1 + ⁄f/2)L(1≠2‘)≠1
. (2.23)

The next lemma tell us that if f and k are large enough, then beginning with only
vertex fl infected at time 0, the number of infected leaves during the time interval
[1, S] is at leasts ‘L with high probability. We recall that �t µ Xt is the set of infected
neighbours of fl at time t.

Lemma 2.5.5. Let Gk be a star of size k with root fl. Consider (Xt) ≥ CP(Gk; 1fl)
the inhomogeneous contact process on Gk. Fix ⁄ > 0, then for any ‘ œ (0, 1/2), we

have for f and k large enough, that

P(0,1)

3

inf
16t6S

|�t| 6 ‘L

-

-

-

-

Ffl > f

4

6 R(f, k, ⁄),

where

R(f, k, ⁄) =
‚c1
⁄f

+ c

⁄fk1/3 + c2
fk

(2.24)

with c, ‚c1 and c2 are positive constants.

Proof. Fix ⁄ > 0. We begin by noting that on the event {Ffl > f} and by monotonicity
we have

;

inf
16t6S

|�t| 6 ‘L

<

µ

;

inf
16t6S

|�0
t
| 6 ‘L

<

.

Then it is enough to prove the estimate for the process (�0
t
). By the strong Markov

property applied at TL on the event that TL < 1 and using that at TL the root is
necessarily infected, we note that

P(0,1)

3

inf
16t6S

|�0
t
| 6 ‘L

4

= P(0,1)

3

inf
16t6S

|�0
t
| 6 ‘L, TL > 1

4

+ P(0,1)

3

inf
16t6S

|�0
t
| 6 ‘L, TL < 1

4

6 P(0,1)
1

TL > 1
2

+ P(L,1)

3

inf
06t6S

|�0
t
| 6 ‘L

4

.

(2.25)

Now, appealing to Lemma 2.5.4, we have for any ‘ œ (0, 1/2), and for f and k large
enough,

P(L,1)

3

inf
06t6S

|�0
t
| 6 ‘L

4

6 c2
fk

,
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for some c2 > 0. Plugging this back into (2.25) and using Lemma 2.5.3, we get the
desired result.

One more lemma will be needed for the next section, so we record it now. The
result tells us about the behaviour of the contact process on a graph consisting of a
star with a single path joined to one of its leaves. Roughly speaking, if we start with
the root of the star infected, we give a lower bound for the probability that the vertex
on the path that is furthest from the root will be infected. This is a similar result to
[41, Lemma 3.2].

Lemma 2.5.6. Let r, k > 1 be arbitrary integers, and f > 1 a real number. Let Gk

be the star of size k with root fl and leaves v1, . . . , vk, to which has been added a single

path of length r of descendants of some child vi of fl. Denote by Cr the path with

vertices u1, . . . , ur with u1 = vi and associated fitness values F(Cr) = {Fu1 , . . . , Fur}.

Consider (Xt) ≥ CP(Gk fi Cr; 1fl) the inhomogeneous contact process on Gk fi Cr where

fl is initially infected. Then, for f , k and r large enough, we have

P(0,1)

3

ur /œ Xs for all s œ [0, S]
-

-

-

-

Fur > f, Ffl > f

4

6
1

1≠ ‚C⁄,f
‚⁄

r
2

S/(2r+1)
+R(f, k, ⁄),

where

‚C⁄,f = 1
4C⁄,f and ‚⁄ = ⁄

⁄ + 1 . (2.26)

The terms S, C⁄,f and R(f, k, ⁄) were defined in (2.23), (2.13) and (2.24), respectively.

Proof. Let r > 1 be an arbitrary integer and m 6 S(2r + 1)≠1. Begin by noting that

P(0,1)

3

ur /œ Xs for all s œ [0, S]
-

-

-

-

Ffl > f, Fur > f

4

6 P(0,1)

3

inf
16t6S

|�t| 6 ‘L

-

-

-

-

Ffl > f

4

+ P(0,1)

3

ur /œ Xs for all s œ [0, m(2r + 1)]
-

-

-

-

inf
16s6S

|�s| > ‘L, Ffl > f, Fur > f

4

,

where we recall that |�t| is the number of infected leaves of fl at time t. From Lemma
2.5.5 we know for f and k large enough that

P(0,1)

3

inf
16t6S

|�t| 6 ‘L

-

-

-

-

Ffl > f

4

6 R(f, k, ⁄),

where R(f, k, ⁄) was defined in (2.24). The proof is thus complete as soon as we can
show that for f and r su�ciently large

P(0,1)

3

ur /œ Xs for all s œ [0, m(2r + 1)]
-

-

-

-

inf
16s6S

|�s| > ‘L, Ffl > f, Fur > f

4

6
1

1 ≠ ‚C⁄,f
‚⁄

r
2

m

.

(2.27)
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We work on the event {inf16s6S |�s| > ‘L, Ffl > f, Fur > f}. Define the sequence of
times {ti = (2r + 1)i, 1 6 i 6 m}. Fix i œ {1, . . . , m}. We shall find the probability
that ur is infected in the time interval [ti, ti+1). Note that the center fl is not necessarily
infected at time ti. However, since 1 6 ti 6 S, it follows that the number of infected
neighbours at time ti is at least ‘L. Thus the center fl will be infected by time ti + 1
with probability

> 1 ≠ exp
1

≠ ⁄f‘L

2

.

Now, by Lemma 2.5.1 we have that if fl is infected at time ti + 1 then, under the
event {Ffl > f, Fur > f}, the vertex ur will become infected at time ti+1 (observe that
2r = ti+1 ≠ (ti + 1)) with probability > (1 ≠ e

≠r“)C⁄,f

1

⁄

1+⁄

2

r

for some “ > 0. Hence,
the probability that ur is successfully infected in [ti, ti+1) is

> (1 ≠ e
≠⁄f‘L)(1 ≠ e

≠r“)C⁄,f

A

⁄

1 + ⁄

B

r

.

Taking r and f su�ciently large, then the latter expression is > 1
4C⁄,f

‚⁄
r, so it follows

that (2.27) holds. Thus the desired result follows.

2.6 Proof of Theorem 2.2.2
For the proof of Theorem 2.2.2, we need the following two lemmas, which the reader
can find in [64, Lemma 2.3 and Lemma 3.4]. The first lemma gives a lower bound
for the probability that a binomial random variable is at least 1. The second lemma
gives a necessary condition for lim inftæŒ g(t) to be positive, where g is a function on
the non-negative reals numbers. From the definition of ⁄2, we can see that it will be
convenient to apply this result to the function g(t) = P(fl œ Xt).

Lemma 2.6.1 ([64, Lemma 2.3]). Let M be a positive integer-valued random variable

and pick p < E[M ]. For any x œ (0, 1], let Mx be a random variable with binomial

distribution Bin(M, x). Then there exits ‘ > 0 such that

P(Mx > 1) > px · ‘.

Lemma 2.6.2 ([64, Lemma 3.4]). Let G be any non-decreasing function on [0, Œ)
such that G(x) > x on some neighbourhood of 0. Suppose g is a function on [0, Œ)
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that satisfies, for some S > 0,

inf
06t6S

g(t) > 0 and g(t) > G

3

inf
06s6t≠S

g(s)
4

for t > S. (2.28)

Then

lim inf
tæŒ

g(t) > 0.

Remark 2.6.1. To prove Theorem 2.2.2 it su�ces to show that for any ⁄ > 0 we
have lim inftæŒ P(fl œ Xt) > 0 without conditioning on the tree (T ,F(T )). To see
why, assume that lim inftæŒ P(fl œ Xt) > 0 for any ⁄ > 0. Now, an application of the
dominated convergence theorem yields

E
5

lim inf
tæŒ

PT ,F(fl œ Xt)
6

= lim inf
tæŒ

E
Ë

PT ,F(fl œ Xt)
È

> 0.

It follows that for all (T ,F(T )) from a set with positive probability we deduce that

lim inf
tæŒ

PT ,F(fl œ Xt) > 0,

and this in turn implies ⁄2(T ,F(T )) = 0. By using the same arguments as in Proposi-
tion 3.1 in [64] we see that ⁄2(T ,F(T )) = 0 is constant for a.e. (T ,F(T )) conditioned
on |T | = Œ. It is worth recalling here that we are working under the assumption
µ = E[›] > 1, which guarantees that T survives forever with positive probability.

The proof of our result follows from similar ideas as those used in [64, Theorem
3.2] and afterwards in [41, Theorem 1.4]. However, the presence of fitness turns out
to lead to significant changes throughout the whole proof.

Proof of Theorem 2.2.2. Throughout this proof fix ⁄ > 0. We aim to show that under
the hypotheses of the theorem, the contact process always survives strongly.

In the proof, we will use two parameters: a positive integer k and a real number
f > 1 that we will choose at the very end. Let the set of good vertices in (T ,F(T ))
be denoted by

Af,k :=
Ó

v œ V (T ) : Fv > f and #chil(v) = k

Ô

,

where #chil(v) is the number of children of vertex v. Assume that k and f > 1 are
chosen so that the event {fl œ Af,k} has strictly positive probability. Since we are only
interested in proving a lower bound with positive probability, we will from now on
assume that P refers to the conditional probability measure given {fl œ Af,k}. Also,
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we emphasize that we always start with the root initially infected (unless specified
otherwise).

The proof is long and we break it up into three steps. In the first step, we will
push the infection to good vertices in a suitably chosen generation. In the second and
third step, we will bring the infection back to the root appealing to Lemma 2.6.2.

Step 1. Let S, ‚C⁄,f , and ‚⁄ be given as (2.23) and (2.26), respectively. Let r be
a positive integer. We assume that r= r(f, k) is a parameter to be determined later
which satisfies

S

2r + 1 >
2

‚C⁄,f
‚⁄r

. (2.29)

Denote by Vr = {v œ V (T ) : d(fl, v) = r}, where we recall that d(·, ·) is the graph
distance between two vertices in the tree. We prove in this step that, conditionally
on v œ Vr being a good vertex, then it will be infected before time S with probability
bounded away from zero uniformly for f and k large enough. That is to say, there
exists a positive constant c1 such that for any f and k su�ciently large and any
v œ Af,k fl Vr,

pin := PT ,F
1

v œ Xs for some s œ [0, S]
2

> c1.

The proof of this bound follows by an application of Lemma 2.5.6. Indeed, for f

su�ciently large we obtain

1 ≠ pin 6
1

1 ≠ ‚C⁄,f
‚⁄

r
2

S/(2r+1)
+ R(f, k, ⁄).

where the function R(f, k, ⁄) is defined in (2.24). Then, using the inequality (1 ≠

x)1/x
< e

≠1, observe that (2.29) forces the first term on the right hand side of the last
equation to be at most e

≠2, i.e.

1

1 ≠ ‚C⁄,f
‚⁄

r
2

S/(2r+1) 6
1

1 ≠ ‚C⁄,f
‚⁄

r
22/(‚C⁄,f‚⁄

r)
< e

≠2
.

Further, for f and k su�ciently large we have R(f, k, ⁄) 6 1/2. Therefore, we deduce
that pin is bounded away from 0 for f and k large enough, i.e.,

pin > c1, where c1 = 1
2 ≠ e

≠2
> 0. (2.30)

In other words, with positive probability we push the infection to a generation r which
satisfies condition (2.29).
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Step 2. We assume that condition (2.29) holds. Let us define, for t > 0,

g(t) := P
1

fl œ Xt

2

.

We want to bring the infection back to the root at time t appealing to Lemma 2.6.2. We
need to find a non-decreasing function G such that G(x) > x on some neighbourhood
of 0 and to verify that the function g satisfies (2.28), for S as chosen in (2.23). First,
observe that

inf
06s6S

g(s) > P
1

fl never recovers in [0, S]
2

= e
≠S

> 0.

Thus, we have that g satisfies the first condition of Lemma 2.6.2. On the other hand,
conditioning on the event that v œ Xt≠s for some v œ Af,k flVr, we deduce the following
lower bound, for t > S

g(t) = P
1

fl œ Xt

2

> H1(t)H2(t), (2.31)

where the functions H1 and H2 are given by

H1(t) = P
1

v œ Xt≠S for some v œ Af,k fl Vr

2

,

H2(t) = P
1

fl œ Xt

-

-

- v œ Xt≠S for some v œ Af,k fl Vr

2

.

Hence, the next goal is to establish lower bounds for the functions H1 and H2.
Lower bound for H1. Denote by Jr = |Af,k fl Vr| the number of good vertices

in generation r. Taking into account that we are working conditionally on the event
{fl œ Af,k}, we deduce a lower bound of the expected number of good vertices at level
r,

E[Jr] > kµ
r≠1P (› = k)P (F > f) ,

where we recall that µ = E[›] > 1. Let M
S

r
be the random number of good vertices in

generation r that are infected before time S. Together with (2.30), the above estimate
is su�cient to obtain that,

E
Ë

M
S

r

È

> E
S

U

ÿ

vœAf,kflVr

PT ,F
1

v œ Xs for some s œ [0, S]
2

T

V (2.32)

> c1E[Jr] > c1kµ
r≠1P (› = k)P (F > f) . (2.33)
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Let us define, for t > 2S,

‰(t) := inf
Ó

g(s) : 0 6 s 6 t ≠ S

Ô

.

Now, ignore all the infections of v œ Af,k fl Vr by its parent except the first infection.
Then, the contact on the subtrees rooted at vertices v œ Af,k flVr which are infected at
some time s < S will evolve independently from time s to time t ≠ S and then vertex
v will be infected with probability at least ‰(t). Therefore, if we denote by M

t≠S

r
the

random number of good vertices in generation r that are infected at time t≠S, we can
conclude that the random variable M

t≠S

r
stochastically dominates a random variable

M‰ that has distribution Bin
1

M
S

r
, ‰(t)

2

. By Lemma 2.6.1 and (2.33), there exists
‘1 > 0 such that

P
1

M‰ > 1
2

> 2≠1
c1kµ

r≠1P (› = k)P (F > f) ‰(t) · ‘1.

Note that the factor 2≠1 is required to guarantee the hypotheses of the Lemma 2.6.1.
Moreover, since M

t≠S

r
dominates the random variable M‰, we obtain that, for t > 2S

H1(t) > P
1

M
t≠S

r
> 1

2

> P
1

M‰ > 1
2

,

which implies for t > 2S

H1(t) > 2≠1
c1kµ

r≠1P (› = k)P (F > f) ‰(t) · ‘1. (2.34)

Lower bound for H2. Let t > S. We break down H2(t) into a product of
conditional probabilities as follows

H2(t) = P
1

fl œ Xt

-

-

- v œ Xt≠S for some v œ Af,k fl Vr

2

> h(t)‚h(t),

where

h(t) = P
1

fl œ Xs for some s œ [t ≠ S, t]
-

-

- v œ Xt≠S for some v œ Af,k fl Vr

2

,

‚h(t) = P
1

fl œ Xt

-

-

- fl œ Xs for some s œ [t ≠ S, t], v œ Xt≠S for some v œ Af,k fl Vr

2

.

We can lower bound h(t) by ignoring all the possible infections other than the infection
of v at time t ≠ S, we have

h(t) > P{v}
1

fl œ Xs for some s 6 S

-

-

- v œ Af,k fl Vr

2

,

where P{v} denote the law of the process with v initially infected. Moreover, by ignoring
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one child of v and considering the star of size k centered at v, the same argument as
in Step 1 applies and we deduce that

h(t) > P{v}
1

fl œ Xs for some s 6 S

-

-

- v œ Af,k fl Vr

2

> c1,

where the constant c1 is the same as in Step 1 and comes from assumption (2.29).
On the other hand, once again by monotonicity of the contact process we have, for

t > S

‚h(t) > P
1

fl œ Xt

-

-

- fl œ Xs for some s œ [t ≠ S, t]
2

.

Let us now introduce the stopping time for X,

· = inf{u > t ≠ S : fl œ Xu}.

On the event {· 6 t} we may distingusih two events {· 6 t ≠ 2} and {· œ [t ≠ 2, t]}.
We first work on the event {· 6 t ≠ 2} and at the end we come back to the other one.
Fix ‘2 > 0. Let B· be the event that the number of infected neighbours of fl is at least
‘2L in the entire random time interval [· + 1, t ≠ 1], i.e.,

B· =
I

inf
uœ[·+1,t≠1]

|�u| > ‘2L

J

,

where we recall that �u is the set of infected leaves of fl at time u. Denote by Ft

the ‡-algebra generated by tree, fitness and the contact process up to time t. Then,
appealing to the strong Markov property and Lemma 2.5.5 and using that · > t ≠ S,
we obtain

P(B· |F· ) > P
A

inf
uœ[·+1,S+· ]

|�t| > ‘2L

-

-

-

-

F·

B

> 1 ≠ R(f, k, ⁄),

where the function R(f, k, ⁄) is defined in (2.24). Next, define I to be the event that
at least one of the ‘2L neighbours that is infected at time t ≠ 1 infects the root at a
time in [t ≠ 1, t] before recovering. We can estimate the probability of this event as

P(I |Ft≠1) = 1 ≠ P(all ‘2L neighbors recover before infecting the root in [t ≠ 1, t])

> 1 ≠

A

1
1 + ⁄f

B

‘2L

.

Also, note that P(Rfl| Ft≠1) > e
≠1, where Rfl = {fl does not recover in [t ≠ 1, t]}.
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With this notation we have the following estimate

‚h(t) > P
1

I fl Rfl fl B· fl{· 6 t ≠ 2}

2

+ P
1

{fl œ Xs for all s œ [·, t]} fl {· œ [t ≠ 2, t]}
2

.

Furthermore, under the event {· œ [t ≠ 2, t]} we have t ≠ · 6 2 and thus

P
1

{fl œ Xs for all s œ [·, t]} fl {· œ [t ≠ 2, t]}
2

> e
≠2P

1

· œ [t ≠ 2, t]
2

.

Conditioning on Ft≠1 and using the independence of the infection and recovery events,
we obtain that

P
1

I fl Rfl fl B· fl {· 6 t ≠ 2}

2

= E
Ë

P(I fl Rfl|Ft≠1)1{B· ,·6t≠2}
È

= E
5

P(I|Ft≠1)P(Rfl|Ft≠1)1{B· ,·6t≠2}

6

>
Q

a1 ≠

A

1
1 + ⁄f

B

‘2L
R

b e
≠1E

5

P(B· |F· )1{·6t≠2}

6

.

Combining with the previous estimates, we get the lower bound

‚h(t) > e
≠2P

1

· œ [t ≠ 2, t]
2

+ e
≠1

1

1 ≠ R(f, ⁄, k)
2

Q

a1 ≠

A

1
1 + ⁄f

B

‘2L
R

bP(· 6 t ≠ 2)

> e
≠2

1

1 ≠ R(f, ⁄, k)
2

Q

a1 ≠

A

1
1 + ⁄f

B

‘2L
R

b .

Denote by c2 the expression

c2 = c2(⁄, f, k) := e
≠2

Q

a1 ≠

A

1
1 + ⁄f

B

‘2L
R

b

1

1 ≠ R(f, k, ⁄)
2

.

Observe that this expression depends on ⁄, f and k, however at the end of the proof
we will take f æ Œ and k æ Œ and we will see that c2 converges to e

≠2 when taking
those limits. The above lower bounds for h and ‚h give, for t > S

H2(t) > h(t)‚h(t) > c1c2. (2.35)

Plugging (2.34) and (2.35) back into (2.31), we now see that, for t > 2S

g(t) > H1(t)H2(t) > ckµ
r≠1P (› = k)P (F > f) ‰(t) · ‘1,
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where c = 2≠1
c

2
1c2. Hence, under the assumption that r satisfies condition (2.29), we

establish the following lower bound

g(t) >

Y

_

_

_

]

_

_

_

[

ckµ
r≠1P (› = k)P (F > f) ‰(t) · ‘1, t > 2S

inf
06s62S

g(s), S 6 t 6 2S.

Furthermore, note that

inf
06s62S

g(s) > P
1

fl never recovers in [0, 2S]
2

= e
≠2S

> 0.

Therefore, the above two estimate are su�cient to deduce that there exists ‘ > 0 such
that

g(t) > ckµ
r≠1P (› = k)P (F > f) ‰(t) · ‘, for t > S.

Step 3. We would like to use Lemma 2.6.2 applied to the non-negative and non-
decreasing function G defined as

G(x) = ckµ
r≠1P (› = k)P (F > f) x · ‘, for x > 0.

We begin by noting that if we choose

r = r(f, k) =
G

≠
log

1

µ
≠1

ckP(› = k)P(F > f)
2

log µ

H

. (2.36)

The reason for this choice is that then we will have ckµ
r≠1P (› = k)P (F > f) > 1,

and this in turn implies that G(x) > x for some neighbourhood of 0. This will allow
us to apply Lemma 2.6.2. We have to now show that the above choice of r allows us
to choose f and k such that condition (2.29) holds for ⁄ as fixed at the beginning.
Since C⁄,f > 1, we see from the definition of S given in (2.23), that

1
4

A

1 + ⁄f

2

B

L(1≠2‘)≠1 A

⁄

⁄ + 1

B

r

> 8k(2r + 1),

implies condition (2.29). The latter inequality is equivalent to

log
A

⁄

1 + ⁄

B

>
1
r

A

log
332

3 k(2r + 1)
4

≠

3

L

2 ≠ 1
4

log
A

1 + ⁄f

2

BB

. (2.37)
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In the last part of the proof, we complete our argument by showing that under the
hypotheses (B) and (C) in Theorem 2.2.2 for the fitness and the o�spring distributions,
we can find f and k such that (2.37) holds. Therefore, we can then deduce that the
assumptions of Lemma 2.6.2 are satisfied and so

lim inf
tæŒ

P(fl œ Xt) > 0,

which means that the process survives strongly.
(i) We first assume that condition (C) in Theorem 2.2.2 holds. Note that from the

definition of r = r(f, k) we obtain that for fixed k,

lim
fæŒ

1
r

log
332

3 k(2r + 1)
4

= lim
ræŒ

1
r

log
332

3 k(2r + 1)
4

= 0.

Now returning to (2.37), taking into account that by the definition of L given in (2.18),
L æ Á

k

2Ë as f æ Œ and assuming that f is large enough, we can deduce that (2.37)
holds if

log
A

⁄

1 + ⁄

B

> ≠
1
r

AA

1
2

9

k

2

:

≠ 1
B

log f

B

.

For this equation to hold, it su�ces to show that we can find f and k such that
⁄ > �(f, k), where the function � is defined as

�(f, k) =
exp

3

�(f, k) log µ

4

1 ≠ exp
3

�(f, k) log µ

4 ,

�(f, k) =
A

1
2

9

k

2

:

≠ 1
B

log f

log
1

µ≠1ckP(› = k)P(F > f)
2 .

To complete the argument, it su�ces to show that Assumption (B) implies that
we can indeed choose f and k such that ⁄ > �(f, k). Let C1 œ [0, Œ) be such that

lim sup
fæŒ

logP(F > f)
log f

= ≠C1.

Then there exists a subsequence (fn) such that fn æ Œ and

lim
næŒ

logP(F > fn)
log fn

= ≠C1.
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In particular, for any ” > 0 for all n su�ciently large we have

logP(F > fn)
log fn

> ≠C1 ≠ ”.

Therefore, we obtain that

lim sup
kæŒ

lim
næŒ

�(fn, k) 6 lim sup
kæŒ

≠1
C1 + ”

A

1
2

9

k

2

:

≠ 1
B

= ≠Œ,

so that by choosing k and fn large enough, we can guarantee that ⁄ > �(fn, k) and
the process survives strongly.

(ii) We now assume that condition (C) in Theorem 2.2.2 holds. This part follows
in a similar manner to the proof of the previous case. As above, we can see that as
E[›] < Œ we have that kP(› = k) æ 0 and so r = r(f, k) æ Œ as k æ Œ. Therefore,

lim
kæŒ

1
r

log
332

3 (2r + 1)
4

= lim
ræŒ

1
r

log
332

3 (2r + 1)
4

= 0.

Similarly to before we define

Â�(f, k) =
exp

3

Â�(f, k) log µ

4

1 ≠ exp
3

Â�(f, k) log µ

4 ,

Â�(f, k) =
A

31
2

9

k

2

:

≠ 1
4

log f ≠ log k

B

1
log

1

µ≠1ckP(› = k)P(F > f)
2 .

Then, for large k and f , we have that if ⁄>Â�(f, k), then (2.37) holds and we can
deduce the strong survival of the process. So our goal is to show that Â�(f, k) æ ≠Œ

as k, f æ Œ.
Let C2 œ [0, Œ) be such that

lim sup
kæŒ

logP(› = k)
k

= ≠C2.

Then there exists a sequence (kn) such that kn æ Œ and k
≠1
n

logP(› = kn) æ ≠C2 as
n æ Œ, so that for any ” > 0, for n su�ciently large

k
≠1
n

logP(› = kn)> ≠ C2 ≠ ”.
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Now, since µ
≠1

c 6 1 we see that

log kn

log
1

µ≠1cknP(› = kn)P(F > f)
2 > 1.

Further, since E[›] < Œ we have knP(› = kn) æ 0 as n æ Œ and therefore

lim
fæŒ

lim
næŒ

Â�(f, kn) 6 lim
fæŒ

≠
log f

4(C2 + ”)≠1 = ≠Œ,

so that again for f and n su�ciently large ⁄ > Â�(f, kn) as required. This completes
the proof.



Part III

Continuous-state branching
processes in a Lévy environment



Chapter 3

CSBPs in a Lévy environment

In this chapter, we introduce continuous-state branching processes (CSBP for short)
in a Lévy random environment and discuss some of their main properties. The chapter
is organised as follows. In Section 3.1, the CSBP in Lévy environment is defined as
the strong solution of a stochastic di�erential equation (see [38, 58]). Further, in the
case of finite mean we present a characterisation of its Laplace transform, given the
environment, via a backward di�erential equation. In Section 3.3, some preliminaries
of fluctuation theory of Lévy processes are introduced. Section 3.4 is devoted to
define Lévy process conditioned to stay positive or negative, as well as some of their
most useful properties. In Section 3.5 we introduce CSBPs in a conditioned Lévy
environment whose properties are needed for our purposes in the next two chapters
where we will study the asymptotic behaviour of the event of extinction and explosion.
Finally, in Sections 3.6 and 3.7, we gather together some of the facts that are already
in the literature regarding to extinction and explosion rates for CSBPs with stable
branching mechanism in a Lévy environment.

3.1 Introduction
Continuous state branching processes in random environments (or CBPREs for short)
are the continuous analogue, in time and space, of Galton-Watson processes in ran-
dom environment (or GWREs for short). Roughly speaking, a process in this class is
a strong Markov process taking values in [0, Œ], where 0 and Œ are absorbing states,
satisfying the quenched branching property. Informally, the quenched branching prop-
erty can be described as follows: conditionally on the environment, the process started
from x + y is distributed as the independent sum of two copies of the same process
but issued from x and y, respectively.
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CBPREs provides a richer class of branching models which take into account the
e�ect of the environment on demographic parameters and let new phenomena appear.
In particular, the classification of the asymptotic behaviour of rare events, such as the
survival and explosion probabilities, is much more complex than the case when the
environment is fixed since it may combine environmental and demographical stochas-
ticities. Moreover, CBPREs also appear as scaling limits of GWREs which is a very
rich family of population models; see for instance Kurtz [48] where the continuous
path setting is considered and Bansaye and Simatos [8] and Bansaye et al. [7] where
di�erent classes of processes in random environment are studied including CBPREs.

An interesting family of CBPREs arises from several scalings of discrete population
models in i.i.d. environments (see for instance [7, 8, 16]) which can be characterised by
a stochastic di�erential equation whose linear term is driven by a Lévy process. Such
Lévy process captures the e�ect of the environment on the mean o�spring distribution
of individuals. A process in this family is known as continuous state branching process

in Lévy environment (or CSBP in Lévy environment for short) and its construction
has been given by He et al. [38] and by Palau and Pardo [58], independently, as the
unique strong solution of a stochastic di�erential equation as we will see below.

3.2 Definitions and first properties
Let (�(b)

, F
(b)

, (F (b)
t )t>0,P(b)) be a filtered probability space satisfying the usual hy-

pothesis on which we may construct the branching term. We suppose that (B(b)
t , t >

0) is a (F (b)
t )t>0-adapted standard Brownian motion, N

(b)(ds, dz, du) is a (F (b)
t )t>0-

adapted Poisson random measure on R3
+, with intensity dsµ(dz)du and µ satisfying

⁄

(0,Œ)
(1 · z

2)µ(dz) < Œ.

The continuous-state branching process (CSBP for short) (Yt, t > 0) is defined as the
unique non-negative strong solution of the following stochastic di�erential equation

Yt = Y0 + a

⁄

t

0
Ysds +

⁄

t

0

Ò

2“2YsdB
(b)
s

+
⁄

t

0

⁄

(0,1)

⁄

Ys≠

0
z ÊN

(b)(ds, dz, du) +
⁄

t

0

⁄

[1,Œ)

⁄

Ys≠

0
zN

(b)(ds, dz, du),

where a œ R and “ > 0 (see Dawson and Li [24] for further details on strong existence
and uniqueness). Further, every CSBP is characterised by the branching mechanism
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Â, a convex function of the form

Â(⁄) = ≠a⁄ + “
2
⁄

2 +
⁄

(0,Œ)

1

e
≠⁄x

≠ 1 + ⁄x1{x<1}
2

µ(dx), ⁄ > 0. (3.1)

On the other hand, for the environment term we consider another filtered proba-
bility space (�(e)

, F
(e)

, (F (e)
t )t>0,P(e)) satisfying the usual hypotheses. Let ‡ > 0 and

– be real constants. Let fi be a measure concentrated on R \ {0} such that
⁄

R
(1 · z

2)fi(dz) < Œ.

Suppose that (B(e)
t , t > 0) is a (F (e)

t )t>0 - adapted standard Brownian motion,
N

(e)(ds, dz) is a (F (e)
t )t>0 - Poisson random measure on R+◊R with intensity dsfi(dz),

and ÊN
(e)(ds, dz) its compensated version. We denote by (St, t > 0) the Lévy process

with the following Lévy-Itô decomposition

St = –t + ‡B
(e)
t +

⁄

t

0

⁄

(≠1,1)
(ez

≠ 1)ÊN
(e)(ds, dz) +

⁄

t

0

⁄

(≠1,1)c
(ez

≠ 1)N (e)(ds, dz).

Note that, (St, t > 0) is a Lévy process with no jumps smaller than -1 which is
independent of the process (Yt, t > 0).

In our setting, the population size has no impact on the evolution of the environ-
ment and we are considering independent processes for the demography and the envi-
ronment. More precisely, we work now on the space (�, F , (Ft)t>0,P) the direct prod-
uct of the two probability spaces defined above, that is to say, � := �(e)

◊ �(b)
, F :=

F
(e)

¢ F
(b)

, Ft := F
(e)
t ¢ F

(b)
t for t > 0, P := P(e)

¢ P(b). Therefore, the continuous-

state branching process (Zt, t > 0) in a Lévy environment (St, t > 0) is defined on
(�, F , (Ft)t>0,P) as the unique non-negative strong solution of the following stochastic
di�erential equation

Zt = Z0 + a

⁄

t

0
Zsds +

⁄

t

0

Ò

2“2ZsdB
(b)
s

+
⁄

t

0

⁄

[1,Œ)

⁄

Zs≠

0
zN

(b)(ds, dz, du)

+
⁄

t

0

⁄

(0,1)

⁄

Zs≠

0
z ÊN

(b)(ds, dz, du) +
⁄

t

0
Zs≠dSs.

According to [38, Theorem 3.1] or [57, Theorem 1], the equation has pathwise unique-
ness and strong solution when |Â

Õ(0+)| < Œ. Moreover, Palau and Pardo [57] also
consider the case when Â

Õ(0+) = ≠Œ, and obtained that the latter stochastic di�er-
ential equation has a unique strong solution up to explosion and by convention here
it is identically equal to Œ after the explosion time. Furthermore, when conditioned
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on the environment, the process Z inherits the branching property of the underlying
CSBP previously defined.

The analysis of the process Z is deeply related to the behaviour and fluctuations
of the Lévy process › = (›t, t Ø 0), defined as follows

›t = –t + ‡B
(e)
t +

⁄

t

0

⁄

(≠1,1)
z ÊN

(e)(ds, dz) +
⁄

t

0

⁄

(≠1,1)c
zN

(e)(ds, dz), (3.2)

where
– := – ≠

‡
2

2 ≠

⁄

(≠1,1)
(ez

≠ 1 ≠ z)fi(dz).

Note that, both processes (St, t > 0) and (›t, t > 0) generate the same filtration.
Actually, the process › is obtained from S, changing only the drift and jump sizes.

The special case when we have finite mean, i.e., |Â
Õ(0+)| < Œ or equivalently

⁄

(0,Œ)
(z · z

2)µ(dz) < Œ. (3.3)

has already been extensively studied by Palau and Pardo in [58] and He et al in [38].
Let us therefore spend some time in this section gathering together some of the facts
that the aforementioned authors already established in their papers. When we assume
that the condition (3.3) holds, the auxiliary process can be taken as (3.2) but with a
drift given as follows

–̂ := – ≠ Â
Õ(0+) ≠

‡
2

2 ≠

⁄

(≠1,1)
(ez

≠ 1 ≠ z)fi(dz).

The process
1

Zte
≠›t , t > 0

2

is a quenched martingale implying that for any t > 0 and
z > 0,

Ez[Zt | S] = ze
›t , P -a.s, (3.4)

see Bansaye et al. [7]. In other words, the process › plays an analogous role as
the random walk associated to the logarithm of the o�spring means in the discrete
time framework and leads to the usual classification for the long-term behaviour of
branching processes. More precisely, we say that the process Z is subcritical, critical
or supercritical accordingly as › drifts to ≠Œ, oscillates or drifts to +Œ.

Further, under the condition (3.3), there is another quenched martingale associated
to (Zte

≠›t , t > 0) which allow us to compute its Laplace transform, see for instance
[58, Proposition 2] or [38, Theorem 3.4]. In order to compute the Laplace transform
of e

≠›tZt, we first introduce the unique positive solution (vt(s, ⁄, ›), s œ [0, t]) of the
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following backward di�erential equation

ˆ

ˆs
vt(s, ⁄, ›) = e

›sÂ0(vt(s, ⁄, ›)e≠›s), vt(t, ⁄, ›) = ⁄ (3.5)

where

Â0(⁄) = Â(⁄) ≠ ⁄Â
Õ(0+) = “

2
⁄

2 +
⁄

(0,Œ)

1

e
≠⁄x

≠ 1 + ⁄x

2

µ(dx). (3.6)

Then the process
1

exp{≠vt(s, ⁄, ›)Zse
≠›s}, 0 Æ s Æ t

2

is a quenched martingale im-
plying that for any ⁄ > 0 and t > s > 0,

E
5

exp{≠⁄Zte
≠›t}

-

-

-

-

S, F
(b)
s

6

= exp{≠Zse
≠›svt(s, ⁄, ›)}. (3.7)

Moreover, let us denote the random semigroup hs,t(⁄) = e
≠›svt(s, ⁄e

›t , ›) for all ⁄ > 0
and s œ [0, t]. Thus,

E
5

e
≠⁄Zt

-

-

-

-

S, F
(b)
s

6

= exp{≠Zshs,t(⁄)}, (3.8)

According to [38, Section 2], the mapping s ‘æ hs,t(⁄) is the pathwise unique positive
solution to the integral di�erential equation

hs,t(⁄) = e
›t≠›s⁄ ≠

⁄

t

s

e
›r≠›sÂ0

1

hr,t(⁄)
2

dr, 0 6 s 6 t. (3.9)

We will obtain similar results in the case when we have |Â
Õ(0+)| = Œ. See Theorem

4.1.1 in the next Chapter.

3.3 Properties of the Lévy environment
In this section, we briefly recall the basic notations of Lévy processes and its fluctuation
theory. For a more in-depth account of fluctuation theory, we refer the reader to the
monographs of Bertoin [10], Doney [26] and Kyprianou [50].

Recall that › = (›t, t Ø 0) denotes the real valued Lévy process defined in (3.2).
That is to say › has stationary and independent increments with càdlàg paths. For
simplicity, we denote by P(e)

x
the law of the process › starting from x œ R, i.e.

P(e)
x

(›t œ B) = P(e)(›t + x œ B), for B œ B(R),
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and when x = 0, we use the notation P(e) for P(e)
0 (resp. E(e) for E(e)

0 ). The dual
process ‚› = ≠› is also a Lévy process satisfying that for any fixed time t > 0, the
processes

(›(t≠s)≠ ≠ ›t, 0 Æ s Æ t) and (‚›s, 0 Æ s Æ t), (3.10)

have the same law, with the convention that ›0≠ = ›0. For every x œ R, let ‚P(e)
x

be the
law of x + › under ‚P(e), that is the law of ‚› under P(e)

≠x. In the sequel, we assume that
› is not a compound Poisson process since it is possible that in this case the process
visits the same maxima or minima at distinct times which can make our analysis more
involved.

It is well-known that the law of the Lévy process › is determined by its character-
istic exponent which is defined by �›(◊) := ≠ logE(e)[ei◊›1 ], for ◊ œ R. Moreover, the
characteristic exponent �› satisfies the so-called Lévy-Khintchine formula, i.e.

�›(◊) = ≠–i◊ + ‡
2

2 ◊
2 +

⁄

R

3

1 ≠ e
i◊x + i◊x1{|x|<1}

4

fi(dx).

Let us introduce the running infimum and supremum of ›, by › = (›
t
, t > 0) and

› = (›
t
, t > 0), with

›
t

= inf
06s6t

›s and ›
t

= sup
06s6t

›s, t > 0.

For our purposes, we also introduce and provide some useful properties of the Lévy
process reflected at their running infimum and supremum. Let us recall that the
reflected process › ≠ › (resp. › ≠ ›) is a Markov process with respect to the filtra-
tion (F (e)

t )t>0 and whose semigroup satisfies the Feller property (see for instance the
monograph of Bertoin [10, Proposition VI.1]). We denote by L = (Lt, t > 0) and
‚L = ( ‚Lt, t > 0) the local times of › ≠ › and › ≠ › at 0, respectively, in the sense of
Chapter IV in [10]. If 0 is regular for (≠Œ, 0) or regular downwards, i.e.

P(e)(·≠
0 = 0) = 1,

where ·
≠
0 = inf{s Ø 0 : ›s Æ 0}, then 0 is regular for the reflected process › ≠ ›

and then, up to a multiplicative constant, ‚L is the unique additive functional of the
reflected process whose set of increasing points is {t : ›t = ›

t
}. If 0 is not regular

downwards then the set {t : ›t = ›
t
} is discrete and we define the local time ‚L as

the counting process of this set. The same properties holds for L by duality, i.e. if
0 is regular upwards then, up to a multiplicative constant, L is the unique additive
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functional whose set of increasing points is {t : ›t = ›
t
}, otherwise L is the counting

process of this set.
Let us denote by L

≠1 and ‚L
≠1 the right continuous inverse of the local times L and

‚L, respectively. The range of the inverse local times, L
≠1 (resp. ‚L

≠1), corresponds to
the set of real times at which new maxima (resp. new minimum) occur. Next, define

Ht = ›
L

≠1
t

, t Ø 0. (3.11)

The pair (L≠1
, H) is a bivariate subordinator, as is the case of ( ‚L

≠1
, „H) where

„Ht = ≠›
‚L

≠1
t

, t Ø 0.

The range of the process H (resp. „H) corresponds to the set of new maxima (resp.
new minimum). Both pairs are known as descending and ascending ladder processes,
respectively. The Laplace transform of the ascending ladder process (L≠1

, H) is such
that for ◊, ⁄ > 0,

E(e)
Ë

exp
Ó

≠◊L
≠1
t

≠ ⁄Ht

ÔÈ

= exp {≠tŸ(◊, ⁄)} , t Ø 0, (3.12)

writing Ÿ(·, ·) for its bivariate Laplace exponent (‚Ÿ(·, ·) for that of the descending
ladder process) which, by an extension of the real-valued case, has the form

Ÿ(◊, ⁄) = a◊ + b⁄ +
⁄

(0,Œ)2

3

1 ≠ e
≠(◊x+⁄y)

4

�( dx, dy),

where a and b are some non-negative constants representing the drift of L
≠1 and

H, respectively and the bivariate measure �(dx, dy) is concentrated in (0, Œ)2 and
satisfies

⁄

(0,Œ)2
(x · 1)(y · 1)�( dx, dy) < Œ.

An interesting connection between the distributions of › and the ladder processes is
given by the Wiener-Hopf factorisation

E(e)
5

e
i◊›eq

6

= E(e)
5

e
i◊›eq

6

E(e)
5

e
i◊›eq

6

, (3.13)

where eq denotes an exponential random variable with parameter q Ø 0 which is
independent of ›. In addition, we have

E(e)
5

e
i◊›eq

6

= Ÿ(q, 0)
Ÿ(q, ≠i◊) and E(e)

5

e
i◊›eq

6

=
‚Ÿ(q, 0)
‚Ÿ(q, i◊) .
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We refer to Bertoin [11, Chapter VI] or Doney [26, Chapter 4] for further details on
the ascending and descending ladder processes (H, L) and („H, ‚L), respectively; as well
as for the Wiener-Hopf factorisation.

Similarly to the critical case of the absorption rates studied by Bansaye et al. [7],
the asymptotic analysis of rare events and the role of the initial condition involve the
renewal functions U and ‚U , associated to the supremum and infimum respectively,
which are defined, for all x > 0, as follows

U(x) := E(e)
C

⁄

[0,Œ)
1

{›t6x}
dLt

D

and ‚U(x) := E(e)
C

⁄

[0,Œ)
1

{›
t
>≠x}

d ‚Lt

D

. (3.14)

The renewal function U is finite, subadditive, continuous and increasing and moreover,
they are identically 0 on (≠Œ, 0] and strictly positive on (0, Œ). Also, U satisfies

U(x) 6 C1x, for any x > 0, (3.15)

where C1 is a finite constant (see for instance Lemma 6.4 and Section 8.2 in the
monograph of Doney [26]). Moreover U(0) = 0 if 0 is regular upwards and U(0) = 1
otherwise. The same properties also holds for ‚U .

Furthermore, it is important to note that by a simple change of variables we can
relate the definitions of the renewal functions U and ‚U in terms of the ascending and
descending ladder heights processes. Indeed, the measure induced by U and ‚U can be
rewritten as follows,

U(x) = E(e)
5
⁄ Œ

0
1{HtÆx} dt

6

and ‚U(x) = E(e)
5
⁄ Œ

0
1{ ‚HtÆx} dt

6

.

Roughly speaking, the renewal function U(x) (resp. ‚U(x)) “measures” the amount
of time that the ascending (resp. descending) ladder height process spends on the
interval [0, x] and in particular induces a measure on [0, Œ) which is known as the
renewal measure. The latter implies

⁄

[0,Œ)
e

≠⁄x
U( dx) =

⁄ Œ

0
E(e)

Ë

e
≠⁄Ht

È

dt = 1
Ÿ(0, ⁄) , for ⁄ Ø 0. (3.16)

Similarly, we have
⁄

[0,Œ)
e

≠⁄x
‚U( dx) = 1

‚Ÿ(0, ⁄) , for ⁄ Ø 0. (3.17)

We conclude this section with some remarks about moments and the exponential
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change of measure for Lévy processes. Recall that, there is a relationship between the
moments of the Lévy measure and the moments of the distribution of the associated
Lévy process at any fixed time.

In other words, the following condition

there exists Ë
≠ 6 0 < Ë

+ such that
⁄

{|x|>1}
e

◊x
fi( dx) < Œ, ’◊ œ [Ë≠

, Ë
+]
(3.18)

is equivalent to the existence of the Laplace transform, i.e. E(e)[e◊›1 ] is well defined on
◊ œ [Ë≠

, Ë
+] (see for instance Sato [68, Lemma 26.4]). The latter implies that we can

introduce the Laplace exponent of › as follows �›(◊) = logE(e)[e◊›1 ], for ◊ œ [Ë≠
, Ë

+],
which clearly satisfies that �›(◊) = ≠�›(≠i◊). Again from [68, Lemma 26.4 ], we also
have �›(◊) œ C

Œ and �ÕÕ
›
(◊) > 0, for ◊ œ (Ë≠

, Ë
+).

Another object which will be relevant for our analysis in the next chapters is the
so-called exponential martingale associated to the Lévy process ›, i.e.

M
(◊)
t = exp

;

◊›t ≠ t�›(◊)
<

, t Ø 0,

which is well-defined for ◊ œ [Ë≠
, Ë

+] under assumption (3.18). It is well-known that
(M (◊)

t , t Ø 0) is a (F (e)
t )tØ0-martingale and that it induces a change of measure which

is known as the Esscher transform, that is to say

P(e,◊)(�) = E(e)
5

M
(◊)
t 1�

6

, for � œ F
(e)
t . (3.19)

This change of measure has the important property that the process › under P(e,◊)

is still a Lévy process (see for instance Kyprianou [50, Theorem 3.9]). Similarly as
above, we introduce the corresponding renewal functions under this change of measure
P(e,◊), i.e. for x Ø 0,

U
(◊)(x) := E(e,◊)

C

⁄

[0,Œ)
1

{›t6x}
dLt

D

and ‚U
(◊)(x) := E(e,◊)

C

⁄

[0,Œ)
1

{›
t
>≠x}

d ‚Lt

D

.

(3.20)

3.4 Lévy processes conditioned to stay positive and
negative

Lévy processes conditioned to stay positive are well studied objects. For a complete
overview of this theory the reader is referred to [10, 21, 22] and references therein. Nev-
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ertheless, it is worth spending a little time here investigating the type of conditioning
we are interested in the following chapters.

Let us define the probability Qx associated to the Lévy process › started at x > 0
and killed at time ’ when it first enters (≠Œ, 0), that is to say

Qx

Ë

f(›t)1{’>t}

6

:= E(e)
x

5

f(›t)1{›
t
>0}

6

,

where f : R+ æ R is measurable. It is important to note that Q0 is well defined when
0 is not regular downwards.

According to Chaumont and Doney [22, Lemma 1], under the assumption that ›

does not drift towards ≠Œ, we have that the renewal function ‚U is invariant for the
killed process. In other words, for all x > 0 and t Ø 0,

Qx

Ë

‚U(›t)1{’>t}
È

= E(e)
x

5

‚U(›t)1{›
t
>0}

6

= ‚U(x). (3.21)

Hence, from the Markov property, we deduce that { ‚U(›t)1{›
t
>0}, t > 0} is a martingale

with respect to (F (e)
t )t>0. We may now use this martingale to define a change of mea-

sure corresponding to the law of › conditioned to stay positive as a Doob-h transform.
Before doing so, let us recall that › is adapted to the filtration (F (e)

t )tØ0. Under the
assumption that › does not drift towards ≠Œ, the law of the process › conditioned to
stay positive is defined as follows, for � œ F

(e)
t and x > 0,

P(e),ø
x

(�) := 1
‚U(x)

E(e)
x

5

‚U(›t)1{›
t
>0}1�

6

. (3.22)

When 0 is not regular downwards, the above definition still makes sense for x = 0.
The measure P(e),ø

x
, corresponds to the limit as ‘ goes to 0 of the law of the process

conditioned to stay positive up to an independent exponential time with parameter ‘

(see Chaumont [21, Theorem 1]).

Lemma 3.4.1 (Chaumont [21]). Let e1 be an exponential random variable with pa-

rameter 1 which is independent of ›. For any x > 0, any (F (e)
t )tØ0 stopping time ·

and � œ F
(e)
·

, we have

lim
‘æ0

P(e)
x

3

�, · < e1/‘

-

-

-

-

›u > 0, 0 6 u 6 e1/‘

4

= P(e),ø
x

(�). (3.23)

Similarly, by duality, under the assumption that › does not drift towards Œ, the
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law of the process › conditioned to stay negative is defined for x < 0, as follows

P(e),¿
x

(�) := 1
U(≠x)

‚E(e)
≠x

5

U(›t)1{›
t
>0}1�

6

. (3.24)

Let us finish this section by presenting some remarks in the case when the Lévy
process drifts to ≠Œ, i.e. limtæŒ ›t = ≠Œ. In this case, the equality in (3.21) is
replaced by the following inequality

E(e)
x

5

‚U(›t)1{›
t
>0}

6

6 ‚U(x),

and we have that { ‚U(›t)1{›
t
>0}, t > 0} is a supermartingale with respect to (F (e)

t )t>0.
Moreover, the change of measure (3.22) must take place on the space of processes which
are killed at some time and sent to a cemetery state (see for instance Kyprianou [50,
Section 13.2.1] for further details).

Hirano [39] investigated the asymptotic behaviour of a Lévy process with negative
drift conditioned to stay positive using a conditioning similar to that given in the
left-hand side of (3.23). More precisely, Hirano proved the following result.

Theorema 3.4.2 (Hirano [39]). Assume that condition (3.18) holds with Ë
≠ = 0 and

that there exists “ œ (0, Ë
+) such that �Õ

›
(“) = 0. Let x > 0, thus for s > 0 and

� œ F
(e)
s

, we have

lim
tæŒ

P(e)
x

1

› œ � | ›
t

> 0
2

= P(e,“),ø
x

(› œ �).

Note that the measure P(e,“),ø
x

corresponds to the process conditioned to stay pos-
itive after making a change of measure using the Esscher transform given in (3.19).
In other words, this approximation leads to the law of a certain oscillating Lévy pro-
cess conditioned to stay positive. The proof of Theorem 3.4.2 is mainly based on the
following resul.

Theorema 3.4.3 (Hirano [39]). Assume that condition (3.18) holds with Ë
≠ = 0 and

also suppose that �Õ
›
(0) = 0. Let x > 0 and ◊ > 0, then,

lim
tæŒ

t
3/2E(e)

x

5

e
≠◊›t1{›

t
>0}

6

= C0
Ò

2fi�ÕÕ
›
(0)

‚U(x)
⁄ Œ

0
e

≠◊y
U(y)dy,

where

C0 := exp
I

⁄ Œ

0

(e≠t
≠ 1)
t

P(e)(›t = 0)dt

J

.
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3.5 CSBPs in a conditioned Lévy environment
Similarly to the definition of Lévy processes conditioned to stay positive given above
and following a similar strategy as in the discrete framework in Afanasyev et al. [3], we
would like to introduce a CSBP in a Lévy environment conditioned to stay positive
as a Doob-h transform. The aforementioned CSBP process was first investigated
by Bansaye et al. [7] with the aim to study the survival event in a critical Lévy
environment. In other words, they proved the following result.

Lemma 3.5.1 (Bansaye et. al. [7]). Let us assume that z, x > 0. The process

{ ‚U(›t)1{›
t
>0}, t > 0} is a martingale with respect to (Ft)t>0 and under P(z,x).

With this in hand, they introduce the law of a CSBP in a Lévy environment ›

conditioned to stay positive as follows, for � œ Ft, z, x > 0,

Pø
(z,x)(�) := 1

‚U(x)
E(z,x)

Ë

‚U(›t)1{›
t
>0}1�

È

,

where ‚U is the renewal function defined in (3.14). It is natural therefore to cast
an eye on similar issues for the study of non-explosion events in the critical Lévy
environment (see Chapter 4 below). In contrast, we introduce here the process Z

in a Lévy environment › conditioned to stay negative. Recall that ‚› is the dual
process of ›. Appealing to the duality and Lemma 3.5.1, we can see that the process
{U(≠›t)1{›t<0}, t > 0} is a martingale with respect to (Ft)t>0 and under P(z,x) with
z > 0 and x < 0. Then we introduce the law of the CSBP in a Lévy environment ›

conditioned to stay negative, as follows: for � œ Ft for z > 0 and x < 0,

P¿
(z,x)(�) := 1

U(≠x)E(z,x)
Ë

U(≠›t)1{›t<0}1�
È

. (3.25)

Intuitively speaking, Pø
(z,x) and P¿

(z,x) correspond to the law of (Z, ›) conditioning the
random environment › not to enter (≠Œ, 0) and (0, Œ), respectively.

3.6 Extinction for stable CSBPs in a Lévy environ-
ment

One of our aims is to study the asymptotic behaviour of the non-extinction probability
for CSBPs in a Lévy environment. A flavour for this has already been given by the
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authors in [52, 59]. The purpose of this section is to present some of the known results
in the literature on the extinction event for the aforementioned family of processes.

We begin by assuming that condition (3.3) holds, which ensures non-explosivity
(see Section 3.7 below for further details). In addition, to focus on the absorption
event, we use Grey’s condition which guarantees that Z hits zero with strictly positive
probability. More precisely, we say that Z satisfies Grey’s condition if

⁄ Œ

1

dz

Â0(z) < Œ, (3.26)

where Â0(⁄) is as in (3.6). Recently, He et al. [38] have shown that this condition
is necessary and su�cient for a CSBP in a Lévy environment to get absorbed with
positive probability (see [38, Theorem 4.1]), i.e.,

Pz(Zt = 0) > 0 for all t > 0.

When the branching mechanism is stable, we can obtain in an explicit way the
absorption event in terms of an exponential functional of the Lévy process ›. More
precisely, denote by Â the stable branching mechanism, i.e., for ⁄ > 0

Â(⁄) = C⁄
1+—

, (3.27)

where — œ (≠1, 0) fi (0, 1) and C is a constant such that: C < 0 if — œ (≠1, 0) and
C > 0 if — œ (0, 1). According to [58], the non-extinction probability for a stable
CSBP in a Lévy environment › is given by

Pz(Zt > 0) = 1 ≠ E(e)
5

exp
;

≠z

1

—CI0,t(—›)
2≠1/—

<6

1{—>0}, z > 0, (3.28)

where we recall that E(e) denotes the expectation under P(e), which corresponds to the
law of › starting from x = 0, and I0,t(—›) denotes the exponential functional of the
Lévy process —›, i.e.,

I0,t(—›) :=
⁄

t

0
e

≠—›sds, t > 0. (3.29)

From (3.28), we see that for — œ (≠1, 0) the process Z survives Pz-a.s. Let us focus on
the most interesting case, i.e. — œ (0, 1). Palau and Pardo in [57] studied the asymp-
totic behaviour of the survival probability of stable CSBP in a Browian environment.
Afterwards, Palau and co-authors in [59] extended this result to the case when the
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environment is driven by a general Lévy process. We state this result here for the sake
of completeness.

Theorema 3.6.1 (Palau et al. [59]). Suppose that condition (3.18) holds with Ë
≠ = 0

and Ë
+

> 1. Let (Zt, t > 0) be the stable CSBP with index — œ (0, 1), Z0 = z > 0 and

in a Lévy environment.

1. Supercritical regime. If �Õ
›
(0+) > 0, then

lim
tæŒ

Pz(Zt > 0) = E(e)
5

1 ≠ exp
;

≠z

1

—cI0,Œ(—›)
2≠1/—

< 6

> 0.

2. Critical regime. If �Õ
›
(0+) = 0, then for each z > 0, there exists c1(z) > 0 such

that

lim
tæŒ

t
1/2Pz(Zt > 0) = c1(z).

3. Subcritical regime. Assume that �Õ
›
(0+) < 0, then

(a) Strongly subcritical regime. If �Õ
›
(1) < 0, then there exists c2 > 0 such that

for every z > 0,

lim
tæŒ

e
≠t�›(1)Pz(Zt > 0) = c2z.

(b) Intermediate subcritical regime. If �Õ
›
(1) = 0, then there exists c3 > 0 such

that for every z > 0,

lim
tæŒ

t
1/2

e
≠t�›(1)Pz(Zt > 0) = c3z.

(c) Weakly subcritical. If �Õ
›
(1) > 0, then for each z > 0, there exists c4(z) > 0

such that

lim
tæŒ

t
3/2

e
≠t�›(“)Pz(Zt > 0) = c4(z).

where “ œ (0, 1) satisfies �Õ
›
(“) = 0.

A similar result was also obtained by Li and Xu [52] independently, where the lim-
iting coe�cients were given explicitly (see [52, Teorema 2.8]). More recently, Bansaye
et al. [7] studied the survival probability for a larger class of branching mechanisms
associated to CSBPs in Lévy environments. They focus on the critical case, more
precisely in oscillating Lévy environments satisfying the so-called Spitzer’s condition

at Œ. This condition states that the expected proportion of time at which the Lévy
process spends within the positive real half line up to time t, stabilizes as t æ Œ at
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some value between 0 and 1. That is to say,

1
t

⁄

t

0
P(e)(›s > 0)ds ≠æ fl œ (0, 1), as t æ Œ. (H1)

Moreover, Bertoin and Doney in [11] showed that the later condition is equivalent to
P(e)(›s > 0) æ fl, as s æ Œ. Under Spitzer’s condition (see Bertoin [10, Theorem
VI.18 ]) the asymptotic behaviour of the probability that the Lévy process › remains
positive, i.e. P(e)

x
(›

t
> 0) for x > 0, is regularly varying at Œ with index fl ≠ 1 and

moreover, for any x, y > 0, we have

lim
tæŒ

P(e)
x

1

›
t

> 0
2

P(e)
y

1

›
t

> 0
2 =

‚U(x)
‚U(y)

. (3.30)

In other words, we obtain that for any x > 0,

P(e)
x

1

›
t

> 0
2

≥ ‚U(x)tfl≠1
¸(t), as t æ Œ, (3.31)

where ¸ is a slowly varying function at Œ, that is to say, for all c > 0,

lim
tæŒ

¸(ct)
¸(t) = 1.

Moreover, Bansaye et al. [7] also assume that the Lévy measure µ fulfils the following
x log2

x moment condition
⁄ Œ

x log2
xµ( dx) < Œ. (H2)

This moment assumption allows them to guarantee the non-extinction of the process
in “favorable” environments, or in other words when the running infimum of the Lévy
environment is positive. In addition, for the branching mechanism they make a slightly
stronger assumption:

there exists — œ (0, 1] and C > 0 such that Â0(⁄) > C⁄
1+— for ⁄ > 0. (H3)

In particular, note that the latter assumption guarantees that Â0 satisfies the Grey’s
condition (3.26). Let us finish this section by presenting their result.

Theorema 3.6.2 (Bansaye et al. [7]). Let (Zt, t > 0) the CSBP in a Lévy environ-

ment. Assume that conditions (H1)-(H3) hold, then there exists a positive function c
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such that for any z > 0,

Pz(Zt > 0) ≥ c(z)P(e)
1

1

›
t

> 0
2

≥ c(z) ‚U(1)tfl≠1
¸(t), as t æ Œ,

where ¸ is the slowly varying function defined in (3.31).

3.7 Explosion for CSBPs in a Lévy environment
In the case of the event of explosion for CSBPs in a general Lévy environment, there
are a few results about it. This is also the case for the speed of the probability of
non-explosion. In this section, we gather together the results that are already known
in the literature. In Chapter 4, we extend these results in a more general setting.

We say that Z is a conservative process or, in other words, that there is no explosion
in finite time if

Pz(Zt < Œ) = 1, for all t > 0, (3.32)

and any z > 0. In the case of a CSBP with constant environment, Grey in [35]
provided necessary and su�cient conditions for the process to be conservative which
depend on the integrability of the mapping z ‘æ (|Â(z)|)≠1 near 0. That is a CSBP is
conservative if and only if

⁄

0+

1
|Â(z)|dz = Œ.

Observe that, a necessary condition is that Â(0) = 0 and a su�cient condition is that
Â(0) = 0 and |Â

Õ(0+)| < Œ (see for instance Kyprianou [50, Theorem 12.3]).
In contrast, in the particular case when the environment is driving by a Brownian

motion, Palau and Pardo [58] furnish only a necessary condition under which the
process Z is conservative. They proved that if the branching mechanism satisfies
|Â

Õ(0+)| < Œ, then the CSBP in a Brownian environment is conservative (see [57,
Proposition 1]). More recently, Bansaye et al. in [7] extended this result in the
context when the environment is driven by a Lévy process. They showed that under
the condition |Â

Õ(0+)| < Œ or equivalently (3.3) holds, the process Z is conservative
(see [7, Lemma 7]).

The asymptotic behaviour of the non-explosion probability and the explosion event
have not been studied in a general form. Up to our knowledge, the long-term be-
haviour has been only studied for the case where the associated branching mechanism
is stable since the non-explosion probability can be written explicitly in terms of the
exponential functional of ›. Recall that the stable branching mechanism Â satisfies
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(3.27). According to [58], the non-explosion probability for a stable CSBP in a Lévy
environment › is given by

Pz(Zt < Œ) = 1{—>0} + 1{—<0}E(e)
5

exp
;

≠z

1

—CI0,t(—›)
2≠1/—

<6

, z > 0, (3.33)

where we recall that C < 0 if — œ (≠1, 0) and C > 0 if — œ (0, 1), and also that I0,t(—›)
denotes the exponential functional of the Lévy process —› , as it is defined in (3.29).
Note that, from identity (3.33), we know that there is a positive probability that the
process explodes for any t > 0 and z > 0. Furthermore, Palau et al. [59, Proposition
2.1] found three di�erent regimes for the asymptotic behaviour of the non-explosion
probability that depends on the mean of the random environment. They called these
regimes: subcritical-explosion, critical-explosion and supercritical-explosion depending
on whether the Lévy environment › drifts to ≠Œ, oscillates or drifts to Œ. More
precisely, they proved the following result.

Theorema 3.7.1 (Palau et al. [59]). Suppose that condition (3.18) holds with Ë
≠

<

0 < Ë
+

. Let (Zt, t > 0) be the stable CSBP with index — œ (≠1, 0), Z0 = z > 0 and in

a Lévy environment.

1. Subcritical-explosion. If �Õ
›
(0+) < 0, then

lim
tæŒ

Pz(Zt < Œ) = E(e)
5

exp
;

≠z

1

—cI0,Œ(—›)
2≠1/—

< 6

> 0.

2. Critical-explosion. If �Õ
›
(0+) = 0, then for each z > 0, there exists c1(z) > 0

such that

lim
tæŒ

t
1/2Pz(Zt < Œ) = c1(z).

3. Supercritical-explosion. Assume that �Õ
›
(0+) > 0, then for each z > 0, there

exists c2(z) > 0 such that

lim
tæŒ

t
3/2

e
≠t�›(“)Pz(Zt < Œ) = c2(z),

where “ œ (Ë≠
, 0) is such that �Õ

›
(“) = 0.

Up to our knowledge, this is the only known result in the literature about explosion
rates for CSBPs in a Lévy environment. As we said before, in Chapter 4, we study
the explosion rates for CSBPs in a Lévy environment for a more general setting.



Chapter 4

Explosion rates of CSBPs in a Lévy
environment

Here, we study the speed of the probability of non-explosion for continuous state
branching processes in a Lévy environment, where the associated Lévy process either
oscillates or drifts to ≠Œ and the branching mechanism is given by the negative of the
Laplace exponent of a subordinator. Assuming that the Lévy process associated to
the environment either satisfies Spitzer’s condition and the existence of some moments
on its associated descending ladder height or drifts to ≠Œ and under an integrability
condition, we extend recent results in the case where the branching mechanism is
assumed to be stable. In order to do so, we require to study the law of the CSBP in
Lévy environment in the non-finite mean case and furnishes necessary and su�cient
conditions for the process to be conservative, i.e. that the process does not explode
a.s. The chapter is structured as follows. In Section 4.1, we present our main results.
In Section 4.2, we study the law of the process in the case of non-finite mean. Section
4.3 is devoted to some results about the CSBPs in a conditioned Lévy environment
which was introduced in Chapter 3. The aim of Section 4.4 is to present the proof of
the asymptotic behaviour of the non-explosion probability in the case of a critical Lévy
environment. In Section 4.5, we study the speed of the non-explosion probability in a
Lévy environment drifting to ≠Œ. Finally, in Section 4.6 we state some conjectures
about the explosion problem for CSBPs in a Lévy environment drifting to +Œ.

4.1 Main results
Let Z = (Zt, t > 0) be the continuous-state branching process in a Lévy environment
(St, t > 0) defined in Chapter 3. We begin by recalling that the branching mechanism
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Â is either the negative of the Laplace exponent of a subordinator or the Laplace
exponent of a spectrally negative Lévy process. Here we focus on the subordinator
case. In other words, we shall assume that Â(⁄) = ≠„(⁄), where „ is a concave,
increasing and non-negative function satisfying

„(⁄) = ”⁄ +
⁄

(0,Œ)
(1 ≠ e

≠⁄x)µ(dx), ⁄ > 0, (4.1)

with
” := a ≠

⁄

(0,1)
xµ(dx) > 0 and

⁄

(0,Œ)
(1 · x)µ(dx) < Œ.

Alternatively, using integration by parts, the function „ can also be rewritten in terms
of the Laplace transform of the tail of µ, that is to say,

„(⁄) = ”⁄ + ⁄

⁄

(0,Œ)
e

≠⁄x
µ̄(x)dx, (4.2)

where µ̄(x) := µ(x, Œ).
In what follows, we may assume, without loss of generality, that the drift of the

branching mechanism is zero, i.e. ” = 0. Otherwise, we consider the branching
mechanism

Â(⁄) = ≠(„(⁄) ≠ ”⁄) = ≠⁄

⁄

(0,Œ)
e

≠⁄x
µ̄(x)dx,

and modify the Lévy process › = (›t, t Ø 0) by adding ” to the drift, that is to say

›t = –1t + ‡B
(e)
t +

⁄

t

0

⁄

(≠1,1)
z ÊN

(e)(ds, dz) +
⁄

t

0

⁄

(≠1,1)c
zN

(e)(ds, dz),

where
–1 := – ≠ ” ≠

‡
2

2 ≠

⁄

(≠1,1)
(ez

≠ 1 ≠ z)fi(dz). (4.3)

In other words, it is enough to consider a subordinator with no drift since the latter
can be included in the environment. This procedure will turn out to be important in
the proof of Lemma 4.3.3 below.

As we mentioned earlier in Section 3.2, in the case when we have finite mean,
i.e. |Â

Õ(0+)| < Œ, the branching mechanism Â determines the law of the reweighted
process (Zte

≠›t , t > 0) via a backward ordinary di�erential equation (the reader is
again referred to [58, Proposition 2] and [38, Theorem 3.4]). Here, we obtain a similar
result in the infinite mean case but when the branching mechanism is given by the
negative of a subordinator without drift. In our proof, we show existence of the
solution of the aforementioned backward di�erential equation, uniqueness seems to be
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di�cult to be deduced since in this case Â is not globally Lipschitz. More precisely,
we have the following result.

Theorema 4.1.1. Assume that Â(⁄) = ≠„(⁄) with „
Õ(0+) = Œ. For every z, ⁄, t > 0

and x œ R, we have

E(z,x)

5

exp
Ó

≠ ⁄Zte
≠›t

Ô

-

-

-

-

›

6

= exp
Ó

≠zvt(0, ⁄e
≠›0 , › ≠ ›0)

Ô

, (4.4)

where for any ⁄, t > 0, the function vt : s œ [0, t] æ vt(s, ⁄e
≠›0 , › ≠ ›0) is an a.s.

solution of the backward di�erential equation

ˆ

ˆs
vt(s, ⁄, ›) = e

›sÂ

1

vt(s, ⁄, ›)e≠›s
2

, a.e. s œ [0, t] (4.5)

and with terminal condition vt(t, ⁄, ›) = ⁄.

Recall from Chapter 3 that Z is a conservative process if there is no explosion in
finite time a.s., i.e. (3.32) holds. Our second main result furnishes a necessary and
su�cient condition for a CSBP in a Lévy environment to be conservative. The result
is an extension of the original characterisation given by Grey [35] in the classical case
for CSBP with constant environment.

Proposition 4.1.2. Assume that Â(⁄) = ≠„(⁄). A continuous-state branching pro-

cess in a Lévy environment with branching mechanism Â is conservative if and only if

⁄

0+

1
|Â(z)|dz = Œ. (4.6)

We deal now with the asymptotic behaviour of the non-explosion probability in the
critical and subcritical regimes. First we focus on the critical-explosion regime. More
precisely, we are assuming that the Lévy environment satisfies the so-called Spitzer’s

condition at Œ, i.e. that assumption (H1) holds. Recall from (3.12) that Ÿ(◊, ⁄) is
the Laplace exponent of the ascending ladder process (L≠1

, H). Now, according to
Bertoin [10, Theorem 12, Chapter IV], the Spitzer’s condition (H1) is equivalent to
the Laplace exponent Ÿ(·, 0) of the ascending ladder time process L

≠1 being regularly
varying at 0+ with index fl œ (0, 1). To be more precise, for fl œ (0, 1) we have,

lim
t¿0

Ÿ(ct, 0)
Ÿ(t, 0) = c

fl
, for all c > 0.

In addition, the function Ÿ(·, 0) may always be written in the form

Ÿ(t, 0) = t
fl
¸1(t), (4.7)
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where ¸1 is a slowly varying function at 0+. That is to say, for all positive constant c,
the function ¸1 satisfies

lim
x¿0

¸1(cx)
¸1(x) = 1.

Denote by ·
+
x

and ·
≠
x

, x œ R, the first passage times through a barrier at level x for
the Lévy process ›, i.e.,

·
+
x

:= inf{t > 0 : ›t > x} and ·
≠
x

:= inf{t > 0 : ›t 6 x}, x œ R,

with the usual assumption that inf ÿ = Œ. Now we remark that, by [49], we may
deduce the asymptotic behaviour of the probability that the Lévy process › remains
negative. In other words, under the Spitzer’s condition (H1) or equivalently under
the assumption that Ÿ(·, 0) is regularly varying at zero with index fl œ (0, 1), we have
the asymptotic behaviour of P(e)

x
(›

t
< 0) = P(e)(·+

≠x
> t) for x < 0. That is to say,

lim
tæŒ

Ô
fi

Ÿ(1/t, 0)P
(e)
x

1

›
t

< 0
2

= lim
tæŒ

Ô
fi

Ÿ(1/t, 0)
‚P(e)

≠x

1

›
t

< 0
2

= U(≠x), (4.8)

where we recall that U(·) is the renewal function for the ascending ladder-height pro-
cess defined in (3.14) (see also Bertoin [10, Theorem VI.18]).

In order to control the e�ect of the environment on the event of non-explosion we
need others assumptions. The following moment condition on the descending ladder
height process associated to › is needed to guarantee the non-explosion of the process
in unfavorable environments. Let us assume

‚E(e)
Ë

H1e
H1

È

< Œ, (A1)

where we recall that ‚E(e) denotes the expectation associated to the law ‚P(e) of the
dual process ›̂ = ≠› and H denotes its associated ascending ladder height.

On the other hand, we shall assume that the branching mechanism is upper
bounded by a stable branching mechanism whose associated CSBP in a Lévy en-
vironment explodes with positive probability. More precisely, we assume that

there exists — œ (≠1, 0) and C < 0 such that Â(⁄) 6 C⁄
1+— for all ⁄ > 0. (A2)

Observe that, under condition (A2) and using the representation of „ given in (4.2),



104 Explosion rates of CSBPs in a Lévy environment

we deduce that for all ⁄ > 0
⁄

(0,Œ)
e

≠⁄x
µ̄(x)dx > ≠C⁄

—
, (4.9)

where we recall that ” = 0 in accordance with the observation above Theorem 4.1.1.
Now, letting ⁄ ¿ 0 in the previous inequality, we see that condition (A2) forces the
Lévy measure µ to satisfy

⁄

(0,Œ)
µ̄(x)dx =

⁄

(0,Œ)
xµ(dx) = Œ. (4.10)

The condition (A2) is necessary to deal with the functional vt(s, ⁄, ›) and obtain an
upper bound for the speed of non-explosion when the sample paths of the Lévy process
have a high running supremum (see Proposition 4.4.4 below for details). Furthermore,
under condition (A2) and appealing to Proposition 4.1.2, it follows that there is
a positive probability for the process with branching mechanism Â(⁄) = ≠„(⁄) to
explode. Indeed, from (4.9) we observe

⁄

0+

1
| ≠ „(z)|dz 6

⁄

0+

1
|C|z1+—

dz < Œ.

Recall that P(z,x) (resp. the expectation operator E(z,x)) denotes the law of the
couple (Z, ›) starting from (z, x) where z > 0 and x œ R. Roughly speaking, our aim
is to show, under the above conditions, that Ÿ(1/t, 0)≠1Pz(Zt < Œ) has a limit as
t ø Œ. The result is formulated as follows.

Theorema 4.1.3 (Critical-explosion regime). Suppose that conditions (H1), (A1),
and (A2) are satisfied. Then, for any z > 0, there exists 0 < C1(z) < Œ such that

lim
tæŒ

1
Ÿ(1/t, 0)Pz(Zt < Œ) = C1(z).

Recall that, Ÿ(·, 0) corresponds to the Laplace exponent of the inverse local time
L

≠1 associated to ›. Then the result gives evidence that the asymptotic behaviour of
the non-explosion probability is deeply related to the fluctuations of the Lévy envi-
ronment ›. Further, taking into account (4.7), we observe from Theorem 4.1.3 that,
for any z > 0, there exists 0 < C1(z) < Œ such that

lim
tæŒ

t
fl

¸(t)Pz(Zt < Œ) = C1(z),
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where ¸ is a slowly varying function at Œ defined as

¸(t) = ¸1(1/t), (4.11)

and we recall that ¸1 is the slowly varying function at 0+ given in (4.7).
We now state our main last result in this section which is devoted to the speed of

the non-explosion probability of CSBPs in a Lévy environment under the assumption
that the environment drifts to ≠Œ. We recall that –1 and fi are the drift term and
the Lévy measure of ›, respectively. We introduce the following real function

A›(x) := ≠–1 + fī
(≠)(≠1) +

⁄ ≠1

≠x

fī
(≠)(y)dy, for x > 0,

where fī
(≠)(≠x) = fi(≠Œ, ≠x). We also introduce the function

‚�⁄(u) :=
⁄

(0,Œ)
exp{≠⁄e

u
y}µ̄(y)dy, (4.12)

Further, let us denote by E1 the exponential integral, i.e.,

E1(w) =
⁄ Œ

1

e
≠wy

y
dy, w > 0. (4.13)

We can then formulate the following theorem.

Theorema 4.1.4 (Subcritical-explosion regime). Suppose that �Õ
›
(0+) < 0 and

⁄

(a,Œ)

y

A›(y) |d‚�⁄(y)| < Œ, for some a > 0. (4.14)

Then, for any z > 0, there exists 0 < C2(z) < Œ such that

lim
tæŒ

Pz(Zt < Œ) = C2(z).

In particular, if E(e)
Ë

‚›1
È

< Œ, then the integral condition (4.14) is equivalent to

⁄ Œ

0
E1(⁄y)µ̄(y)dy < Œ. (4.15)

Note that, if ⁄y > 0, we know that the following inequality for the exponential
integral holds

E1(⁄y) 6 e
≠⁄y log

A

1 + 1
⁄y

B

.
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Therefore, in the case E(e)
Ë

‚›1
È

< Œ, a simpler condition than (4.15) is the following

⁄ Œ

0
e

≠⁄y log
A

1 + 1
⁄y

B

µ̄(y)dy < Œ.

4.2 Conservativeness
This section is devoted to the proof of Theorem 4.1.1 by using the following extension
of the classical Carathéodory’s theorem for ordinary di�erential equations, that we
state here for completeness.

Theorema 4.2.1 (Extended Carathéodory’s existence theorem). Let I = [≠b, b] with

b > 0. Assume that the function f : I ◊ R æ R satisfies the following conditions:

1. the mapping s ‘æ f(s, ◊) is measurable for each fixed ◊ œ R,

2. the mapping ◊ ‘æ f(s, ◊) is continuous for each fixed s œ I,

3. there exists a Lebesgue-integrable function m on the interval I such that

|f(s, ◊)| 6 m(s)
1

1 + |◊|

2

, (s, ◊) œ I ◊ R.

Then there exists an absolutely continuous function u(x) such that

u(x) =
⁄

x

0
f(y, u(y))dy, x œ I. (4.16)

For a proof of this result the reader is referred to Person [65, Theorems 1.1, 2.1
and 2.3].

Proof of Theorem 4.1.1. The first part of the proof follows from similar arguments as
those used in [6] and [58] in the case of finite mean (i.e., when |Â(0+)| < Œ) whenever
we have found an a.s. solution of the backward di�erential equation (4.5). In order to
do so, we will appeal to the extended version of the Carathéodory’s existence Theorem
4.2.1.

Fix Ê œ �(e) and t, ⁄ > 0. Denote by f„ : [0, t] ◊ R æ [≠Œ, 0] the following
function

f„(s, ◊) = e
›s(Ê)

Â

1

◊e
≠›s(Ê)

2

= ≠e
›s(Ê)

„

1

◊e
≠›s(Ê)

2

.

In the following we omit the notation Ê for the sake of brevity. First, we observe
that the mapping s ‘æ f„(s, ◊) is measurable for each fixed ◊ œ R. Indeed, the
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process › = (›s, s > 0) is (F (e)
t )t>0-adapted with càdlàg paths, this implies that it is

progressively measurable. More precisely, the application (s, Ê) ‘æ ›s is B([0, t])¢F
(e)
t -

measurable. It follows that the mapping s ‘æ f„(s, ◊) is B([0, t])-measurable for each
fixed ◊ œ R and Ê œ �(e). Furthermore, we have that the function ◊ ‘æ f„(s, ◊) is
continuous for each fixed s œ [0, t] due to the continuity of the function Â. Therefore,
according to Theorem 4.2.1, the proof is complete once we show that there exists an
integrable function m„ on [0, t], such that, for any (s, ◊) œ [0, t] ◊ R

|f„(s, ◊)| 6 m„(s)
1

1 + |◊|

2

.

Note that, for any (s, ◊) œ [0, t] ◊ R, we have

|f„(s, ◊)| =
-

-

-e
›s„

1

◊e
≠›s

2
-

-

- = e
›s„

1

◊e
≠›s

2

1{›s>0} + e
›s„

1

◊e
≠›s

2

1{›s<0}

6 e
›s„(◊)1{›s>0} + e

›s„

1

◊e
≠›s

2

1{›s<0},

where in the last inequality, we have used that „ is an increasing function. Now,
since „ is a concave function it is well-known that for any ◊ > 0 and k > 1, we have
„(◊) 6 k„(◊/k) (see for instance the proof of [10, Proposition III. 1]). In particular,
this inequality implies,

|f„(s, ◊)| 6 e
›s„(◊)1{›s>0} + „(◊)1{›s<0} 6 max{e

›s1{›s>0}, 1{›s<0}}„(◊).

On the other hand, from (4.2) we have that „(◊) = ◊g(◊), where g is the decreasing
function

g(◊) =
⁄

(0,Œ)
e

≠◊x
µ̄(x)dx, (4.17)

where we recall, from the observation above Theorem 4.1.1, that ” = 0. In addition,
observe that

g(0) =
⁄

(0,Œ)
µ̄(x)dx =

⁄

(0,Œ)
xµ(dx) = Œ.

Thus, for any d œ (0, g(0)) there exists ◊
ú

> 0 such that g(◊ú)≠d = 0. In other words,
◊

ú is the largest root of „(◊) ≠ ◊d. It follows that, there exists d œ (0, g(0)) such that
„(◊) 6 d + ◊ for any ◊ > 0. It turns out that,

|f(s, ◊)| 6 m„(s)
1

1 + |◊|

2

, for all (s, ◊) œ [0, t] ◊ R,

where
m„(s) := (1 ‚ d) max{e

›s1{›s>0}, 1{›s<0}}, s œ [0, t].

Note that m„ is an integrable function on [0, t] since the Lévy process › has càdlàg
paths. Finally, thanks to Theorem 4.2.1, there exists an a.s. solution of (4.5).
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The functional vt(s, ⁄, ›) has some useful monotonicity properties as is stated in
the following lemma. In the forthcoming sections, we will make use of these properties.

Lemma 4.2.2. For any ⁄ > 0 and t > 0, the mapping s ‘æ vt(s, ⁄, ›) is decreasing on

[0, t]. For any s œ [0, t], the mapping ⁄ ‘æ vt(s, ⁄, ›) is increasing on [0, Œ).

Proof. Recall that we are assuming Â(◊) = ≠„(◊) 6 0. Then, from the backward
di�erential equation (4.5), we see that the function s ‘æ vt(s, ⁄, ›) is decreasing on
[0, t]. Further, from (4.4) we observe that the mapping ⁄ ‘æ vt(s, ⁄, ›) is increasing on
[0, Œ).

We conclude this section with the proof of Proposition 4.1.2. Before we do so, let
us make an important remark about the non-explosion probability. More precisely,
it is easy to deduce, by letting ⁄ ¿ 0 in (4.4) and with the help of the Monotone
Convergence Theorem, that the non-explosion probability is given by

P(z,x)
1

Zt < Œ | ›

2

= exp
;

≠z lim
⁄¿0

vt(0, ⁄e
≠›0 , › ≠ ›0)

<

, z, t > 0, x œ R. (4.18)

With this in hand, we may now observe that the process Z is conservative if and only
if

lim
⁄¿0

vt(0, ⁄e
≠›0 , › ≠ ›0) = 0, for all t > 0. (4.19)

Proof of Proposition 4.1.2. Fix t > 0 and recall that (›
t
, t > 0) and (›

t
, t > 0) denote

the running infimum and supremum of the process ›, respectively. First, we assume
that the branching mechanism Â satisfies (4.6), that is to say,

⁄

0+

1
|Â(z)|dz =

⁄

0+

1
| ≠ „(z)|dz =

⁄

0+

1
„(z)dz = Œ.

From Theorem 4.1.1, we see that the backward di�erential equation (4.5) can be
rewritten as follows

t =
⁄

t

0

dvt(s, ⁄, ›)
e›sÂ

1

e≠›svt(s, ⁄, ›)
2 = ≠

⁄

t

0

dvt(s, ⁄, ›)
e›s„

1

e≠›svt(s, ⁄, ›)
2 .

Now, we recall that „ is an increasing and non-negative function. Then appealing
to the definition of the running infimum and supremum of ›, we observe that the
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following inequality holds

≠t =
⁄

t

0

dvt(s, ⁄, ›)
e›s„

1

e≠›svt(s, ⁄, ›)
2 6

⁄

t

0

dvt(s, ⁄, ›)
e

›
t„

1

e≠›tvt(s, ⁄, ›)
2

= e
›t

e
›

t

⁄

e
≠›t ⁄

e≠›t vt(0,⁄,›)

1
„(z)dz,

where in the last equality we have used change of variables z = e
≠›tvt(s, ⁄, ›). Next,

letting ⁄ ¿ 0 in the previous inequality, we get

e
›t

e
›

t

⁄

e
≠›t lim

⁄¿0
vt(0,⁄,›)

0

1
„(z)dz 6 t. (4.20)

Thus, taking into account our assumption, we are forced to conclude that

lim
⁄¿0

vt(0, ⁄, ›) = 0. (4.21)

In other words, the process is conservative.
On the other hand, we assume that the process is conservative or equivalently that

(4.21) holds. We will proceed by contradiction, we suppose that
⁄

0+

1
|Â(z)|dz =

⁄

0+

1
„(z)dz < Œ.

Similar to the above arguments, we deduce that

≠t =
⁄

t

0

dvt(s, ⁄, ›)
e›s„

1

e≠›svt(s, ⁄, ›)
2 >

⁄

t

0

dvt(s, ⁄, ›)
e›t„

1

e
≠›

tvt(s, ⁄, ›)
2

= e
›

t

e›t

⁄

e
≠›

t ⁄

e
≠›

t vt(0,⁄,›)

1
„(z)dz.

Taking ” > 0 su�ciently small, we see

t 6 e
›

t

e›t

⁄

”

e
≠›

t ⁄

1
„(z)dz ≠

e
›

t

e›t

⁄

”

e
≠›

t vt(0,⁄,›)

1
„(z)dz.

Hence, taking ⁄ ¿ 0 in the above inequality, we have t 6 0, which is a contradiction.
Therefore, we deduce that the branching mechanism Â satisfies (4.6).
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4.3 CSBPs in a conditioned Lévy environment
As mentioned earlier, the asymptotic behaviour of the non-explosion probability is
related to the running supremum of the environment ›. In order to study this relation-
ship we recall from Section 3.5 that P¿

(z,x) corresponds to the law of (Z, ›) conditioned
to be negative.

The following convergence result is crucial for Theorem 4.1.3. Similar ideas to
those used in the proof can be found in [3, Lemma 2.5] and also in [7, Lemma 1] for
the discrete and continuous setting, respectively. We provide its proof for the sake of
completeness.

Lemma 4.3.1. Fix z > 0, x < 0 and assume that Spitzer’s condition (H1) holds.

Let Rs be a bounded real-valued Fs-measurable random variable. Then

lim
tæŒ

E(z,x)
Ë

Rs | ›
t

< 0
È

= E¿
(z,x)

Ë

Rs

È

.

More generally, let (Rt, t > 0) be a uniformly bounded real-valued process adapted to

the filtration (Ft, t > 0), which converges P¿
(z,x)-a.s. to some random variable RŒ.

Then

lim
tæŒ

E(z,x)
Ë

Rt | ›
t

< 0
È

= E¿
(z,x)

Ë

RŒ
È

.

Proof. Fix z > 0 and x < 0. Let us proof the first claim. For s, h > 0, conditioning
on Fs and appealing to the Markov property, we have,

E(z,x)
Ë

Rs | ›
s+h

< 0
È

= E(z,x)

S

URs

P(e)
›s

1

›
h

< 0
2

P(e)
x

1

›
s+h

< 0
21{›s<0}

T

V . (4.22)

As we had mentioned in Section 4.1, under Spitzer’s condition (H1) we have, from
Theorem 14 in [10], that the Laplace exponent Ÿ(·, 0) is regularly varying at 0+ with
index fl. Then this implies that there exists a slowly varying function ¸ at Œ such
that

Ÿ(q, 0) = ¸(1/q)qfl
.

Now, with this observation in mind, it is worth recalling here the asymptotic behaviour
of the probability that the Lévy process › remains negative satisfies

P(e)
x

1

›
t

< 0
2

≥ fi
≠1/2

U(≠x)¸(t)t≠fl
, as t æ Œ.

Then, for ‘ > 0 there exists a constant N1 > 0 (which depends on ‘) such that the
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following inequality holds for all h > N1,

P(e)
›s

1

›
h

< 0
2

P(e)
x

1

›
s+h

< 0
2 6 (1 + ‘)

(1 ≠ ‘)
¸(h)

¸(s + h)

A

h

s + h

B≠fl
U(≠›s)
U(≠x) .

Moreover, by Potter’s Theorem (see Theorem 1.5.6 in Bingham [15]), for any A > 1
and ” > 0 there exists a constant N2 > 0 such that

¸ (h)
¸ (s + h) 6 A max

Y

]

[

A

h

s + h

B

”

,

A

h

s + h

B≠”
Z

^

\

, for h > N2.

Therefore, we deduce that for h > N = max{N1, N2},

P(e)
›s

1

›
h

< 0
2

P(e)
x

1

›
s+h

< 0
2 6 (1 + ‘)

(1 ≠ ‘)

3

1 + s

N

4

”+fl U(≠›s)
U(≠x) . (4.23)

Since the renewal function U is finite and Rs is a bounded random variable, then we
can apply the Dominated Convergence Theorem in (4.22). Hence, the first claim now
follows as a consequence of Theorem VI.18 in [10]. Indeed, we have

lim
hæŒ

P(e)
›s

1

›
h

< 0
2

P(e)
x

1

›
s+h

< 0
2 = U(≠›s)

U(≠x) .

For the second claim let “ > 1. Using again the Markov property at time t, we obtain
for s 6 t,

-

-

-

-

E(z,x)

5

Rt ≠ Rs | ›
“t

< 0
6
-

-

-

-

6 E(z,x)

S

U|Rt ≠ Rs|
P(e)

›t

1

›(“≠1)t < 0
2

P(e)
x

1

›
“t

< 0
2 1{›t<0}

T

V .

Next, once again appealing to Potter’s Theorem, we obtain, for any A2 > 1 and ”2 > 0,
that there exists a constant N3 > 0 such that

¸ (t(“ ≠ 1))
¸ (t“) 6 C(A2, ”2, “), for all t > N3,

where

C(A2, ”2, “) := A2 max

Y

]

[

A

“ ≠ 1
“

B

”2

,

A

“ ≠ 1
“

B≠”2
Z

^

\

.
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Similarly as in (4.23), we get

P(e)
›t

1

›(“≠1)t < 0
2

P(e)
x

1

›
“t

< 0
2 6 (1 + ‘)

(1 ≠ ‘)C(A2, ”2, “)
A

“ ≠ 1
“

B≠fl
U(≠›t)
U(≠x) .

This in turn implies that
-

-

-

-

E(z,x)

5

Rt ≠ Rs | ›
“t

< 0
6
-

-

-

-

6 C“E(z,x)

C

|Rt ≠ Rs|
U(≠›t)
U(≠x) 1{›t<0}

D

= C“E¿
(z,x)

Ë

|Rt ≠ Rs|

È

,

where in the last equality we have used the definition of the measure P¿
(z,x) given in

(3.25) and

C“ := (1 + ‘)
(1 ≠ ‘)C(A2, ”2, “)

A

“ ≠ 1
“

B≠fl

.

Letting first t æ Œ and then s æ Œ in the previous inequality, the right-hand side
vanishes by the Dominated Convergence Theorem and since (Rt, t > 0) is a uniformly
bounded process which converges P¿

(z,x)-a.s. to RŒ. Thus

lim
sæŒ

lim
tæŒ

-

-

-

-

E(z,x)

5

Rt ≠ Rs | ›
“t

< 0
6
-

-

-

-

= 0,

which yields
lim

sæŒ
lim
tæŒ

E(z,x)

5

Rt ≠ Rs | ›
“t

< 0
6

= 0.

Now, appealing to the first part of this lemma, we get

lim
tæŒ

E(z,x)
Ë

Rt | ›
“t

< 0
È

= lim
sæŒ

lim
tæŒ

E(z,x)
Ë

Rs | ›
“t

< 0
È

= lim
sæŒ

E¿
(z,x)

Ë

Rs

È

= E¿
(z,x)

Ë

RŒ
È

.

Moreover,

lim
tæŒ

E(z,x)
Ë

Rt , ›
“t

< 0
È

P(e)
x

1

›
t

< 0
2 = lim

tæŒ
E(z,x)

Ë

Rt | ›
“t

< 0
ÈP(e)

x

1

›
“t

< 0
2

P(e)
x

1

›
t

< 0
2 = “

≠flE¿
(z,x)

Ë

RŒ
È

.

Since “ may be chosen arbitrarily close to 1, we have

E(z,x)
Ë

Rt , ›
“t

< 0
È

=
1

E¿
(z,x)

Ë

RŒ
È

+ o(1)
2

P(e)
x

1

›
t

< 0
2

. (4.24)

Once again, since (Rt, t > 0) is a uniformly bounded process, there exists a positive
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constant C2 such that |Rt| 6 C2. In addition, observe that, given any ‘ > 0 and t

su�ciently large, we have
-

-

-E(z,x)
Ë

Rt1{›t<0}

È

≠ E(z,x)
Ë

Rt1{›“t<0}

È
-

-

- 6 C2

3

P(e)
x

1

›
t

< 0
2

≠ P(e)
x

1

›
“t

< 0
2

4

6 C2

Q

a1 ≠
P(e)

x

1

›
“t

< 0
2

P(e)
x

1

›
t

< 0
2

R

bP(e)
x

1

›
t

< 0
2

6 C2

3

1 ≠
1 ≠ ‘

1 + ‘
“

≠fl

4

P(e)
x

1

›
t

< 0
2

.

Hence, since ‘ is arbitrary close to 0 and “ may be chosen arbitrarily close to 1, we
obtain

E(z,x)
Ë

Rt1{›t<0}

È

≠ E(z,x)
Ë

Rt1{›“t<0}

È

= o(1)P(e)
x

1

›
t

< 0
2

. (4.25)

Finally, putting everything together, this is, from (5.3) and (4.25), we deduce that

E(z,x)
Ë

Rt1{›t<0}

È

≠ E¿
(z,x)

Ë

RŒ
È

P(e)
x

1

›
t

< 0
2

= E(z,x)
Ë

Rt1{›t<0}

È

≠ E(z,x)
Ë

Rt1{›“t<0}

È

+ E(z,x)
Ë

Rt1{›“t<0}

È

≠ E¿
(z,x)

Ë

RŒ
È

P(e)
x

1

›
t

< 0
2

= o

3

P(e)
x

1

›
t

< 0
2

4

.

The second claim is now complete.

Recall from Theorem 4.1.1 that the quenched law of the process (Zte
≠›t , t > 0)

is completely characterised by the functional vt(s, ⁄, ›). In the case of conditioned
environment we have a similar result. We formalize this in the following lemma.

Lemma 4.3.2. For each z > 0, x < 0 and ⁄ > 0, we have

E¿
(z,x)

5

exp
Ó

≠ ⁄Zte
≠›t

Ô

6

= E(e),¿
x

5

exp{≠zvt(0, ⁄e
≠›0 , › ≠ ›0)}

6

. (4.26)

In particular,

P¿
(z,x)(Zt < Œ) = E(e),¿

x

5

exp {≠zvt(0, 0, › ≠ ›0)}
6

.

Essentially the proof mimics the steps of [7, Proposion 2]. However, we present it
here for the sake of completeness.

Proof. Let z > 0 and x < 0. Using the law of a CSBP in a Lévy environment › condi-
tioned to stay negative given in (3.25) followed by conditioning on the environment,
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we obtain for every ⁄ > 0,

E¿
(z,x)

5

exp
Ó

≠ ⁄Zte
≠›t

Ô

6

= 1
U(≠x)E(z,x)

5

U(≠›t)1{›t<0}e
≠⁄Zte

≠›t

6

= 1
U(≠x)E(z,0)

5

U(≠›t ≠ x)1{›t<≠x}E(z,0)

5

e
≠⁄e

≠x
Zte

≠›t

-

-

-

-

›

66

= 1
U(≠x)E(z,0)

5

U(≠›t ≠ x)1{›t<≠x}e
≠zvt(0,⁄e

≠x
,›)

6

= E(e),¿
x

5

exp{≠zvt(0, ⁄e
≠›0 , › ≠ ›0)}

6

.

Further, by letting ⁄ ¿ 0, we deduce that

P¿
(z,x)(Zt < Œ) = E(e),¿

x

5

exp {≠zvt(0, 0, › ≠ ›0)}
6

.

The following lemma states that, with respect to P¿
(z,x), the population has positive

probability to be finite forever. In other words, Z has a positive probability to be finite
when the running supremum of the Lévy environment is negative. The statement
holds under a moment condition on the descending ladder height process associated
to ›. Further, note that such behaviour is similar to the behaviour in the subcritical-
explosion regime (i.e., when the environment drifts to ≠Œ) given by Palau et al. [59]
for a CSBP in Lévy environment with a stable branching mechanism.

Lemma 4.3.3. Assume that the branching mechanism satisfies condition (A2). Also

suppose that the Lévy process › satisfies condition (A1). Then, for z > 0 and x < 0,

we have

lim
tæŒ

P¿
(z,x) (Zt < Œ) > 0.

Before we proceed with the proof, let us recall from the observation above Theorem
4.1.1 that we may take ” = 0.

Proof. Let z > 0 and x < 0. From Lemma (4.3.2), we already know the formula,

lim
tæŒ

P¿
(z,x)(Zt < Œ) = lim

tæŒ
E(e),¿

x

5

exp {≠zvt(0, 0, › ≠ ›0)}
6

.

Then, in order to deduce our result we will to show that

lim
tæŒ

vt(0, 0, › ≠ ›0) < Œ, P(e),¿
x

≠ a.s. (4.27)
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Now, from Lemma 4.2.2, we see that the mapping s ‘æ vt(s, ⁄e
≠›0 , › ≠›0) is decreasing

and thus vt(s, ⁄e
≠›0 , › ≠ ›0) > ⁄e

≠›0 for all s œ [0, t]. It follows that, for s œ [0, t] and
⁄ > 0,

ˆ

ˆs
vt(s, ⁄e

≠›0 ,› ≠ ›0) = e
›s≠›0Â

1

vt(s, ⁄e
≠›0 , › ≠ ›0)e≠›s+›0

2

= ≠vt(s, ⁄e
≠›0 , › ≠ ›0)

⁄

(0,Œ)
exp{≠vt(s, ⁄e

≠›0 , › ≠ ›0)e≠›s+›0z}µ̄(z)dz

> ≠vt(s, ⁄e
≠›0 , › ≠ ›0)

⁄

(0,Œ)
exp{≠⁄e

≠›0e
≠›s+›0z}µ̄(z)dz,

Therefore by integrating,

log vt(0, ⁄e
≠›0 , › ≠ ›0) 6 log(⁄e

≠›0) +
⁄

t

0

⁄

(0,Œ)
exp{≠⁄e

≠›sz}µ̄(z)dzds.

Moreover, from Lemma 4.2.2, we have that the mapping ⁄e
≠›0 ‘æ vt(s, ⁄e

≠›0 , › ≠ ›0)
is increasing. It tuns out that,

vt(0, 0, › ≠ ›0) 6 vt(0, ⁄e
≠›0 , › ≠ ›0) 6 ⁄e

≠›0 exp
A

⁄

t

0

⁄

(0,Œ)
exp{≠⁄e

≠›sz}µ̄(z)dzds

B

.

Let us denote,
�⁄(u) :=

⁄

(0,Œ)
exp{≠⁄e

≠u
z}µ̄(z)dz.

It then follows,

lim
tæŒ

vt(0, 0, › ≠ ›0) 6 ⁄e
≠›0 exp

3
⁄ Œ

0
�⁄(›s)ds

4

.

Now, if the right-hand side above is finite P(e),¿
x

≠ a.s. then (4.27) holds. The result is
thus proved once we show that

E(e),¿
x

5
⁄ Œ

0
�⁄(›s)ds

6

< Œ.

First, with the help of Fubini’s Theorem and the definition of the measure P(e),¿
x

, we
obtain

E(e),¿
x

5
⁄ Œ

0
�⁄(›s)ds

6

= 1
U(≠x)

⁄ Œ

0
‚E(e)

≠x

Ë

U(›s)�⁄(›s)1{›
s
>0}

È

ds

= 1
U(≠x)

‚E(e)
≠x

C

⁄

·
≠
0

0
U(›s)�⁄(›s)ds

D

.

Now, applying Theorem VI.20 in Bertoin [10] to the dual process ‚› = ≠› and the
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function f(y) = U(y)�⁄(y), y > 0, we deduce that, there exists a constant k > 0 such
that

‚E(e)
≠x

C

⁄

·
≠
0

0
U(›s)�⁄(›s)ds

D

= k

⁄

[0,Œ)
d ‚U(y)

⁄

[0,≠x]
dU(z)U(y ≠ x ≠ z)�⁄(y ≠ x ≠ z).

For the sake of simplicity we take k = 1 (we may choice a normalisation of local
time in order to have k = 1). Observe that, for any z œ [0, ≠x] and y > 0, we have
y ≠ x ≠ z 6 y ≠ x. Further, since U(·) and �⁄(·) are increasing functions, we deduce
that U(y ≠ x ≠ z) 6 U(y ≠ x) and �⁄(y ≠ x ≠ z) 6 �⁄(y ≠ x), which implies

‚E(e)
≠x

C

⁄

·
≠
0

0
U(›s)�⁄(›s)ds

D

6
⁄

[0,Œ)
d ‚U(y)

⁄

[0,≠x]
dU(z)U(y ≠ x)�⁄(y ≠ x)

= (U(≠x) ≠ U(0))
⁄

[0,Œ)
d ‚U(y)U(y ≠ x)�⁄(y ≠ x).

On the other hand, note that the function �⁄ can be also rewritten as follows,

�⁄(u) =
⁄

(0,Œ)
exp{≠⁄e

≠u
z}µ̄(z)dz =

⁄

[0,Œ)
µ(dy)

⁄

y

0
exp{≠⁄e

≠u
z}dz

=
⁄

[0,Œ)

1 ≠ exp{≠⁄e
≠u

y}

⁄e≠u
µ(dy).

Hence putting all pieces together, we obtain

E(e),¿
x

5
⁄ Œ

0
�⁄(›s)ds

6

= 1
U(≠x)

‚E(e)
≠x

C

⁄

·
≠
0

0
U(›s)�⁄(›s)ds

D

6
⁄

(0,Œ)
�(z)µ(dz),

where
�(z) :=

⁄

[0,Œ)
d ‚U(y)U(y ≠ x)

C

1 ≠ exp{≠⁄e
x≠y

z}

⁄ex≠y

D

. (4.28)

We claim that the integral of z ‘æ �(z)µ(dz) is finite under condition (A1). In order
to see this, we first note that, for z œ (0, 1) we get

�(z) 6
⁄

[0,Œ)
d ‚U(y)U(y ≠ x)z 6 C1z

⁄

[0,Œ)
d ‚U(y)y = C1z ‚E(e)

Ë

H1
È

,

where C1 is a finite constant that only depends on x. Thus, for z œ (0, 1)
⁄

(0,Œ)
�(z)µ(dz) 6 C1 ‚E(e)

Ë

H1
È

⁄

(0,1)
zµ(dz).

Note that, the term in the right-hand side is finite due to condition (A1) and since µ

is such that
⁄

(0,Œ)
(1 · x)µ(dx) < Œ (4.29)
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Finally, for z œ (1, Œ),

�(z) 6 C1

⁄

[0,Œ)
d ‚U(y)y 1

⁄ex≠y
= C1⁄

≠1
e

≠x

⁄

[0,Œ)
d ‚U(y)ye

y = ‚C1 ‚E(e)
Ë

H1e
H1

È

,

where ‚C1 is a finite constant. This implies that
⁄

(0,Œ)
�(z)µ(dz) 6 ‚C1 ‚E(e)

Ë

H1e
H1

È

⁄

(1,Œ)
µ(dz).

Once again, appealing to the condition (A1) and (4.29), we have that the above
integral is also finite. This concludes the proof.

4.4 Critical-explosion regime
This section is devoted to the proof of Theorem 4.1.3. The general approach of our
proof is to replace the event {Zt < Œ} by others events depending on the behaviour of
the running supremum of the environment, which are easier to handle. This strategy
has been used before to deal with the absorption event in the discrete setting as well
as in the continuous setting (see for instance [3] and [7]), where the survival event is
splitted when the running infimum of the environment is either positive or negative.
Since we are studying the non-explosion event, we split it when the running supremum
is either positive or negative.

Before we prove Theorem 4.1.3, we introduce several results that are required for
our arguments. Lemmas 4.3.1 and 4.3.3 allows us to establish the first result which
describes the limit of the non-explosion probability when the associated environment
is conditioned to be negative.

Proposition 4.4.1. Suppose that conditions (H1), (A1) and (A2) are satisfied. Then

for every z > 0 and x < 0, there exists 0 < c(z, x) < Œ such that

lim
tæŒ

1
Ÿ(1/t, 0)P(z,x)

3

Zt < Œ, ›
t

< 0
4

= c(z, x)U(≠x). (4.30)

Proof. We begin by defining the decreasing sequence of events At = {Zt < Œ} for
t > 0, and also the event AŒ = {’t > 0, Zt < Œ}. Now, observe that

lim
tæŒ

At = AŒ.

Let (Rt := 1At , t > 0) be a uniformly bounded process adapted to the filtration
(Ft, t > 0). Note that, the process (Rt, t > 0) converges P¿

(z,x)-a.s. to a random



118 Explosion rates of CSBPs in a Lévy environment

variable RŒ = 1AŒ . Then, by appealing to Lemma 4.3.1, we have

lim
tæŒ

E(z,x)
Ë

Rt | ›
t

< 0
È

= E¿
(z,x)

Ë

RŒ
È

. (4.31)

Therefore, by using the asymptotic behaviour of the probability that the Lévy process
› remains negative given in (4.8), we get

P(z,x)

3

Zt < Œ, ›
t

< 0
4

= E(z,x)
Ë

Rt | ›
t

< 0
È

P(e)
x

1

›
t

< 0
2

≥ c(z, x)U(≠x)Ÿ(1/t, 0), as t æ Œ,

where c(z, x) := E¿
(z,x)

Ë

RŒ
È

/
Ô

fi. Furthermore, from Lemma 4.3.3, we have

E¿
(z,x)

Ë

RŒ
È

= P¿
(z,x)

1

’t > 0, Zt < Œ

2

= lim
tæŒ

P¿
(z,x)(Zt < Œ) > 0,

which completes the proof.

Lemma 4.4.2. Let x < 0 and assume that condition (H1) holds. Thus for any s 6 t,

as t and s goes to Œ, we have,

‚P(e)
1

s < ·
≠
x
6 t

2

6 C3

A

C4

3

t

s

4÷+fl

≠ 1
B

U(≠x)t≠fl
¸(t),

where C3, C4 > 0, ÷ > 0 and ¸ is the slowly varying function at Œ given in (4.11).

Proof. Let x < 0 and s 6 t. Let us begin by noting that,
‚P(e)

1

s < ·
≠
x
6 t

2

= ‚P(e)
1

·
≠
x

> s

2

≠ ‚P(e)
1

·
≠
x

> t

2

= ‚P(e)
1

·
≠
x

> t

2

Q

a

‚P(e)
1

·
≠
x

> s

2

‚P(e)
1

·≠
x

> t

2 ≠ 1
R

b . (4.32)

Now, recall that under Spitzer’s condition (H1), the function Ÿ(·, 0) is regularly varying
at 0. To be more precise, from (4.8), we get

‚P(e)
1

·
≠
x

> t

2

≥
U(≠x)

Ô
fi

t
≠fl

¸(t), as t æ Œ,

where ¸ is the slowly varying function at Œ given in (4.11). Hence, for t and s large
enough, we have

‚P(e)
1

·
≠
x

> s

2

‚P(e)
1

·≠
x

> t

2 6 C1

3

s

t

4≠fl ¸(s)
¸(t) ,

where C1 is a positive constant. On the other hand, according to Potter’s Theorem in
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[15] we deduce that, for any A > 1 and ÷ > 0 there exists t1 = t1(A, ÷) such that

¸(s)
¸(t) 6 A max

I

3

s

t

4

÷

,

3

s

t

4≠÷
J

, t > s > t1.

Therefore, for t > s > t1

‚P(e)
1

·
≠
x

> s

2

‚P(e)
1

·≠
x

> t

2 6 C2

3

s

t

4≠fl
3

s

t

4≠÷

6 C2

3

t

s

4÷+fl

,

where the constants C2 > 0 is adjusted properly. Now plugging the later inequality
back into (4.32), we get, as it was claimed,

‚P(e)
1

s < ·
≠
x
6 t

2

6 ‚P(e)
1

·
≠
x

> t

2

Q

a

‚P(e)
1

·
≠
x

> s

2

‚P(e)
1

·≠
x

> t

2 ≠ 1
R

b

6 C3

A

C4

3

t

s

4÷+fl

≠ 1
B

U(≠x)t≠fl
¸(t), as s, t æ Œ,

where C3 and C4 are strictly positive constants.

Recall that I0,t(—›) is the exponential functional of the Lévy process —› defined in
(3.29). According to Theorem 1 in Bertoin and Yor [12], the exponential functional
I0,Œ(—›) is a.s. finite if and only if › drifs to ≠Œ. The following result will be useful
to control the probability of non-explosion under the event that {›

t
> 0}.

Lemma 4.4.3. Let — œ (≠1, 0), C < 0 and y > 0. Assume that condition (H1) holds.

Then, there exists a constant C—(y) such that for t large enough, we have

‚E(e)
5

exp
;

≠ y(C—)≠1/—I0,t(≠—›)≠1/—

<6

6 2C—(y)t≠fl
¸ (t) ,

where ¸ is the slowly varying function at Œ given in (4.11). Further,

lim
yæŒ

C—(ey) = 0 and lim
yæŒ

yC—(ey) = 0.

Proof. According to Patie and Savov [63, Theorem 2.20], we have that, under Spitzer’s
condition (H1), for any continuous and bounded function f on R+ and any constant
a œ (0, 1), we have

lim
tæŒ

‚E(e)
5

I0,t(≠—›)≠a
f

1

I0,t(≠—›)
2

6

Ÿ(1/t, 0) =
⁄ Œ

0
f(x)Ëa(dx),
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where Ëa is a positive measure on (0, Œ). Now, let us define the continuous and
bounded function f(x) = x

a exp(≠y(C—)≠1/—
x

≠1/—), thereby by the latter identity we
deduce that, for any a œ (0, 1),

lim
tæŒ

‚E(e)
5

exp
;

≠ y(C—)≠1/—I0,t(≠—›)≠1/—

<6

Ÿ(1/t, 0) = C—(y),

where
C—(y) :=

⁄ Œ

0
x

a exp
Ó

≠ y(C—)≠1/—
x

≠1/—
Ô

Ëa(dx). (4.33)

On the other hand, since Spitzer’s condition holds, we have that the Laplace exponent
Ÿ(· , 0) of the ladder time process L

≠1 is regularly varying at 0+ with index fl œ (0, 1),
i.e. from (4.7) we recall that,

Ÿ(1/t, 0) = t
≠fl

¸(t),

where ¸ is the slowly varying function at Œ defined in (4.11). The latter implies that
there exists t0 > 0 such that if t > t0

‚E(e)
5

exp
;

≠ y(C—)≠1/—I0,t(≠—›)≠1/—

<6

6 2C—(y)t≠fl
¸(t),

Furthermore, with the help of the Dominated Convergence Theorem, we obtain that

lim
yæŒ

yC—(ey) = 2
⁄ Œ

0
x

a lim
yæŒ

y exp
Ó

≠ e
y(C—)≠1/—

x
≠1/—

Ô

Ëa(dx) = 0.

Similarly, using Dominated Convergence Theorem, we have that C—(ey) æ 0 as y æ

Œ. This concludes the proof.

The following result makes precise the statement that only paths of the Lévy
process with a very low running supremum give a substantial contribution to the
speed of non-explosion.

Proposition 4.4.4. Fix z > 0, x < 0 and ‘ œ (0, 1). Suppose that assumptions (H1)
and (A2) are satisfied. Then, we have

lim
yæŒ

lim sup
tæŒ

1
Ÿ(1/t, 0)P(z,x)

3

Zt < Œ, ›
t≠‘

> y

4

= 0. (4.34)

Proof. Fix z > 0, x < 0 and ‘ œ (0, 1). We begin by noting that condition (A2) allows
us to find a lower bound for vt(0, 0, › ≠ ›0) in terms of the exponential functional of ›.
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Indeed, we observe from the backward di�erential equation given in (4.5) that

ˆ

ˆs
vt(s, ⁄e

≠›0 , › ≠ ›0) 6 Cv
1+—

t (s, ⁄e
≠›0 , ›)e≠—(›s≠›0)

, vt(t, ⁄e
≠›0 , › ≠ ›0) = ⁄e

≠›0 .

Integrating between 0 and t, we get

1
v

—

t (0, ⁄e≠›0 , › ≠ ›0)
≠

1
(⁄e≠›0)—

> C—

⁄

t

0
e

≠—(›s≠›0)ds, C— > 0.

Now, letting ⁄ ¿ 0 and taking into account that — œ (≠1, 0) and C < 0, we deduce
the following inequality for all t > 0,

vt(0, 0, › ≠ ›0) >
1

C—I0,t(—(› ≠ ›0))
2≠1/—

, (4.35)

where I0,t(—(› ≠ ›0)) is the exponential functional of the Lévy process —(› ≠ ›0) see for
instance (3.29). Hence, the quenched non-explosion probability given in (4.18) may
be bounded in terms of this functional. That is to say, for all t > 0,

P(z,x)
1

Zt < Œ

-

-

- ›

2

= exp
Ó

≠ zvt(0, 0, › ≠ ›0)
Ô

6 exp
;

≠ z

1

C—I0,t(—(› ≠ ›0))
2≠1/—

<

.

Therefore, conditioning on the environment and using the notation ‚P(e) for the law of
the dual process ‚›, we obtain that, for any y > x

P(z,x)

3

Zt < Œ, ›
t≠‘

> y

4

= E(e)
x

5

P(z,x)
1

Zt < Œ

-

-

- ›

2

1{›t≠‘>y}

6

(4.36)

6 ‚E(e)
5

exp
;

≠ z(C—)≠1/—I0,t(≠—›)≠1/—

<

1{›
t≠‘

6x≠y}

6

.

Let w = x ≠ y and t0 > 0. Now, we split the event {·
≠
w

6 t ≠ ‘} for 3t0 < t and
0 < ‘ < 1, as follows

{·
≠
w
6 t ≠ ‘} = {0 < ·

≠
w
6 (t ≠ t0)/2} fi {(t ≠ t0)/2 < ·

≠
w
6 t ≠ ‘}.

By the monotonicity of the mapping t ‘æ I0,t(≠—›), we have, under the event {0 <

·
≠
w
6 (t ≠ t0)/2}, that

t0 < ·
≠
w

< ·
≠
w

+ t + t0
2 6 t and I0,t(≠—›) > I

·
≠
w ,·

≠
w + t+t0

2
(≠—›).

Similarly, under the event {(t ≠ t0)/2 < ·
≠
w
6 t ≠ ‘}, we obtain

t ≠ t0
2 < ·

≠
w

< ·
≠
w

+ ‘ 6 t and I0,t(≠—›) > I
·

≠
w ,·

≠
w +‘

(≠—›).
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Next, appealing to the strong Markov property of ›, we deduce

‚E(e)
5

exp
;

≠ z(C—)≠1/—I
·

≠
w ,·

≠
w + t+t0

2
(≠—›)≠1/—

<

; 0 < ·
≠
w
6 (t ≠ t0)/2

6

Æ ‚E(e)

S

Uexp

Y

]

[

≠ze
≠w(C—)≠1/—

A

⁄

t+t0
2

0
e

—

1

›
s+·≠

w
≠›

·≠
w

2

ds

B≠1/—
Z

^

\

;

0 < ·
≠
w
6 (t ≠ t0)/2

6

= ‚E(e)
5

exp
;

≠ ze
≠w(C—)≠1/—I0,

t+t0
2

(≠—›)≠1/—

<6

‚P(e)
3

0 < ·
≠
w
6 t ≠ t0

2

4

.

Now from Lemma 4.4.3, for t su�ciently large, we have

‚E(e)
5

exp
;

≠ ze
≠w(C—)≠1/—I0,

t+t0
2

(≠—›)≠1/—

<6

6 2C—(ze
≠w)

3

t + t0
2

4≠fl

¸

3

t + t0
2

4

,

where ¸ is the slowly varying function at Œ given in (4.11) and C—(ze
≠w) is the function

defined in (4.33). Therefore, for t large enough, we get

‚E(e)
5

exp
;

≠ z(C—)≠1/—I
·

≠
w ,·

≠
w + t+t0

2
(≠—›)≠1/—

<

; 0 < ·
≠
w
6 (t ≠ t0)/2

6

6 2C—(ze
≠w)

3

t + t0
2

4≠fl

¸

3

t + t0
2

4

.

Using the same arguments as above and Lemmas 4.4.2 and 4.4.3, we obtain the fol-
lowing sequence of inequalities for t su�ciently large,

‚E(e)
5

exp
;

≠ z(C—)≠1/—I
·

≠
w ,·

≠
w +‘

(≠—›)≠1/—

<

; (t ≠ t0)/2 < ·
≠
w
6 t ≠ ‘

6

6 ‚E(e)
5

exp
;

≠ ze
≠w(C—)≠1/—I0,‘(≠—›)≠1/—

<6

‚P(e)
3

t ≠ t0
2 < ·

≠
w
6 t ≠ ‘

4

6 2C—(ze
≠w)‘≠fl

¸(‘)C3

Q

aC4

A

2(t ≠ ‘)
t ≠ t0

B

÷+fl

≠ 1
R

b U(≠w) (t ≠ ‘)≠fl
¸ (t ≠ ‘)

6 2C—(ze
≠w)‘≠fl

¸(‘)C3

A

C42÷+fl

3

1 + t0 ≠ ‘

2t0

4÷+fl

≠ 1
B

U(≠w) (t ≠ ‘)≠fl
¸ (t ≠ ‘) ,

where ÷ > 0.
Hence plugging this back into (4.36) (and similarly as in the proof of Lemma 4.4
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in [52]), we get, for t large enough,

‚E(e)
5

exp
;

≠ z(C—)≠1/—I0,t(≠—›)≠1/—

<

; ·
≠
w
6 t ≠ ‘

6

6 2C—(ze
≠w)

3

t + t0
2

4≠fl

¸

3

t + t0
2

4

+ 2C—(ze
≠w)‘≠fl

¸(‘)C3

◊

A

C42÷+fl

3

1 + t0 ≠ ‘

2t0

4÷+fl

≠ 1
B

U(≠w) (t ≠ ‘)≠fl
¸ (t ≠ ‘) .

Define the following constant:

C5(ze
≠w) = 2C—(ze

≠w) ‚ 2C—(ze
≠w)‘≠fl

¸(‘)C3

A

C42÷+fl

3

1 + t0 ≠ ‘

2t0

4÷+fl

≠ 1
B

,

and recalling the definition of the constant C—(ze
≠w) and Lemma 4.4.3, we have that

lim
yæŒ

C—(ze
y≠x) = 0 and lim

yæŒ
yC—(ze

y≠x) = 0.

Now, appealing to Potter’s Theorem, we deduce, for any A1, A2 > 1 and ”1, ”2 > 0,
that for t large enough,

1
Ÿ(1/t, 0)P(z,x)

3

Zt < Œ, ›
t≠‘

> y

4

= t
fl

¸(t)P(z,x)

3

Zt < Œ, ›
t≠‘

> y

4

= C5(ze
≠w)

I

3 2t

t + t0

4fl
¸((t + t0)/2)

¸(t) + U(≠w)
3

t

t ≠ ‘

4fl
¸(t ≠ ‘)

¸(t)

J

6 C5(ze
y≠x)

I

A1

3 2t

t + t0

4fl≠”1

+ U(y ≠ x)A2

3

t

t ≠ ‘

4fl≠”2
J

.

Finally, taking into account that the renewal function U grows at most linearly, i.e.,
U(y ≠ x) = O(y ≠ x), and letting t æ Œ and then y æ Œ we obtain the desired
result.

With the previous Propositions 4.4.1 and 4.4.4 in hand, we may now proceed to
the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. Fix Î, z > 0, x < 0 and ‘ œ (0, 1). We begin by noting, from
Proposition 4.4.4, that we may choose y > 0 such that for t large enough,

P(z,x)

3

Zt < Œ, ›
t≠‘

> y

4

6 ÎP(z,x)

3

Zt < Œ, ›
t≠‘

< y

4

. (4.37)

Now, note that for t large enough, we get {Zt < Œ} µ {Zt≠‘ < Œ} and using the
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previous inequality, it follows,

Pz(Zt < Œ) = P(z,x)

3

Zt < Œ, ›
t≠‘

> y

4

+ P(z,x)

3

Zt < Œ, ›
t≠‘

< y

4

6 (1 + Î)P(z,x≠y)

3

Zt≠‘ < Œ, ›
t≠‘

< 0
4

.

In other words, for every Î > 0 there exists y
Õ
< 0 such that for t large enough

(1 ≠ Î)
P(z,yÕ)

3

Zt < Œ, ›
t

< 0
4

Ÿ(1/t, 0) 6 Pz(Zt < Œ)
Ÿ(1/t, 0)

6 (1 + Î)
P(z,yÕ)

3

Zt≠‘ < Œ, ›
t≠‘

< 0
4

Ÿ(1/(t ≠ ‘), 0)
Ÿ(1/(t ≠ ‘), 0)

Ÿ(1/t, 0) .

Next, using that the function Ÿ(·, 0) is regularly varying at 0, and then appealing to
Potter’s Theorem in Bingham et al. [15], we see that, for any A > 1 and ÷ > 0,

lim
tæŒ

Ÿ(1/(t ≠ ‘), 0)
Ÿ(1/t, 0) = lim

tæŒ

¸(t ≠ ‘)
¸(t)

3

t ≠ ‘

t

4≠fl

6 lim
tæŒ

A

3

t

t ≠ ‘

4fl+÷

= A.

On the other hand, according to Proposition 4.4.1, there exists 0 < c(z, y
Õ) < Œ

such that
lim
tæŒ

1
Ÿ(1/t, 0)P(z,yÕ)

3

Zt < Œ, ›
t

< 0
4

= c(z, y
Õ)U(≠y

Õ).

Hence, as a consequence of the above facts, we get

(1 ≠ Î)c(z, y
Õ)U(≠y

Õ) 6 lim
tæŒ

Pz(Zt < Œ)
Ÿ(1/t, 0) 6 (1 + Î)c(z, y

Õ)U(≠y
Õ)A.

We observe that y
Õ is a sequence which may depend on Î and z. Further, this sequence

y
Õ goes to minus infinity as Î goes to 0. Thus, for any sequence yÎ(z), we have

0 < (1 ≠ Î)c(z, yÎ(z))U(≠yÎ(z)) 6 lim
tæŒ

Pz(Zt < Œ)
Ÿ(1/t, 0)

6 (1 + Î)c(z, yÎ(z))U(≠yÎ(z))A < Œ.

Therefore,

0 < lim inf
Îæ0

(1 ≠ Î)c(z, yÎ(z))U(≠yÎ(z)) 6 lim
tæŒ

Pz(Zt < Œ)
Ÿ(1/t, 0)

6 lim sup
Îæ0

(1 + Î)c(z, yÎ(z))U(≠yÎ(z))A < Œ.



4.5 Subcritical-explosion regime 125

Since A can be taken arbitrary close to 1, we deduce

0 < lim
tæŒ

Pz(Zt < Œ)
Ÿ(1/t, 0) = C1(z) := lim

Îæ0
c(z, yÎ(z))U(≠yÎ(z)) < Œ,

which completes the proof.

4.5 Subcritical-explosion regime
This section is devoted to the proof of Theorem 4.1.4. The proof follows similar ideas
as those used in the proof of Proposition 3 in Palau and Pardo [57].

Proof. Let z > 0 and x œ R. We begin by recalling, from Lemma 4.3.2, that we can
deduce the following identity,

lim
tæŒ

Pz(Zt < Œ) = lim
tæŒ

E(e)
x

5

exp {≠zvt(0, 0, › ≠ ›0)}
6

,

we observe that the left-hand side of the above equation does not depend of the initial
value x of the Lévy process ›.

Hence, as soon as we can establish that

lim
tæŒ

vt(0, 0, › ≠ ›0) < Œ, P(e)
x

≠ a.s.,

our proof is completed. Now, from the proof of Lemma 4.3.3, we have the following
inequality

lim
tæŒ

vt(0, 0, › ≠ ›0) 6 ⁄e
≠›0 exp

;
⁄ Œ

0
‚�⁄(‚›s)ds

<

, (4.38)

where ‚› = ≠› denotes the dual process and ‚�⁄(·) is the function defined in (4.12). We
recall that in this regime the dual process ‚› drifts to Œ, P(e)

x
-a.s. Thus, in order to

prove that the integral in (4.38) is finite, let us introduce Î = sup{t > 0 : ‚›t 6 0} and
observe that

⁄ Œ

0
‚�⁄(‚›s)ds =

⁄

Î

0
‚�⁄(‚›s)ds +

⁄ Œ

Î

‚�⁄(‚›s)ds.

Since Î < Œ, P(e)
x

-a.s., it follows that the first integral in the right-hand side above is
finite P(e)

x
-a.s. For the second integral, we may appeal to Theorem 1 in Erickson and

Maller [29], which guarantees, under condition (4.14), that
⁄ Œ

Î

‚�⁄(‚›s)ds < Œ, P(e)
x

≠ a.s.
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Furthermore, if E(e)
Ë

‚›1
È

< Œ, then lim
xæŒ

A›(x) is finite. In particular, it follows that
the integral condition (4.14) is equivalent to

⁄ Œ

0
‚�⁄(u)du < Œ.

Moreover, we have
⁄ Œ

0
‚�⁄(u)du =

⁄ Œ

0

⁄

(0,Œ)
exp{≠⁄e

u
y}µ̄(y)dydu =

⁄ Œ

0

⁄ Œ

1

exp{≠⁄yw}

w
dwµ̄(y)dy,

Now by the definition of the exponential integral given in (4.13), we deduce that
condition (4.14) is equivalent to

⁄ Œ

0
E1(⁄y)µ̄(y)dy < Œ,

which concludes the proof.

4.6 Future research
In this section, we establish some conjectures regarding to the probability of non-
explosion for CSBPs in a Lévy environment that we are currently studying. We would
like to obtain these results as they would give us a complete characterisation of the
explosion event in our setting.

In Theorem 4.1.1 we characterised the law of (Zte
≠›t , t > 0) via a backward di�eren-

tial equation when the branching mechanism is given by the negative of a subordinator
and with infinite mean. Nevertheless, we would like to obtain such result also for the
case when the branching mechanism Â is given by the Laplace exponent of a spectrally
negative Lévy process with infinite mean. The intuition we have about the veracity
of such statement lies in the so-called Neveu case. Recall that the Neveu branching
process in a Lévy random environment has branching mechanism given by

Â(⁄) = ⁄ log ⁄ = c⁄ +
⁄

(0,Œ)

1

e
≠⁄y

≠ 1 + ⁄y1{y<1}
2

y
≠2dy, y > 0,

where c œ R is a suitable constant. Note that, in this case we have Â
Õ(0+) = ≠Œ.

Additionally, the backward di�erential equation (4.5),

ˆ

ˆs
vt(s, ⁄, ›) = vt(s, ⁄, ›) log

1

e
≠›svt(s, ⁄, ›)

2

, s œ [0, t], vt(t, ⁄, ›) = ⁄,
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has a solution which is given by

vt(s, ⁄, ›) = exp
;

e
s

3
⁄

t

s

e
≠u

›udu + e
≠t log ⁄

4<

,

(see Palau and Pardo [58] for further details). Therefore, we believe that the following
conjecture holds.

Conjecture 4.6.1. Assume that Â is the Laplace exponent of a spectrally negative

Lévy process such that Â
Õ(0+) = ≠Œ. For every z, ⁄, t > 0 and x œ R, we have

E(z,x)

5

exp
Ó

≠ ⁄Zte
≠›t

Ô

-

-

-

-

›

6

= exp
Ó

≠zvt(0, ⁄e
≠›0 , › ≠ ›0)

Ô

,

where for any ⁄, t > 0, the function vt : s œ [0, t] æ vt(s, ⁄e
≠›0 , › ≠ ›0) is an a.s.

solution of the backward di�erential equation

ˆ

ˆs
vt(s, ⁄, ›) = e

›sÂ

1

vt(s, ⁄, ›)e≠›s
2

, a.e. s œ [0, t]

and with terminal condition vt(t, ⁄, ›) = ⁄.

In this case the Carathéodory Existence Theorem 4.2.1 is not directly applicable.
One main di�culty in applying this result is having a control over the growth of the
function f(s, ◊) = e

›sÂ(◊e
≠›s). To overcome this obstacle, we will consider a stronger

version of Theorem 4.2.1 (see [65, Section 3]) and also the following identity, which
follows from the Wiener–Hopf factorisation,

Â(◊) = (◊ ≠ –)�(◊), for all ◊ > 0, (4.39)

where � is the Laplace exponent of a subordinator, – = ‚Â(0) > 0 with ‚Â the right
inverse of the function Â.

Once we are able to prove Conjecture 4.6.1, we will have a complete criterion re-
garding to the conservativeness of the CSBPs in a Lévy environment in terms of the
branching mechanism. In other words, we state that

Assuming that Conjecture 4.6.1 holds and that Â is the Laplace exponent of a

spectrally negative Lévy process with Â
Õ(0+) = ≠Œ, a continuous-state branching

process in a Lévy environment is conservative if and only if

⁄

0+

1
|Â(z)|dz = Œ.
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In fact, this result can be proved following the same strategy used in Proposition
4.1.2 together with identity (4.39). Finally, we state the following conjecture concern-
ing the speed of the non-explosion probability for a CSBPs in a supercritical-explosion
regime.

Conjecture 4.6.2 (Supercritical-explosion regime). Assume that �Õ
›
(0+) > 0. Sup-

pose that Â is the negative of a subordinator, that condition (A2) holds and some

others technical conditions on the characteristics of the Lévy process ›. Then, for any

z > 0, there exists 0 < C3(z) < Œ such that

lim
tæŒ

t
3/2

e
≠t�›(“)Pz(Zt < Œ) = C3(z),

where “ is such that �Õ
›
(“) = 0.

Roughly speaking, our aim is to study the event of non-explosion at time t in two
di�erent situations that depend on the behaviour of the supremum of the environment.
To be more precise, we split the event of non-explosion as follows:

Pz(Zt < Œ) = P(z,x)
1

Zt < Œ, ›
t
> 0

2

+ P(z,x)
1

Zt < Œ, ›
t

< 0
2

, (4.40)

for z > 0 and x < 0. For the asymptotic behaviour of the first probability in the
right-hand side above, it will be necessary to use condition (A2) which give us the
following lower bound

vt(0, 0, › ≠ ›0) >
1

C—I0,t(—(› ≠ ›0))
2≠1/—

,

With this in hand, it will be possible to handle the expectation

E(e)
x

5

P(z,x)
1

Zt < Œ

-

-

- ›

2

1{›t>0}

6

,

in order to obtain its long-term behaviour. On the other hand, for the second proba-
bility in the right-hand of (4.40), a more elaborate argument will be needed. To this
end, we write

P(z,x)

3

Zt < Œ, ›
t

< 0
4

= P(z,x)

3

Zt < Œ

-

-

- ›
t

< 0
4

P(e)
x

1

›
t

< 0
2

,

and we will study the conditional probability using the fluctuation theory of Lévy
processes and the approach developed in Chapter 5 for the non-extinction probability
in the intermediate subcritical regime.



Chapter 5

Extinction rates of CSBPs in a
subcritical Lévy environment

The aim of this chapter is to study the speed of the non-extinction probability for
CSBPs in a subcritical Lévy environment for a more general class of branching mech-
anisms than the stable class already discussed in Section 3.6. In this regime, the
underlying Lévy process drifts to ≠Œ. Further, as it was observed in [52] and [59],
there is another phase transition in such regime which depends on whether �Õ

›
(1) is

less, equal or greater than 0. These regimes are known in the literature as: strongly, in-

termediate and weakly subcritical regime, respectively (see e.g. Theorem 3.6.1). Here,
we study the exact asymptotic behaviour of the non-extinction probability in the in-
termediate and strongly sub-regimes, under certain assumptions on the Lévy process
associated to the environment and the branching mechanism. For our purpose, we
combine the approach developed in [2, 33], for the discrete time setting, with the
fluctuation theory of Lévy processes. A similar strategy has been developed in [7] to
study the extinction rate for CSBPs in a critical Lévy environment. The chapter is
structured as follows. In Section 5.1 we state our main results. Sections 5.2 and 5.3
are devoted to the study of the speed of non-extinction probability for CSBPs in the
strongly and intermediate subcritical regimes, respectively.

5.1 Main results
Let Z = (Zt, t > 0) be the CSBP in the Lévy environment (St, t > 0) defined in
Chapter 3. Before we proceed with the main results of this chapter, let us first recall
some notation and some properties of the functional vt(s, ⁄, ›) for 0 6 s 6 t already
discussed in Chapter 3.
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We denote by hs,t the random semigroup hs,t(⁄) = e
≠›svt(s, ⁄e

›t , ›) for all s œ [0, t]
and ⁄ > 0. According to [38, Section 2], the mapping s ‘æ hs,t(⁄) is the unique positive
pathwise solution of (3.9). For our purposes, it is necessary to extend the functional
(vt(s, ⁄, ›), s œ [0, t]) to [≠t, 0], this was already done in He et al. [38] in order to study
CSBPs in a Lévy environment with immigration. The latter will appear implicitly in
our arguments.

In order to introduce the extension of the functional vt(s, ⁄, ›) to s Æ 0 that
appears in He et al. [38, Section 5], we first define a homogeneous Lévy process in R.
Let us consider an independent copy (›Õ

t
, t > 0) of the Lévy process (›t, t > 0), thus

� = (�t, ≠Œ < t < Œ) the time homogeneous Lévy process indexed by R is defined
as follows: �0 = ›0 = 0 and

�t = ≠ lim
s¿≠t

›
Õ
s

for t < 0 and �t = ›t for t > 0 (5.1)

Note that the latter definition ensures that the Lévy process � has càdlàg paths
on (≠Œ, Œ). Next, we use the definition of � to naturally extend the backward
di�erential equation (3.5) on s 6 0. In other words, the mapping s ‘æ v0(s, ⁄, �) is
the unique positive pathwise solution of

v0(s, ⁄, �) = ⁄ ≠

⁄ 0

s

e
�rÂ0

1

e
≠�rv0(r, ⁄, �)

2

dr, s 6 0. (5.2)

Implicitly, it also follows that for s 6 0 the function s ‘æ hs,0(⁄) = e
≠�sv0(s, ⁄e

�0 , �)
is the unique positive pathwise solution to the equation

hs,0(⁄) = e
≠�s⁄ ≠

⁄ 0

s

e
�r≠�sÂ0

1

hr,0(⁄)
2

dr, s 6 0. (5.3)

For further details of this extension we refer to He et al. [38, Section 5].
We now state our main results which are devoted to the speed of the non-extinction

probability for CSBPs in a subcritical Lévy environment. In this regime, the proba-
bility of non-extinction at time t decays at an exponential rate contrary to the critical
case (see Theorem 3.6.2) where the rates are of the polynomial type. Such behaviour is
inherited from the Esscher change of measure defined in (3.19). In order to introduce
our main results we require some technical assumptions on the branching mechanism
and on the environment which will control the event of survival. The reader will
see below that these assumptions are slightly di�erent between regimes and are in
accordance with those already assumed in the literature.

In the strongly subcritical regime, we make two assumptions: one on the branching
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mechanism and the other on the environment. Our first assumption is the so-called
x log x moment condition for the branching mechanism. To be more precise, we assume
that the Lévy measure µ fulfils the following moment condition

⁄ Œ

1
u log(u)µ(du) < Œ. (H2*)

We point out here that the latter condition is also needed in the discrete setting to
study the long-term behaviour of branching processes in a strongly subcritical random
environment (see e.g. [4, Theorem 1.1]).

For this regime, we show that the non-extinction probability at time t decays at
the same rate as the expected generation size, i.e., as Ez[Zt] up to a multiplicative
constant. Note that this behaviour is similar to that of subcritical Galton-Watson
processes as well as discrete branching processes in a random environment in the
strong subcritical regime. It is also worth mentioning here that from (3.4), we have

Ez[Zt] = zE[e›t ] = ze
�›(1)t

.

In other words, in this regime the non-extinction probability decays in an exponential
rate up to a multiplicative constant which is proportional to the initial state of the
population. In addition, observe that here we obtain a very general result since we do
not require condition (H3) on the branching mechanism. We now state our second
main result.

Theorema 5.1.1 (Strongly subcritical regime). Suppose that conditions (3.26), (H2*),
(3.18) with Ë

+ = 1, �Õ
›
(0) < 0 and �Õ

›
(1) < 0. We also assume

⁄ Œ

0
E(e,1)

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

d⁄ < Œ.

Then for every z > 0, we have

lim
tæŒ

e
≠�›(1)tPz(Zt > 0) = zB2,

where

B2 = E(e,1)
5
⁄ Œ

0
exp

;

≠

⁄ 0

≠Œ
Â

Õ
0(hs,0(⁄))ds

<

d⁄

6

œ (0, Œ).

In general, it seems di�cult to compute explicitly the constant B2. Nevertheless,
in the stable case the constant B2 can be computed explicitly and coincides with the
constant that appears in [52, Theorem 5.1]. In other words, for the stable branching
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mechanism (3.27) with — œ (0, 1) and C > 0, we have

B2 = (—C)≠1/—E(e,1)
C

3
⁄ Œ

0
e

—›udu

4≠1/—
D

,

(see the discussion at the end of Section 5.2 for further details).
Our second main result deals with the intermediate subcritical regime. Here, we

assume that the branching mechanism satisfies condition (H3) and that the Lévy
measure µ satisfies the x log x moment condition (H2*). In addition, our arguments
require the existence of some exponential moments of the underlying Lévy process
›. More precisely, we assume that condition (3.18) holds with Ë

≠ = 0 and Ë
+

> 1.
Observe that this condition together with �Õ

›
(1) = 0 imply Spitzer’s condition (H1)

under the measure P(e,1) with fl = 1/2. Nonetheless, we believe that it is possible to
obtain the result without this exponential moment assumption but up to now we do
not know how to control the behaviour of

e
≠›tP(z,x)

1

Zt > 0
-

-

- ›

2

,

as t increases. Nevertheless, the latter random variable can be controlled under the
exponential moment assumption together with the upper bound of the branching
mechanism with the stable case.

We believe that, without the exponential moment condition (3.18), the survival
probability at time t must decays in an exponential rate with a factor of order t

≠fl
¸(t)

where ¸ is a slowly varying function at Œ and fl is the index that appears in Sptizer’s
condition under P(e,1).

The following result provides the asymptotic behaviour of the probability of non-
extinction in the intermediate subcritical regime.

Theorema 5.1.2 (Intermediate subcritical regime). Suppose that conditions (H2*)
and (H3) holds. We also assume that the exponential moment condition (3.18) holds

with Ë
≠ = 0 and Ë

+
> 1 and moreover that �Õ

›
(0) < 0 and �Õ

›
(1) = 0. Finally, we

also require that for x < 0
⁄ Œ

0
E(e,1),ø

≠x

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0(hs,0(⁄))ds

<6

d⁄ < Œ. (5.4)

Then for every z > 0, we have

lim
tæŒ

t
3/2

e
≠�›(1)tPz(Zt > 0) = zE(e,1)

Ë

H1
È

ˆ

ı

ı

Ù

2
fi�ÕÕ

›
(1)B3,
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where

B3 = lim
xæ≠Œ

U
(1)(≠x)E(e,1),ø

≠x

5
⁄ Œ

0
exp

;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<

d⁄

6

.

We conclude this section with the following conjecture concerning the speed of the
non-extinction probability for a CSBPs in a weakly subcritical regime.

Conjecture 5.1.1 (Weakly subcritical regime). Suppose that conditions (H2)- (H3)
hold. We also assume that the Laplace exponent of › satisfies �Õ

›
(0) < 0 < �Õ

›
(1) and

that there exist “ œ (0, 1) which solves �Õ
›
(“) = 0. Then for any z > 0, there exists

0 < B1(z) < Œ such that

lim
tæŒ

t
≠3/2

e
≠�›(“)tPz(Zt > 0) = B1(z).

In section 5.4, we make a brief comment about the strategy that we believe should
be followed to obtain this result.

5.2 Strongly subcritical regime
This section is devoted to the proof of Theorem 5.1.1. In other words, we study
the speed of the non-extinction probability for CSBPs in a strongly subcritical Lévy
environment. In this regime, the Lévy process › fulfils the conditions �Õ

›
(0) < 0 and

�Õ
›
(1) < 0. Note that the previous conditions implies that › drifts to ≠Œ under P(e)

and also under the Esscher change of measure P(e,1) defined in (3.19). As we mentioned
before, for our arguments in this section we will require the extended homogeneous
Lévy process on R, defined by � = (�t, ≠Œ < t < Œ) in (5.1).

Proof of Theorem 5.1.1. Let z > 0. We begin by noting that, conditioning on the
environment and then using the Esscher change of measure given in (3.19), we have

e
≠�›(1)tPz(Zt > 0) = e

≠�›(1)tE(e)
5

e
≠›te

›tP(z,0)
1

Zt > 0
-

-

- ›

2

6

= E(e,1)
5

e
≠›tP(z,0)

1

Zt > 0
-

-

- ›

2

6

.

Recall from (3.8) in Chapter 3, that for any ⁄ > 0 and t > 0 the cumulant random
semigroup h0,t(⁄) = e

≠›0vt(s, ⁄e
›t , ›) satisfies

E(z,0)
Ë

e
≠⁄Zt

-

-

- ›

È

= exp{≠zh0,t(⁄)}.
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Denote for each fixed t > 0,

Gt(⁄) = e
≠›t

3

1 ≠ exp{≠zh0,t(⁄)}
4

, for ⁄ > 0.

Observe that the quenched survival probability of the process (Zt, t > 0) is given by
P(z,0)

1

Zt > 0
-

-

- ›

2

= 1 ≠ exp{≠zh0,t(Œ)}. Then

Gt(0) = 0 and Gt(Œ) = e
≠›tP(z,0)

1

Zt > 0
-

-

- ›

2

.

Since the mapping ⁄ ‘æ h0,t(⁄) is di�erentiable, then so does Gt(·). In view of the
above arguments, we deduce

e
≠�›(1)tPz(Zt > 0) = E(e,1)

Ë

Gt(Œ)
È

= E(e,1)
5
⁄ Œ

0
G

Õ
t
(⁄)d⁄

6

=
⁄ Œ

0
E(e,1)

Ë

G
Õ
t
(⁄)

È

d⁄,

(5.5)
where in the last equality, the expectation and the integral may be exchanged using
Fubini’s Theorem. Next, we take the limit as t æ Œ in the above equality and we
will appeal to the Dominated Convergence Theorem in order to interchange the limit
with the integral on the right-hand side. With this purpose in mind, we need to find
a function g(⁄) such that E(e,1)

Ë

|G
Õ
t
(⁄)|

È

6 g(⁄) for all t > 1 and

⁄ Œ

0
g(⁄)d⁄ < Œ. (5.6)

First, we analyse the expectation E(e,1)
Ë

|G
Õ
t
(⁄)|

È

. Note that from the definition of the
function Gt(⁄), we see

G
Õ
t
(⁄) = ze

≠›t exp
Ó

≠ zh0,t(⁄)
Ô

h
Õ
0,t

(⁄) = z exp
Ó

≠ zh0,t(⁄)
Ô d

du
vt(0, u, ›)

-

-

-

-

u=⁄e›t
,

where in the last equality we recall that h0,t(⁄) = e
≠›0vt(0, ⁄e

›t , ›). Moreover, by
di�erentiating with respect to ⁄ on both sides of the backward di�erential equation
(3.5), we obtain

d
d⁄

vt(0, ⁄, ›) = 1 ≠

⁄

t

0
Â

Õ
0
1

e
≠›svt(s, ⁄, ›)

2 d
d⁄

vt(s, ⁄, ›)ds.

Thus solving the above equation, we get

d
d⁄

vt(0, ⁄, ›) = exp
;

≠

⁄

t

0
Â

Õ
0
1

e
≠›svt(s, ⁄, ›)

2

ds

<

.
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Then, it follows that

E(e,1)
Ë

|G
Õ
t
(⁄)|

È

= E(e,1)
Ë

G
Õ
t
(⁄)

È

= zE(e,1)
5

exp
;

≠zh0,t(⁄) ≠

⁄

t

0
Â

Õ
0
1

hs,t(⁄)
2

ds

<6

.

Observe that G
Õ
t
(⁄) is the Laplace transform given the environment (›t, t > 0) of a

continuous-state branching processes with immigration in random environment, see
for instance [38, Theorem 5.3].

In order to find the Riemman integrable function g(⁄) which dominates the se-
quence (E(e,1)[|GÕ

t
(⁄)|], t > 1) we use another useful characterisation of E(e,1)[GÕ

t
(⁄)].

Recalling that the homogeneous Lévy process � (see (5.1)) allows to extend the def-
inition of the mapping s ‘æ hs,0(⁄) for s 6 0, which is the unique positive pathwise
solution to (5.3), we write for ⁄ > 0 and t > 0

E(e,1)
Ë

G
Õ
t
(⁄)

È

= zE(e,1)
5

exp
;

≠zh≠t,0(⁄) ≠

⁄ 0

≠t

Â
Õ
0
1

hs,0(⁄)
2

ds

<6

,

see Theorem 5.4 and equation (5.6) in [38]. Now, we introduce the function

g(⁄) = E(e,1)
5

exp
;

≠

⁄ 0

≠1
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

.

Using the latter characterisation of E(e,1)[GÕ
t
(⁄)] together with the non-negative prop-

erty of Â
Õ
0 and h≠t,0(⁄), we deduce the following inequality for t > 1

E(e,1)
Ë

|G
Õ
t
(⁄)|

È

6 zE(e,1)
5

exp
;

≠

⁄ 0

≠t

Â
Õ
0
1

hs,0(⁄)
2

ds

<6

6 zg(⁄).

Furthermore, observe that by the assumption in (5.1.1), the function g(·) is Riemann
integrable. Next appealing to the Dominated Convergence Theorem in (5.5), we get

lim
tæŒ

e
≠�›(1)tPz(Zt > 0) = lim

tæŒ

⁄ Œ

0
E(e,1)

Ë

G
Õ
t
(⁄)

È

d⁄

=
⁄ Œ

0
lim
tæŒ

E(e,1)
Ë

G
Õ
t
(⁄)

È

d⁄ =
⁄ Œ

0
E(e,1)

5

lim
tæŒ

G
Õ
t
(⁄)

6

d⁄,

where we have used again Dominated Convergence in the last equality since the in-
equality |G

Õ
t
(⁄)| 6 z holds for all t > 1.

On the other hand, also note that assumption �Õ
›
(1) < 0 implies ›t æ ≠Œ as

t æ Œ, P(e,1)-a.s. It turns out that �t æ Œ as t æ ≠Œ, P(e,1)-a.s. Next, thanks to
the monotonicity property of the mapping ≠t ‘æ v0(≠t, ⁄, �) we have

h≠t,0(⁄) = e
≠�≠tv0(≠t, ⁄, �) 6 e

≠�≠tv0(0, ⁄, �) = e
≠�≠t⁄.
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It follows that limtæŒ h≠t,0(⁄) = 0, P(e,1)-a.s., and thus

E(e,1)
5

lim
tæŒ

G
Õ
t
(⁄)

6

= zE(e,1)
5

lim
tæŒ

exp
;

≠zh≠t,0(⁄) ≠

⁄ 0

≠t

Â
Õ
0
1

hs,0(⁄)
2

ds

<6

= zE(e,1)
5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

.

The proof is completed if we show that

0 < B2 :=
⁄ Œ

0
E(e,1)

5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

d⁄ < Œ.

From Corollary 5.7 in He et al. [38] (see also the proof of [38, Theorem 5.6]), we see
that under moment condition (H2*), we have

E(e,1)
5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

> 0.

Therefore
⁄ Œ

0
E(e,1)

5

lim
tæŒ

G
Õ
t
(⁄)

6

d⁄ = z

⁄ Œ

0
E(e,1)

5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

d⁄

= zB2 > 0.

Finally, from the non-negative property of Â
Õ
0 and under the condition in (5.1.1), we

obtain the finiteness of B2, i.e.,

B2 6
⁄ Œ

0
E(e,1)

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0
1

hs,0(⁄)
2

ds

<6

d⁄ =
⁄ Œ

0
g(⁄)d⁄ < Œ.

This completes the proof.

Let us finish this section with the discussion after Theorem 5.1.1 in Section 5.1,
concerning the constant B2. As we mentioned there, in the general case, it seems
di�cult to calculate directly the constant B2. However, in the stable case we are able
to compute it. To this end, we start by noting in the previous proof that

zE(e,1)
5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0(hs,0(⁄))ds

<6

= lim
tæŒ

E(e,1) [GÕ
t
(⁄)] ,

where
G

Õ
t
(⁄) = z exp

Ó

≠ zh0,t(⁄)
Ô d

du
vt(0, u, ›)

-

-

-

-

u=⁄e›t
.
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We also recall that in the stable case (3.27), the backward di�erential equation in (3.5)
can be solved explicitly. More precisely, we have

vt(s, ⁄, ›) =
1

⁄
≠— + —CIs,t(—›)

2≠1/—

.

In other words, we obtain

E(e,1)
5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0(hs,0(⁄))ds

<6

= lim
tæŒ

E(e,1)
5

exp{≠zvt(0, ⁄e
›t , ›)}

1

1 + (⁄e
›t)—

—CI0,t(—›)
2≠ 1

— ≠16

.

Now appealing to the Duality Lemma (3.10) given in Chapter 3, one sees, on the one
hand that

e
—›tI0,t(—›) =

⁄

t

0
e

≠—(›u≠›t)du
(d)=

⁄

t

0
e

—›udu = I0,t(≠—›),

and on the other hand,

vt(s, ⁄e
›t , ›) = e

›t
1

⁄
≠— + —Ce

—›tI0,t(—›)
2≠1/— (d)= e

›t
1

⁄
≠— + —CI0,t(≠—›)

2≠1/—

.

Hence

E(e,1)
5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0(hs,0(⁄))ds

<6

= lim
tæŒ

E(e,1)
5

exp
;

≠ze
›t

1

⁄
≠— + —CI0,t(≠—›)

2≠1/—
<

1

1 + ⁄
—
—CI0,t(≠—›)

2≠ 1
— ≠16

.

Furthermore, since ›t æ ≠Œ as t æ Œ, P(e,1)-a.s., then I0,Œ(≠—›) < Œ, P(e,1)-a.s.
Thus, it follows that

lim
tæŒ

exp
;

≠ze
›t

1

⁄
≠— + —CI0,t(≠—›)

2≠1/—
<

= 0, P(e,1)
≠ a.s..

which yields,

E(e,1)
5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0(hs,0(⁄))ds

<6

= E(e,1)
5

1

1 + —C⁄
—I0,Œ(≠—›)

2≠ 1
— ≠16

.

In other words,

B2 =
⁄ Œ

0
E(e,1)

5

1

1 + —C⁄
—I0,Œ(≠—›)

2≠ 1
— ≠16

d⁄

= (—C)≠1/—E(e,1)
C

3
⁄ Œ

0
e

—›udu

4≠1/—
D

,
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where in the last equality we have first used Fubini’s Theorem and then we solve the
integral with respect to ⁄.

5.3 Intermediate subcritical regime
The aim of this section is to show Theorem 5.1.2, namely we study the speed of
extinction for CSBPs in an Lévy environment in the intermediate subcritical regime.
Throughout this section, we assume that the underlying Lévy process › fulfils the
conditions �Õ

›
(0) < 0 and �Õ

›
(1) = 0. In other words, › drifts to ≠Œ under P(e) and

oscillates under the Esscher transform P(e,1) defined in (3.20).
Before moving to the proof of Theorem 5.1.2, we recall that, under our assumption

we have exponential moments of order Ë
+

> 1, the probability that the supremum
of the Lévy process › stays below 0, under P(e,1)

x
for x < 0, decays as t

≠1/2 up to a
multiplicative constant, i.e.

P(e,1)
x

1

›
t

< 0
2

≥

ˆ

ı

ı

Ù

2
fi�ÕÕ

›
(1)E

(e,1)
Ë

H1
È

U
(1)(≠x)t≠1/2

, as t æ Œ, (5.7)

where we recall that U
(1) denotes the renewal function under P(e,1) and (Ht, t > 0)

the ascending ladder process, (see Hirano [39, Lemma 11]). For simplicity we split
the proof of Theorem 5.1.2 in two lemmas. The first one tell us, under our general
assumptions (H3) and (3.18) with Ë

≠ = 0 and Ë
+

> 1, that only paths of Lévy
processes with a low supremum contribute to the probability of non-extinction.

Lemma 5.3.1. Suppose that condition (3.18) holds with Ë
≠ = 0 and Ë

+
> 1. We also

assume that condition (H3) is satisfied. Then for any z > 0, x < 0 and 0 < ” < 1,

we have

lim
yæŒ

lim sup
tæŒ

t
1/2

e
≠�›(1)tP(z,x)

3

Zt > 0, ›
t≠”

> y

4

= 0.

Proof. Let z > 0, x < 0 and 0 < ” < 1. Conditioning on › and then using the Esscher
transform, we deduce that

e
≠t�›(1)P(z,x)

3

Zt > 0, ›
t≠”

> y

4

= E(e,1)
x

5

e
≠›tP(z,x)

1

Zt > 0
-

-

- ›

2

1{›t≠”>y}

6

.

Note that, under the assumption (H3), the survival probability conditioned on the
environment is bounded from above by the exponential functional of ›, i.e.,

P(z,x)
1

Zt > 0
-

-

- ›

2

= 1 ≠ exp
Ó

≠ zvt(0, Œ, › ≠ ›0)
Ô

6 zvt(0, Œ, › ≠ ›0)
6 z(—C)≠1/—I0,t(—(› ≠ ›0))≠1/—

.
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Similarly as in the previous regime, we appeal to the Duality Lemma given in (3.10)
in Chapter 3 and see

e
≠›tI0,t(—›)≠1/— (d)=

3
⁄

t

0
e

—›sds

4≠1/—

= I0,t(≠—›)≠1/—
.

The latter implies that

e
≠t�›(1)P(z,x)

3

Zt > 0, ›
t≠”

> y

4

6 z(—C)≠1/—E(e,1)
x

5

e
≠›tI0,t(—(› ≠ ›0))≠1/—1{›t≠”>y}

6

= z(—C)≠1/—E(e,1)
5

I0,t(≠—›)≠1/—1{›
t≠”

6≠y≠x}

6

.

According to Li and Xu [52, Lemma 3.5], we have

lim
yæŒ

lim sup
tæŒ

t
1/2E(e,1)

5

I0,t(≠—›)≠1/—1{›
t≠”

6≠y≠x}

6

= 0.

Therefore,

lim
yæŒ

lim sup
tæŒ

t
1/2

e
≠�›(1)tP(z,x)

3

Zt > 0, ›
t≠”

> y

4

6 z(—C)≠1/— lim
yæŒ

lim sup
tæŒ

t
1/2E(e,1)

5

I0,t(≠—›)≠1/—1{›
t≠”

6≠y≠x}

6

= 0,

which concludes the proof.

Lemma 5.3.2. Suppose that condition (H2*) holds. We also assume, for x < 0 that

⁄ Œ

0
E(e,1),ø

≠x

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0(hs,0(⁄))ds

<6

d⁄ < Œ. (5.8)

Then for every z > 0 and x < 0, we have

lim
tæŒ

t
1/2

e
≠�›(1)tP(z,x)

3

Zt > 0, ›
t

< 0
4

= z

ˆ

ı

ı

Ù

2
fi�ÕÕ

›
(1)E

(e,1)
Ë

H1
È

b3(x),

where

b3(x) = U
(1)(≠x)E(e,1),ø

≠x

5
⁄ Œ

0
exp

;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<

d⁄

6

œ (0, Œ). (5.9)

Proof. Let z > 0 and assume that ›0 = x < 0. We begin by recalling that, under
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P(e,1), the Lévy process › oscillates. In addition, we have the following identity

e
≠�›(1)tP(z,x)

3

Zt > 0, ›
t

< 0
4

= e
≠�›(1)tP(z,0)

3

Zt > 0, ›
t

< ≠x

4

= E(e,1)
5

e
≠›tP(z,0)

1

Zt > 0
-

-

- ›

2

1{›t<≠x}

6

Recall from (3.8) in Chapter 3, that for any ⁄ > 0 and s 6 t the cumulant random
semigroup hs,t(⁄) = e

≠›svt(s, ⁄e
›t , ›) satisfies

E(z,x)
Ë

e
≠⁄Zt

-

-

- ›, F
(b)
s

È

= E(z,0)
Ë

e
≠⁄Zte

›t e
≠›t

-

-

- ›, F
(b)
s

È

= exp{≠Zshs,t(⁄)}.

It is important to note here that, the initial condition of the Lévy process › is irrelevant
for the functional hs,t(⁄). Further, observe that the quenched survival probability of
the process (Zt, t > 0) is given by P(z,0)

1

Zt > 0
-

-

- ›

2

= 1 ≠ exp{≠zh0,t(Œ)}. Thus,

e
≠�›(1)tP(z,x)

3

Zt > 0, ›
t

< 0
4

= E(e,1)
5

e
≠›tP(z,0)

1

Zt > 0
-

-

- ›

2

1{›t<≠x}

6

= E(e,1)
5

e
≠›t

1

1 ≠ exp
Ó

≠ zh0,t(Œ)
Ô2

1{›t<≠x}

6

.

Now, we use the same notation as in the proof of Theorem 5.1.1. Namely, we denote
for each fixed t > 0, the function

Gt(⁄) = e
≠›t

3

1 ≠ exp
Ó

≠ zh0,t(⁄)
Ô

4

, for ⁄ > 0.

Then,
Gt(0) = 0 and Gt(Œ) = e

≠›tP(z,0)
1

Zt > 0 | ›

2

.

Since the mapping ⁄ ‘æ h0,t(⁄) is di�erentiable, then so does Gt(·). In view of the
above arguments, we deduce

e
≠�›(1)tP(z,x)

3

Zt > 0, ›
t

< 0
4

= E(e,1)
5
⁄ Œ

0
G

Õ
t
(⁄)d⁄1{›t<≠x}

6

=
⁄ Œ

0
E(e,1)

5

G
Õ
t
(⁄)1{›t<≠x}

6

d⁄,

where in the last equality, the expectation and the integral may be exchanged using
Fubini’s Theorem. Recall the definition of the homogeneous Lévy process � given
in (5.1). Now, using the same strategy as in the proof of Theorem 5.1.1, that is,
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extending the map s ‘æ hs,0(⁄) for s 6 0 and taking the derivate of Gt(·), we have

E(e,1)
5

G
Õ
t
(⁄)1{›t<≠x}

6

= zE(e,1)
5

exp
;

≠zh0,t(⁄) ≠

⁄

t

0
Â

Õ
0
1

hs,t(⁄)
2

ds

<

1{›t<≠x}

6

= zE(e,1)
5

exp
;

≠zh≠t,0(⁄) ≠

⁄ 0

≠t

Â
Õ
0
1

hs,0(⁄)
2

ds

<

1{�≠t>x}

6

.

To simplify the notation, let us introduce, for t > 0

Ft(⁄) = exp
;

≠zh≠t,0(⁄) ≠

⁄ 0

≠t

Â
Õ
0
1

hs,0(⁄)
2

ds

<

.

Hence, making use of the above observations, we deduce that

e
≠�›(1)tP(z,x)

3

Zt > 0, ›
t

< 0
4

= zP(e,1)
1

�≠t > x

2

⁄ Œ

0
E(e,1)

5

Ft(⁄)
-

-

- �≠t > x

6

d⁄.

Now, taking into account that

lim
tæŒ

t
1/2P(e,1)

1

�≠t > x

2

= lim
tæŒ

t
1/2P(e,1)

1

›
t

< ≠x

2

=
ˆ

ı

ı

Ù

2
fi�ÕÕ

›
(1)E

(e,1)
Ë

H1
È

U
(1)(≠x),

(5.10)
thus the proof of this lemma will be completed once we have shown

lim
tæŒ

⁄ Œ

0
E(e,1)

5

Ft(⁄)
-

-

- �≠t > x

6

d⁄ = lim
tæŒ

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)
-

-

- �≠t > 0
6

d⁄

= E(e,1),ø
≠x

5
⁄ Œ

0
exp

;

≠

⁄ 0

≠Œ
Â

Õ
0
1

hs,0(⁄)
2

ds

<

d⁄

6

=: b(x).

The arguments used to deduce the preceding limit are quite involved, for that reason
we present its proof in three steps.

Step 1. Let us first introduce the following functions, for r, ⁄ > 0 and t > 0,

fr(t, ⁄) = E(e,1)
≠x

5

Ft(⁄)
-

-

- �≠(t+r) > 0
6

,

gr(t, ⁄) = E(e,1)
≠x

5

exp
;

≠

⁄ 0

≠t

Â
Õ
0(hs,0(⁄))ds

<
-

-

-

-

�≠(t+r) > 0
6

.

Since Ft(⁄) and exp{≠
s 0

≠t
Â

Õ
0(hs,0(⁄))d⁄} are bounded random variables, we can pro-
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ceed similarly as in Lemma 4.3.1, to deduce that as r æ Œ

fr(t, ⁄) æ E(e,1),ø
≠x [Ft(⁄)] and gr(t, ⁄) æ E(e,1),ø

≠x

5

exp
;

≠

⁄ 0

≠t

Â
Õ
0(hs,0(⁄))ds

<6

,

as well as the following upper bound

gr(t, ⁄) 6 C1(t)E(e,1),ø
≠x

5

exp
;

≠

⁄ 0

≠t

Â
Õ
0(hs,0(⁄))ds

<6

,

where C1(t) is a positive constant which depends on t, see inequality (4.23). We may
now appeal to Dominated Convergence Theorem together with our hypothesis (5.8),
to deduce that for t > 1

⁄ Œ

0
gr(t, ⁄)d⁄ æ

⁄ Œ

0
E(e,1),ø

≠x

5

exp
;

≠

⁄ 0

≠t

Â
Õ
0(hs,0(⁄))ds

<6

d⁄, as r æ Œ.

Furthermore, since fr(t, ⁄) 6 gr(t, ⁄), an application of the generalised Dominated
Convergence Theorem (see for instance Folland [30, Exercise 2.20]) tell us

lim
ræŒ

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)
-

-

- �≠(t+r) > 0
6

d⁄ =
⁄ Œ

0
E(e,1),ø

≠x [Ft(⁄)] d⁄. (5.11)

Step 2. Let 1 6 s 6 t, ⁄ > 0 and “ œ (1, 2]. From the proof of [7, Lemma 4], we
can deduce

-

-

-

-

E(e,1)
≠x

5

Ft(⁄) ≠ Fs(⁄)
-

-

- �≠“t > 0
6
-

-

-

-

6 C2E(e,1),ø
≠x

5

|Ft(⁄) ≠ Fs(⁄)|
6

,

where C2 is a positive constant. Hence
-

-

-

-

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄) ≠ Fs(⁄)
-

-

- �≠“t > 0
6

d⁄

-

-

-

-

6 C2

⁄ Œ

0
E(e,1),ø

≠x

5

|Ft(⁄) ≠ Fs(⁄)|
6

d⁄.

Now, under the event that {�≠“t > 0}, we know that, for each ⁄ Ø 0, the inequalities
h≠s,0(⁄) 6 ⁄e

≠�≠s 6 ⁄ hold. It implies that under {�≠“t > 0}, we obtain

|Ft(⁄) ≠ Fs(⁄)| = exp
;

≠

⁄ 0

≠s

Â
Õ
0(hu,0(⁄))du

<

-

-

-

-

exp
;

≠zh≠t,0(⁄) ≠

⁄ ≠s

≠t

Â
Õ
0
1

hu,0(⁄)
2

du

<

≠ exp{≠zh≠s,0(⁄)}
-

-

-

-

6 exp
;

≠

⁄ 0

≠s

Â
Õ
0(hu,0(⁄))du

<
-

-

-

-

exp
;

≠

⁄ ≠s

≠t

Â
Õ
0
1

hu,0(⁄)
2

du

<

≠ e
≠z⁄

-

-

-

-

6 2 exp
;

≠

⁄ 0

≠1
Â

Õ
0(hu,0(⁄))du

<

.
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It then follows, from the previous calculations and our assumption (5.8) together with
Dominated Convergence Theorem, that

lim
sæŒ

lim
tæŒ

-

-

-

-

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄) ≠ Fs(⁄)
-

-

- �≠“t > 0
6

d⁄

-

-

-

-

= 0,

which in particular yields

lim
sæŒ

lim
tæŒ

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄) ≠ Fs(⁄)
-

-

- �≠“t > 0
6

d⁄ = 0.

Thus, appealing to (5.11) in Step 1, we get

lim
tæŒ

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)
-

-

- �≠“t > 0
6

d⁄ = lim
sæŒ

lim
tæŒ

⁄ Œ

0
E(e,1)

≠x

5

Fs(⁄)
-

-

- �≠“t > 0
6

d⁄

= lim
sæŒ

⁄ Œ

0
E(e,1),ø

≠x [Fs(⁄)] d⁄.

In order to deal with the limit in the right-hand side, first note that h≠s,0(⁄) 6
⁄e

≠�≠s æ 0 as s æ Œ, P(e,1)
≠x -a.s. Moreover, we have

E(e,1),ø
≠x [Fs(⁄)] æ E(e,1),ø

≠x

5

exp
;

≠

⁄ 0

≠Œ
Â

Õ
0(hu,0(⁄))d⁄

<6

as s æ Œ,

and for s > 1

E(e,1),ø
≠x [Fs(⁄)] 6 E(e,1),ø

≠x

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0(hu,0(⁄))d⁄

<6

.

Hence, we may now apply once again the Dominated Convergence Theorem to deduce
that

⁄ Œ

0
lim

sæŒ
E(e,1),ø

≠x [Fs(⁄)] d⁄ = b(x) < Œ.

In other words, we have

lim
tæŒ

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)
-

-

- �≠“t > 0
6

d⁄ = b(x).

Next, from (5.10) we obtain

lim
tæŒ

1
P(e,1)

≠x (�≠t > 0)

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)1{�≠“t>0}

6

d⁄
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P(e,1)
≠x

1

�≠“t > 0
2

P(e,1)
≠x

1

�≠t > 0
2

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)
-

-

- �≠“t > 0
6

d⁄

= “
≠fl

b(x).
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Since “ may be chosen arbitrarily close to 1, we have
⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)1{�≠“t>0}

6

d⁄ ≠ b(x)P(e,1)
≠x

1

�≠t > 0
2

= o(1)P(e,1)
≠x

1

�≠t > 0
2

.

Step 3. Let ⁄ > 0, t > 1 and “ œ (1, 2] and denote

Jt(⁄) = 1
P(e,1)

≠x (�≠t > 0)
E(e,1)

≠x

5

Ft(⁄)
1

1{�≠t>0} ≠ 1{�≠“t>0}
2

6

.

Note that, from (5.10) and since Ft(⁄) 6 1, we get

0 6 Jt(⁄) 6 1 ≠
P(e,1)

≠x

1

�≠“t > 0
2

P(e,1)
≠x

1

�≠t > 0
2 æ 1 ≠ “

fl
, as t æ Œ.

Since “ may be taken arbitrary close to 1, we deduce that Jt(⁄) æ 0 as t æ Œ. In
addition,

Jt(⁄) 6 E(e,1)
≠x

5

exp
;

≠

⁄ 0

≠t

Â
Õ
0(hs,0(⁄))ds

<
-

-

-

-

�≠t > 0
6

6 E(e,1)
≠x

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0(hs,0(⁄))ds

<
-

-

-

-

�≠t > 0
6

6 C3E(e,1),ø
≠x

5

exp
;

≠

⁄ 0

≠1
Â

Õ
0(hs,0(⁄))ds

<6

,

where C3 is a positive constant and the right-hand side is an integrable function in
⁄ thanks to the assumption (5.8). Hence, appealing to the Dominate Convergence
Theorem, we see

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)
1

1{�≠t>0} ≠ 1{�≠“t>0}
2

6

d⁄ = o(1)P(e,1)
≠x

1

�≠t > 0
2

.

We combine the previous limit with the conclusion of Steps 2 to conclude, as promised
earlier, that

⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)1{�≠t>0}

6

d⁄ ≠ b(x)P(e,1)
≠x

1

�≠t > 0
2

=
⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)1{�≠t>0}

6

d⁄ ≠

⁄ Œ
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5

Ft(⁄)1{�≠“t>0}

6

d⁄

+
⁄ Œ

0
E(e,1)

≠x

5

Ft(⁄)1{�≠“t>0}

6

d⁄ ≠ b(x)P(e,1)
≠x

1

�≠t > 0
2

= o(1)P(e,1)
≠x

1

�≠t > 0
2

.
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Finally, similarly as in the proof of Theorem 5.1.1, we see that the moment condition
(H2*) guarantees that b(x) > 0. This concludes the proof.

Proof of Theorem 5.1.2. The proof of this result essentially mimics the steps of The-
orem 5.1.1. More precisely, let z, ‘ > 0 and x < 0. From Lemma 5.3.1, we have for
every ” œ (0, 1),

lim
yæŒ

lim sup
tæŒ

t
1/2

e
≠t�›(“)P(z,x)

3

Zt > 0, ›
t≠”

> y

4

= 0.

Then it follows that, we may choose y > 0 such that for t su�ciently large

P(z,x)

3

Zt > 0, ›
t≠”

> y

4

6 ‘P(z,x)

3

Zt > 0, ›
t≠”

< y

4

.

Further, since {Zt > 0} µ {Zt≠” > 0} for t large, we deduce that

Pz(Zt > 0) = P(z,x)

3

Zt > 0, ›
t≠”

> y

4

+ P(z,x)

3

Zt > 0, ›
t≠”

< y

4

6 (1 + ‘)P(z,x≠y)

3

Zt≠” > 0, ›
t≠”

< 0
4

.

In other words, for every ‘ > 0 there exists y
Õ
< 0 such that

(1 ≠ ‘)t1/2
e

≠�›(1)tP(z,yÕ)

3

Zt > 0, ›
t

< 0
4

6 t
1/2

e
≠�›(1)tPz(Zt > 0)

6 (1 + ‘)(t ≠ ”)1/2
e

≠�›(1)(t≠”)P(z,yÕ)

3

Zt≠” > 0, ›
t≠”

< 0
4

t
1/2

e
≠�›(1)t

(t ≠ ”)1/2e≠�›(1)(t≠”) .

Now we use Lemma 5.3.2 and the same reasoning as in the last steps in the proof of
Theorem 5.1.1 to get the desired result. More precisely, appealing to Lemma 5.3.2,
we have

lim
tæŒ

t
1/2

e
≠�›(1)tP(z,yÕ)

3

Zt > 0, ›
t

< 0
4
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È
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(1)(≠y

Õ)E(e,1),ø
≠yÕ

5
⁄ Œ

0
exp

;

≠

⁄ 0
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Â

Õ
0
1

hs,0(⁄)
2

ds

<

d⁄

6

. (5.12)
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Hence, we obtain

(1 ≠ ‘)z
ˆ
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ı

Ù

2
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(e,1)
Ë

H1
È
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2
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.

On the other hand, we observe that y
Õ is a sequence which may depend on ‘ . Further,

this sequence y
Õ goes to minus infinity as ‘ goes to 0. Then, for any sequence y

Õ = y‘,
we have

0 < (1 ≠ ‘)z
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Therefore, by letting ‘ æ 0, we get
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Since ” can be taken arbitrary close to 0, we deduce

lim
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e
≠�›(1)tPz(Zt > 0) = z
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ı
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Ù
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where
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0
exp
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≠
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2
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<
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6

.

Thus the proof is completed.
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5.4 Conjecture: weakly subcritical regime
In order to prove Conjecture 5.1.1, we believe that it is possible to adapt our arguments
developed in the intermediate-subcritical regime for the non-extinction probability and
combine with the approach introduced in [1], for the discrete time setting.

Roughly speaking, the aim is to study the event of non-extinction at time t in two
di�erent situations that depend on the behaviour of the infimum of the environment.
To be more precise, we split the event of non-extinction as follows:

Pz(Zt > 0) = P(z,x)
1

Zt > 0, ›
t

> 0
2

+ P(z,x)
1

Zt > 0, ›
t
6 0

2

, (5.13)

for z, x > 0. For the asymptotic behaviour of the second probability in the right-hand
side above, it will be necessary to use condition (H3) which give us the following lower
bound

vt(0, 0, › ≠ ›0) 6
1

C—I0,t(—(› ≠ ›0))
2≠1/—

.

In addition, from Lemma 4.3 in [52], we have that there exists t0 and a constant C— > 0
such that for t > t0,

t
3/2

e
≠�›(“)tE(e)

Ë

I0,t(—›)≠1/—
È

Æ C—.

With these two facts in hand, it will be possible to handle the expectation

E(e)
x

5

P(z,x)
1

Zt < Œ

-

-

- ›

2

1{›t>0}

6

,

in order to obtain its long-term behaviour.
Now, for the first probability in the right-hand side of (5.13), a more elaborate

argument will be needed. To this end, we write

P(z,x)

3

Zt > 0, ›
t

> 0
4

= P(z,x)

3

Zt > 0
-

-

- ›
t

> 0
4

P(e)
x

1

›
t

> 0
2

.

We know that the probability that the running infimum of the environment remains
positive decays exponentially with a factor of order t

≠3/2 up to a multiplicative con-
stant. More precisely, for x > 0

P(e)
x

1

›
t

> 0
2

≥ A“e
“x

‚U
(“)(x)t≠3/2

e
�›(“)t

⁄ Œ

0
e

≠“z
U

(“)(z)dz, as t æ Œ,

where ‚U
(“) is the renewal function defined in (3.20) with ◊ = “ in the Esscher transform
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and
A“ := 1

Ò

2fi�ÕÕ
›
(“)

exp
;

⁄ Œ

0
(e≠t

≠ 1)t≠1
e

≠t�›(“)P(e)(›t = 0)dt

<

.

The latter asymptotic behaviour should be the one leading the asymptotic behaviour of
the probability of non-extinction in this particular case. Therefore, for the conditional
probability

P(z,x)

3

Zt > 0
-

-

- ›
t

> 0
4

,

it will be convenient to show that it converges to a positive constant as t increases. In
order to do so, it will be necessary to study the CSBP in an environment conditioned
to be positive. To this end, we will appeal to the fluctuation theory of Lévy processes
together with the ideas developed by Afanasyev et al. in [1], for the discrete time
setting.



References

[1] V. I. Afanasyev, C. Böingho�, G. Kersting, and V. A. Vatutin. Limit theorems
for weakly subcritical branching processes in random environment. Journal of

Theoretical Probability, 25(3):703–732, 2012.

[2] V. I. Afanasyev, C. Böingho�, G. Kersting, and V. A. Vatutin. Conditional limit
theorems for intermediately subcritical branching processes in random environ-
ment. Ann. Inst. Henri Poincaré Probab. Stat., 50(2):602–627, 2014.

[3] V. I. Afanasyev, J. Geiger, G. Kersting, and V. A. Vatutin. Criticality for branch-
ing processes in random environment. Ann. Probab., 33(2):645–673, 2005.

[4] V. I. Afanasyev, J. Geiger, G. Kersting, and V. A. Vatutin. Functional limit
theorems for strongly subcritical branching processes in random environment.
Stochastic Process. Appl., 115(10):1658–1676, 2005.

[5] K. B. Athreya. Branching process. Encyclopedia of Environmetrics, 1, 2006.

[6] V. Bansaye, J. C. Pardo, and C. Smadi. On the extinction of continuous state
branching processes with catastrophes. Electronic Journal of Probability, 18, 2013.

[7] V. Bansaye, J. C. Pardo, and C. Smadi. Extinction rate of continuous state
branching processes in critical Lévy environments. ESAIM Probab. Stat., 25:346–
375, 2021.

[8] V. Bansaye and F. Simatos. On the scaling limits of Galton-Watson processes in
varying environments. Electron. J. Probab., 20:no. 75, 36, 2015.

[9] N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On the spread of viruses on
the internet. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 301–310. ACM, New York, 2005.

[10] J. Bertoin. Lévy processes, volume 121. Cambridge University Press, Cambridge,
1996.

[11] J. Bertoin and R. Doney. Spitzer’s condition for random walks and Lévy processes.
Annales de l’Institut Henri Poincare (B) Probability and Statistics, 33(2):167–178,
1997.

[12] J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probability

Surveys, 2(none):191 – 212, 2005.



150 References

[13] S. Bhamidi, D. Nam, O. Nguyen, and A. Sly. Survival and extinction of epidemics
on random graphs with general degree. Ann. Probab., 49(1):244–286, 2021.

[14] N. Bhattacharya and M. Perlman. Time-inhomogeneous branching processes con-
ditioned on non-extinction. Preprint arXiv:1703.00337, 2017.

[15] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation, volume 27 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1989.

[16] C. Boeingho� and M. Hutzenthaler. Branching di�usions in random environment.
Markov Processes and Related Fields, 18(2), 2011.

[17] N. Cardona-Tobón and S. Palau. Yaglom’s limit for critical Galton–Watson pro-
cesses in varying environment: A probabilistic approach. Bernoulli, 27(3):1643–
1665, 2021.

[18] N. Cardona-Tobón and J. C. Pardo. Speed of extinction for continuous state
branching processes in subcritical Lévy environments: the strongly and interme-
diate regimes. Preprint arXiv:2112.13674, 2021.

[19] N. Cardona-Tobón and M. Ortgiese. The contact process with fitness on Galton-
Watson trees. Preprint arXiv:2110.14537, 2021.

[20] S. Chatterjee and R. Durrett. Contact processes on random graphs with power
law degree distributions have critical value 0. Ann. Probab., 37(6):2332–2356,
2009.

[21] L. Chaumont. Conditionings and path decompositions for Lévy processes.
Stochastic Processes and their Applications, 64(1):39–54, 1996.

[22] L. Chaumont and R. Doney. On Lévy processes conditioned to stay positive.
Electronic Journal of Probability, 10:948–961, 2005.

[23] F. Chung and L. Lu. The average distance in a random graph with given expected
degrees. Internet Math., 1(1):91–113, 2003.

[24] D. A. Dawson and Z. Li. Stochastic equations, flows and measure-valued pro-
cesses. Ann. Probab., 40(2):813–857, 2012.

[25] D. Dolgopyat, P. Hebbar, L. Koralov, and M. Perlman. Multi-type branching
processes with time-dependent branching rates. Journal of Applied Probability,
55(3):701–727, 2018.

[26] R. A. Doney. Fluctuation Theory for Levy Processes: Ecole D’Eté de Probabilités

de Saint-Flour XXXV-2005. Springer, 2007.

[27] R. Durrett. Ten lectures on particle systems. In Lectures on probability the-

ory (Saint-Flour, 1993), volume 1608 of Lecture Notes in Math., pages 97–201.
Springer, Berlin, 1995.



References 151

[28] R. Durrett. Probability—theory and examples, volume 49 of Cambridge Series

in Statistical and Probabilistic Mathematics. Cambridge University Press, Cam-
bridge, 2019. Fifth edition of [ MR1068527].

[29] K. B. Erickson and R. A. Maller. Generalised Ornstein-Uhlenbeck processes and
the convergence of Lévy integrals. In Séminaire de Probabilités XXXVIII, volume
1857 of Lecture Notes in Math., pages 70–94. Springer, Berlin, 2005.

[30] G. B. Folland. Real analysis. Pure and Applied Mathematics (New York). John
Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications,
A Wiley-Interscience Publication.

[31] J. Geiger. Elementary new proofs of classical limit theorems for Galton–Watson
processes. Journal of Applied Probability, 36(2):301–309, 1999.

[32] J. Geiger. A new proof of Yaglom’s exponential limit law. In D. Gardy and
A. Mokkadem, editors, Mathematics and Computer Science, pages 245–249,
Basel, 2000. Birkhäuser Basel.

[33] J. Geiger, G. Kersting, and V. A. Vatutin. Limit theorems for subcritical branch-
ing processes in random environment. Ann. Inst. H. Poincaré Probab. Statist.,
39(4):593–620, 2003.

[34] M. González, G. Kersting, C. Minuesa, and I. del Puerto. Branching processes in
varying environment with generation-dependent immigration. Stochastic Models,
35(2):148–166, 2019.

[35] D. Grey. Asymptotic behaviour of continuous time, continuous state-space
branching processes. Journal of Applied Probability, 11(4):669–677, 1974.

[36] S. C. Harris, S. G. Johnston, M. I. Roberts, et al. The coalescent structure of
continuous-time Galton–Watson trees. Annals of Applied Probability, 30(3):1368–
1414, 2020.

[37] T. E. Harris. Contact interactions on a lattice. Ann. Probability, 2:969–988, 1974.

[38] H. He, Z. Li, and W. Xu. Continuous-state branching processes in Lévy random
environments. Journal of Theoretical Probability, 31(4):1952–1974, 2018.

[39] K. Hirano. Lévy processes with negative drift conditioned to stay positive. Tokyo

Journal of Mathematics, 24(1):291–308, 2001.

[40] X. Huang. Exponential growth and continuous phase transitions for the contact
process on trees. Electron. J. Probab., 25:Paper No. 77, 21, 2020.

[41] X. Huang and R. Durrett. The contact process on random graphs and Galton
Watson trees. ALEA Lat. Am. J. Probab. Math. Stat., 17(1):159–182, 2020.

[42] P. Jagers. Galton-Watson processes in varying environments. Journal of Applied

Probability, 11(1):174–178, 1974.

[43] M. Ji�ina. Stochastic branching processes with continuous state space. Czechoslo-

vak Mathematical Journal, 8(2):292–313, 1958.



152 References

[44] G. Kersting. A unifying approach to branching processes in varying environments.
Journal of Applied Probability, 57(1):196–220, 2020.

[45] G. Kersting and V. A. Vatutin. Discrete time branching processes in random

environment. Wiley Online Library, 2017.

[46] H. Kesten, P. Ney, and F. Spitzer. The galton-watson process with mean one and
finite variance. Theory of Probability & Its Applications, 11(4):513–540, 1966.

[47] A. Kolmogorov. Zur lösung einer biologischen aufgabe. Comm. Math. Mech.

Chebyshev Univ. Tomsk, 2(1):1–12, 1938.

[48] T. G. Kurtz. Di�usion approximations for branching processes. In Branching

processes (Conf., Saint Hippolyte, Que., 1976), volume 5 of Adv. Probab. Related

Topics, pages 269–292. Dekker, New York, 1978.

[49] M. Kwaúnicki, J. Ma≥ ecki, and M. Ryznar. Suprema of Lévy processes. Ann.

Probab., 41(3B):2047–2065, 2013.

[50] A. E. Kyprianou. Fluctuations of Lévy processes with applications. Universitext.
Springer, Heidelberg, second edition, 2014. Introductory lectures.

[51] Z. Li. Measure-valued branching Markov processes. Probability and its Applica-
tions (New York). Springer, Heidelberg, 2011.

[52] Z. Li and W. Xu. Asymptotic results for exponential functionals of Lévy processes.
Stochastic Process. Appl., 128(1):108–131, 2018.

[53] T. M. Liggett. Multiple transition points for the contact process on the binary
tree. Ann. Probab., 24(4):1675–1710, 1996.

[54] T. M. Liggett. Stochastic interacting systems: contact, voter and exclusion pro-

cesses, volume 324 of Grundlehren der Mathematischen Wissenschaften [Funda-

mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

[55] R. Lyons, R. Pemantle, and Y. Peres. Conceptual Proofs of L Log L Criteria for
Mean Behavior of Branching Processes. The Annals of Probability, 23(3):1125 –
1138, 1995.

[56] J. R. Norris. Markov chains, volume 2 of Cambridge Series in Statistical and Prob-

abilistic Mathematics. Cambridge University Press, Cambridge, 1998. Reprint of
1997 original.

[57] S. Palau and J. C. Pardo. Continuous state branching processes in random envi-
ronment: the Brownian case. Stochastic Process. Appl., 127(3):957–994, 2017.

[58] S. Palau and J. C. Pardo. Branching processes in a Lévy random environment.
Acta Appl. Math., 153:55–79, 2018.

[59] S. Palau, J. C. Pardo, and C. Smadi. Asymptotic behaviour of exponential func-
tionals of Lévy processes with applications to random processes in random envi-
ronment. ALEA Lat. Am. J. Probab. Math. Stat., 13(2):1235–1258, 2016.



References 153

[60] Y. Pan, D. Chen, and X. Xue. Contact process on regular tree with random
vertex weights. Front. Math. China, 12(5):1163–1181, 2017.

[61] R. Pastor-Satorras and A. Vespignani. Epidemic dynamics and endemic states in
complex networks. Phys. Rev. E, 63:066117, May 2001.

[62] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks.
Phys. Rev. Lett., 86:3200–3203, Apr 2001.

[63] P. Patie and M. Savov. Bernstein-gamma functions and exponential functionals
of Lévy processes. Electron. J. Probab., 23:Paper No. 75, 101, 2018.

[64] R. Pemantle. The contact process on trees. Ann. Probab., 20(4):2089–2116, 1992.

[65] J. Persson. A generalization of Carathéodory’s existence theorem for ordi-
nary di�erential equations. Journal of Mathematical Analysis and Applications,
49(2):496–503, 1975.

[66] J. Peterson. The contact process on the complete graph with random vertex-
dependent infection rates. Stochastic Process. Appl., 121(3):609–629, 2011.

[67] Y.-X. Ren, R. Song, and Z. Sun. A 2-spine decomposition of the critical Galton-
Watson tree and a probabilistic proof of Yaglom’s Theorem. Electron. Commun.

Probab, 23(42):12, 2018.

[68] K.-i. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2013. Translated from the 1990 Japanese original, Revised edition of the
1999 English translation.

[69] A. M. Stacey. The existence of an intermediate phase for the contact process on
trees. Ann. Probab., 24(4):1711–1726, 1996.

[70] R. van der Hofstad. Random graphs and complex networks. Vol. 1. Cambridge
Series in Statistical and Probabilistic Mathematics, [43]. Cambridge University
Press, Cambridge, 2017.

[71] X. Xue. Contact processes with random connection weights on regular graphs.
Phys. A, 392(20):4749–4759, 2013.

[72] X. Xue. Contact processes with random vertex weights on oriented lattices. ALEA

Lat. Am. J. Probab. Math. Stat., 12(1):245–259, 2015.

[73] X. Xue. Critical value for the contact process with random recovery rates and
edge weights on regular tree. Phys. A, 462:793–806, 2016.

[74] X. Xue. The survival probability of the high-dimensional contact process with
random vertex weights on the oriented lattice. ALEA Lat. Am. J. Probab. Math.

Stat., 16(1):49–83, 2019.

[75] A. M. Yaglom. Certain limit theorems of the theory of branching random pro-
cesses. In Doklady Akad. Nauk SSSR (NS), volume 56, page 3, 1947.


	Table of contents
	Introduction
	I Galton-Watson processes in varying environment
	1 Yaglom’s limit for critical GWVE
	1.1 Introduction and main result
	1.2 Outline of the proof
	1.3 Size-biased trees
	1.4 Proof of the main result


	II Contact processes with fitness on Galton-Watson trees
	2 The contact process with fitness on Galton-Watson trees
	2.1 Introduction
	2.2 Definitions and main results
	2.3 Properties of the inhomogeneous contact process
	2.4 Proof of Theorem 2.2.1
	2.5 Finite Stars
	2.6 Proof of Theorem 2.2.2


	III Continuous-state branching processes in a Lévy environment
	3 CSBPs in a Lévy environment
	3.1 Introduction
	3.2 Definitions and first properties
	3.3 Properties of the Lévy environment
	3.4 Lévy processes conditioned to stay positive and negative
	3.5 CSBPs in a conditioned Lévy environment
	3.6 Extinction for stable CSBPs in a Lévy environment
	3.7 Explosion for CSBPs in a Lévy environment 

	4 Explosion rates of CSBPs in a Lévy environment
	4.1 Main results
	4.2 Conservativeness
	4.3 CSBPs in a conditioned Lévy environment
	4.4 Critical-explosion regime
	4.5 Subcritical-explosion regime
	4.6 Future research

	5 Extinction rates of CSBPs in a subcritical Lévy environment
	5.1 Main results
	5.2 Strongly subcritical regime
	5.3 Intermediate subcritical regime
	5.4 Conjecture: weakly subcritical regime

	References




