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Summary
The aim of the thesis is to characterise new ways of path-conditioning of a d-dimensional isotropic
stable Lévy process and consider their time-reversed paths. In our analysis, we use both of
classical potential theory approach and recently-developed methods around the theory of self-
similar Markov processes. In doing so, we have the opportunity to consider the role of certain
harmonic/excessive functions that have not been previously studied.

In the first part of the thesis, Chapter 3, we consider an oscillatory conditioned attraction
of the stable Lévy process to a subset of the unit sphere or a hyperplane. We characterise
the hitting distribution as well as the time-reversed process of this conditioned processes in the
sense of Hunt-Nagasawa duality for Markov processes. The resulting time-reversed processes
have the same distribution as the unconditioned stable Lévy process itself when issued from the
corresponding subset of the unit sphere or an hyperplane.

In the second part, Chapter 4, we condition the stable Lévy process to remain either
outside or inside of the sphere and we characterise the same conditioned attraction to a subset
of the unit sphere. The methods of the previous chapter are not applicable in this case. We
use instead recent developments in the representation of d-dimensional isotropic stable Lévy
processes as a self-similar Markov processes. In particular, we use a characterisation of the
point of closest/furthest reach from the unit sphere for the stable Lévy process. As in the
first part, we characterise the hitting distribution as well as the time-reversed process of the
newly conditioned processes via Hunt-Nagasawa duality. The resulting time-reversed processes
have the law of stable Lévy processes conditioned to stay away from the unit sphere and the
process conditioned to stay inside the unit sphere and continuously absorbed at the origin
correspondingly. We also extend the conditioned processes as well as its time-reversed processes
to be issued from the boundary of the domain in which they live.

Finally, we would like point out that the methodology that we use in the Chapter 4 was
only possible for a subset of the unit sphere and we could not extend to the setting of the
hyperplane. The reason for this is that we use the law of the point of closest reach from the unit
sphere to define the conditioning. There is no such result for the case of an hyperplane so far.
Thus, for further work, we aim to characterise one-sided attraction to a subset of an hyperplane.
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Chapter 1

Introduction

In this thesis, we want to condition a process to a zero probability event. Since we cannot use
the classical conditional probability, the way to do it is to perform a change of measure using a
super-martingale and a limiting procedure.

More precisely, let (Ω,F ,P) be a probability space. A probability measure Q, defined on
the measurable space (Ω,F), is said to be absolutely continuous with respect to P if, for every
A ∈ F , we have

P(A) = 0⇒ Q(A) = 0. (1.1)

Then, the Radon-Nikodym theorem implies that, if Q is absolutely continuous with respect to
P, then there exists a σ-measurable function M : Ω→ [0,∞) such that for any A ∈ F ,

Q(A) =

∫
A
M(ω)dP(ω) (1.2)

and we denote it as
dQ

dP
= M.

Conversely, whenever we find such measurable function M for a given probability measure P,

so that the function Q computed by Equation (1.2) forms a probability measure, then we can
change the measure space (Ω,F ,P) to (Ω,F ,Q).

Let X = (Xt, t ≥ 0) be a stochastic process in this space with values in Rd, and (Ft, t ≥ 0)

be a filtration. A stochastic process X is said to be adapted to the filtration (Ft, t ≥ 0), if Xt

is measurable by Ft for all t ≥ 0. The notion of adaptability means that, at time t, information
regarding a stochastic process X up to time t is known but it is not known for the further times.
An example of filtration is Ft := σ(Xs, s ≤ t), that is the σ-algebra generated by {Xs, s ≤ t}.
This filtration is called the natural filtration of the stochastic process X. It is clear that a
stochastic process X is adapted with respect to its natural filtration.

For the stochastic process (Xt, t ≥ 0) issued from x with the initial distribution Px, we
have the stronger result due to Girsanov’s theorem which states that, under the above change
of measure, if

dQx

dPx

∣∣∣
Ft

= Mt (1.3)
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is a P super-martingale then it is a Q super-martingale, in particular Mt is measurable in
Ft and EP

xMt as well as EQ
xMt are non-decreasing in t. Conversely, whenever we find a P

super-martingale Mt for a given probability measure Px, so that the function Qx computed by
the equation (1.3), then we get the distribution of the new stochastic process when the initial
distribution is changed from Px to Qx.

The way to construct a super-martingale is to find an "excessive" function h with the
main property that

Exh(Xt) ≤ h(x), t ≥ 0, x ∈ Rd. (1.4)

Then, we can define a super-martingale Mt := h(Xt)
h(x) and

dP∗x
dPx

∣∣∣
Ft

=
h(Xt)

h(x)
t ≥ 0, (1.5)

is a change of measure. Methods for finding such excessive functions or super-martingales to
conditioning Markov processes include a potential theory approach and a probabilistic approach.

In this thesis, we consider path conditioning of a stable Lévy process. Such processes lie at
the intersection of Lévy processes and self-similar Markov processes. In other words, stable Lévy
processes have both of the characteristics of Lévy processes and self-similar Markov processes.

A Lévy process Y = (Yt, t ≥ 0) is a stochastic process with the following characterizing
properties:

(i) it has paths that are almost surely right-continuous with left-limits (càdlàg);

(ii) it has stationary increments, which means that for fixed two times s < t, the distribution
of the increment Yt − Ys depends only on t− s;

(iii) it has independent increments, which means that for fixed times 0 ≤ t1 < ... < tn, the
increments Ytn − Ytn−1 , ..., Yt2 − Yt1 are independent of each other.

A self-similar process Z = (Zt, t ≥ 0) is a Hunt process on Rd if there exists a constant
α > 0 such that, for any x ∈ Rd \ {0} and c > 0,

the law of (cZc−αt, t ≥ 0) under Px is the same as (Zt, t ≥ 0) under Pcx, (1.6)

where Px is the law of Z starting from x. The property (1.6) is also called a scaling property
and α is called the scaling index or self-similarity index.

Throughout this thesis, we will consider isotropic stable Lévy processes. This means that
X is a stable Lévy process such that for every orthogonal transformation U : Rd → Rd, the law
of UX under Px is equal to the law of X under PUx.

The conditioning of a Markov process as a limiting procedure has seen a series of results
for the setting of random walks (RWs) and Lévy processes in one dimension. First, Bertoin and
Doney [2] showed the connection between the limiting conditioning procedures for one dimen-
sional RWs conditioned to stay positive and harmonic/martingale functions. Then, Chaumont
and Doney [5] extended the definition of conditioning to stay positive to the setting of Lévy
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processes, including the boundary point 0 for the point of issue. Bertoin and Savov [3] identified
the role of duality in describing the time-reversed conditioned processes (see also [1]). As RWs
can be thought of as discrete analogues of Brownian motion, the similar results relating to lim-
iting conditioning procedures for RWs/Lévy processes can be sought for the setting of Brownian
motion or for the more general Markov processes.

To investigate the phenomenon of conditioning in more complex settings, we choose the
candidate Markov process to be an isotropic stable Lévy process in dimension d ≥ 2 as it
inherits the same properties as that of a Brownian motion except it has discontinuous paths.
More precisely, we want to characterise the conditionings of a stable Lévy process X to hit

(i) a subset S ∈ Sd−1 from both sides of the sphere Sd−1;

(ii) a subset D ∈ Hd−1 from both side of the hyperplane Hd−1; and

(iii) a subset S ∈ Sd−1 from one side of the sphere

and investigate their time-reversed process from the hitting time.

1.1 Outline of thesis

The aim of the thesis is to characterise some newly derived path-conditionings of d-dimensional
isotropic stable Lévy processes and their time-reversed dual processes. The remainder of the
thesis consists of 3 chapters and a conclusion. Chapters 3 and 4 contain research papers, which
were written in collaboration with my supervisors Professor Andreas E. Kyprianou and Dr.
Sandra Palau, and collaborator Professor Mateusz Kwaśnicki.

1. Preliminary (Chapter 2). To characterise path conditionings of the stable processes
in later chapters, we use recent developments in the representation of a d-dimensional
isotropic stable Lévy process as a self-similar Markov process. In Chapter 2 we review
these results from the literature. We are also interested in extending the definition of
conditioned stable process to be outside (or inside) a region to include the case when the
process starts at the boundary of the region. In addition, understanding time-reversal of
conditioned stable processes also features in our analysis.

In-line with these objectives, the preliminary chapter begins by summarising some standard
properties of Markov process in Section 2.1. Among the exposition, we discuss the notion
of a Doob-h transformation and conditioning of Markov processes and a well-known result
from potential analysis concerning the equilibrium measure in [6].

We introduce Lévy processes in Section 2.2, stressing their characteristic properties, as
well as introducing essential notion and results relating to its path structure. Then, we
introduce the special case of isotropic Stable Lévy process in Section 2.3, focusing on
fluctuation results. This is followed by an introduction of self-similar Markov processes in
Section 2.4 and their recent developments, [10], which serves as the base of some of the
analysis in Chapter 4.
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Since we want to consider issuing our conditioned processes from the boundary as well
as time-reversed dual processes, we briefly introduce the theory of excursions for Lévy
processes, radial excursion theory for stable Lévy processes in Section 2.5 and time-reversed
duality concepts in Section 2.6.

2. Oscillatory attraction and repulsion from a subset of the unit sphere or hyper-
plane for isotropic stable Lévy processes (Chapter 3). In this chapter, we consider
a stable process X = (Xt, t ≥ 0) with lifetime ζ valued in Rd(d ≥ 2) and want to condi-
tion it to continuously approach a subset of the unit sphere. Such conditioning has been
explored when d = 1 [12]. Moreover, we want to explore repulsion from a subset of the
unit sphere using the constructed attraction process.

We begin our analysis defining what we mean by conditioning stable process to contin-
uously approach a subset of the unit sphere. As we will see in the preliminaries, when
α ∈ (1, 2), stable processes will hit the unit sphere with positive probability and otherwise,
when α ∈ (0, 1], it hits the unit sphere with probability zero; see e.g. [13] or [9]. Thus, the
aforesaid conditioning is only of interest when α ∈ (0, 1]. Moreover, as we will see in the
preliminaries, such conditioning can be extended to any sphere in Rd thanks to the self
similarity as well as stationary and independent increments of the stable process.

Suppose that S is a closed set of the unit sphere Sd−1 = {x ∈ Rd : |x| = 1} in dimension
d ≥ 2, which has positive surface measure. We want to construct the law of the stable
process conditioned to converge continuously to S ⊂ Sd−1 whilst visiting both Bd := {x ∈
Rd : |x| < 1} and B̄cd := Rd \ B̄d infinitely often at arbitrarily small times prior to hitting
S. We shall denote the associated probabilities by PS = (PS

x, x ∈ Rd). For a more precise
definition, we introduce the stopping times,

τβ = inf{t > 0 : β−1 < |Xt| < β}, for β > 1. (1.7)

Whenever it is well defined, we write, for t ≥ 0, Λ ∈ Ft and x 6∈ S,

PS
x(Λ, t < ζ) = lim

β→1
lim
ε→0

Px
(
Λ, t < τβ

∣∣ τSε <∞) , (1.8)

where ζ is the first time that Xt hits Sd−1 and

τSε = inf{t > 0 : Xt ∈ Sε} and Sε := {x ∈ Rd : 1− ε ≤ |x| ≤ 1 + ε and arg(x) ∈ S}.

Our first main result shows that (X,PS) is indeed well defined. The proof of the result relies
on establishing the asymptotic leading order behaviour of Px(τSε <∞), the probability of
hitting the set Sε. For this, we use a potential-theoretic method and develop a ‘guess and
verify’ approach. In particular, since we are not chasing an exact formula for Px(τSε <∞),
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we can ‘guess’ a measure, say µε, supported on Sε, such that

UµSε (x) =

∫
Sε

|x− y|α−dµε(dy) = 1 + o(1), x ∈ Sε as ε→ 0, (1.9)

so that
(1 + o(1))Px(τSε <∞) = UµSε (x), x 6∈ Sε, (1.10)

from which, we can draw out the leading order decay in ε.

In addition to constructing the conditioned process, we develop an expression for the law
of the limiting point of contact on S. Moreover, we show that, when time reversed from
the strike point on S, the resulting process can be described as the underlying stable Lévy
process itself. The extreme case S = Sd−1 (the whole unit sphere) is included in our
analysis. For d = 1, [12] explored that conditioned process. In order to make our results
pertinent, we restrict ourselves to the case that d ≥ 2.

The second part of the chapter is devoted to proving analogous results in the case when
S is replaced by D, a closed bounded subset of the hyperplane {x ∈ Rd : (x, v) = 0} with
positive surface measure, where v is a unit vector and (·, ·) is the usual Euclidean inner
product. The methodology we used in the first part is robust enough to prove the results
in the second part with the appropriate choice of the measure µε.

Preprint: arXiv: 2011.07402. to appear in Special Issue in Honor of Ron Doney’s 80th
Birthday, Birkhäuser.

3. Attraction to and repulsion from a subset of the unit sphere for isotropic stable
Lévy processes (Chapter 4). In this chapter, we restrict the stable process be attracted
to, or repelled from, a subset of the unit sphere, S, from either the exterior or the interior of
the unit sphere. The method we use in this chapter is different from the method of Chapter
3. In this chapter we use a probabilistic approach that uses recent developments in the
representation of d-dimensional isotropic stable Lévy processes as a self-similar Markov
process.

We characterise the law of the stable Lévy process conditioned to approach S continuously
from either inside or outside of the sphere. More precisely, if S is not a point, we define
Aε = {rθ : r ∈ (1, 1 + ε), θ ∈ S} and Bε = {rθ : r ∈ (1 − ε, 1), θ ∈ S}, for 0 < ε < 1 and
define the corresponding events C∨ε := {XG(∞) ∈ Aε} and C∧ε := {XG(τ	1 −) ∈ Bε}. Here,
XG(∞) is the point of closest reach to the origin in the range of X, and XG(τ	1 −) is the
point of furthest reach from the origin prior to exiting Bd. More precisely,

G(t) = sup{s ≤ t : |Xs| = inf
u≤s
|Xu|}, G(t) = sup{s ≤ t : |Xs| = sup

u≤s
|Xu|},

where τ	1 = inf{t > 0 : |Xt| > 1}. We are interested in the asymptotic conditioning

P∨x (A, t < k) = lim
ε↓0

Px(A, t < τ⊕1 |C
∨
ε ), (1.11)
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when x ∈ B̄cd where τ⊕1 = inf{t > 0 : |Xt| < 1} and

P∧x (A, t < k) = lim
ε↓0

Px(A, t < τ	1 |C
∧
ε ), (1.12)

when x ∈ Bd, for all A ∈ Ft.

When S = {ϑ} ∈ Sd−1, we need to adapt slightly the sets Aε and Bε so that Aε = {rφ : r ∈
(1, 1 + ε), φ ∈ Sd−1, |φ− ϑ| < ε} and Bε = {rφ : r ∈ (1− ε, 1), φ ∈ Sd−1, |φ− ϑ| < ε}.

Our first main result shows that (X,P∧) and (X,P∨) are well defined. The proof of
the result relies on recent fluctuation identities related to the deep factorisation of stable
processes, cf. [8, 10, 11]. Moreover, we are able to characterise the law of the limiting
point of contact on S.

We also extend the characterisation of these two conditioned processes by including the
case when X is issued from the unit sphere itself but not within S, i.e. Sd−1 \ S. The
methodology we use for the proof relies on radial excursion theory, introduced in Chapter 2.

Additionally, in the sense of time reversal, we show that (X,P∧) and (X,P∨) are in duality
with, respectively, the stable process conditioned to remain inside the sphere and absorb
continuously at the origin and the stable process conditioned to remain outside of the
sphere, respectively. The extensions of these processes when issued from the boundary
Sd−1 are also characterised using the same methodology, i.e. radial excursion theory.

The extreme cases S = Sd−1 (the whole unit sphere) and S = {ϑ} ∈ Sd−1 (a single point
on the unit sphere) are included in our analysis, however, we will otherwise insist that the
Lebesgue surface measure of S is strictly positive.

Our results extend the recent contributions of [12], where similar conditioning is considered,
albeit in one dimension, as well as providing analogues of the same and very classical results
for Brownian motion [7]. We also note that, the choice of limiting conditioning procedure
that we have used reflects a similar approach taken in [12] in one dimension.

Published: Stochastic Processes and their Applications, 137 (2021), 272-293.

4. Conclusions. The final chapter is a short summary of the relevance of the work in this
thesis, with an outlook to future work.

This thesis is presented in the alternative format which includes publications. This means
the research chapters are developed independent of the introduction and supposed to be self-
contained. Hence, it is inevitable that there will be some inconsistencies in notation and redun-
dant content in the introduction chapter.
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Chapter 2

Preliminaries

In this preliminary chapter, we begin by introducing Markov processes in Section 2.1. Next,
we introduce Lévy processes in Section 2.2 focusing on their characterising properties as well as
results relating to its path structure. The introduction of an isotropic Stable Lévy process in
Section 2.3 focusing on the fluctuation results regarding a sphere [15, 14]. Section 2.4 introduces
self-similar Markov processes and their recent developments in [16], which serves as a base of
our analysis in Chapter 4.

Finally, as it will be of continued relevance throughout the thesis, we briefly introduce
excursion theory in Section 2.5 and time-reversed duality concepts in Section 2.6, respectively.

2.1 Markov processes

Let (Ω,F , P ) be a probability space, E be a locally compact metric space and B be the Borel
field of E. In this thesis, we restrict ourselves to E = Rd for d ≥ 2. For each t ∈ [0,∞), let
Xt(w) = X(t, w) : Ω → E be a random variable. Let us associate to X = (Xt, t ≥ 0) the
filtration F = {Ft : t ≥ 0} where, for each t ≥ 0, Ft is the natural enlargement of σ(Xs : s ≤ t),
i.e Ft = σ(Xs : s ≤ t) ∪ {P− null sets}.

Definition 2.1.1. The process X = (Xt, t ≥ 0) possesses the Markov property if, for each Borel
set B ∈ Rd and s, t ≥ 0,

P (Xt+s ∈ B|Ft) = ps(Xt, B) (2.1)

where, for all x ∈ Rd and s ≥ 0, ps(x,B) := P (Xs ∈ B|X0 = x).

We now define stopping times and the strong Markov property.

Definition 2.1.2. A non-negative random variable τ is called a stopping time if

{τ ≤ t} ∈ Ft, for all t ≥ 0.

An example of a stopping time can be the random time when a Markov process X enters
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A ⊂ Rd where A is either an open or closed set, that is

τA = inf{t > 0: Xt ∈ A}.

For any measurable function f : Rd → (0,∞) and u ≥ 0, another example of a stopping time
can be defined as

τ fu = inf

{∫ t

0
f(Xs)ds > u

}
.

Each stopping time has an associated σ−algebra defined as

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

We define the family of probability measure Px, x ∈ Rd, where Px(·) = P(·|X0 = x).

Definition 2.1.3. The process X is said to satisfy the strong Markov property if, for each
stopping time τ,

P (Yτ+s ∈ B|Fτ ) = PYτ (Ys ∈ B)

on {τ <∞} for all Borel set B ∈ Rd.

Definition 2.1.4. We define the semigroup of X, P = (Pt, t ≥ 0), as follows

Pt[f ](x) := Ex[f(Xt)], x ∈ Rd,

for any bounded measurable function f : Rd → R.

When F0 is the trivial σ-algebra, P0[f ](x) = f(x). Moreover, P has the semigroup
property i.e. Pt[Ps[f ](·)](x) = Pt+s[f ](x) for all x ∈ Rd and s, t ≥ 0 due to the Markov
property.

Feller processes: We now define Feller processes which are a subspace of Markov pro-
cesses. Let C0(Rd) be the Banach space of bounded measurable functions which decay to 0 as
|x| → ∞, equipped with the supremum norm.

Definition 2.1.5. The semigroup P is said to be Feller if it has the Feller property. That is,

(i) for all t ≥ 0,Pt : C0(Rd)→ C0(Rd),

(ii) for all x ∈ Rd and f ∈ C0(Rd), limt↓0 Pt[f ](x) = f(x).

Hunt processes: From the Proposition 5 in Chapter 2.2 of [9], a Feller process restricted
to any countable dense subset S ∈ [0,∞) has paths with right limits in [0,∞) and left limits in
(0,∞) for almost every w ∈ Ω. Moreover, for any countable dense subset S ∈ [0,∞), define

X←t (w) = lim
s∈S,s↓t

Xs(w), X→t (w) = lim
s∈S,s↑t

Xs(w), t ≥ 0 (2.2)

for each w ∈ Ω∗ ⊂ Ω for some Ω∗ such that P(Ω∗) = 1. Then, it is clear that X←t (w) is right
continuous in t with left limits and X→t (w) is left continuous in t with right limits at each t > 0.
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Finally, due to Theorem 6 in Chapter 2.2 of [9], X→t and X←t are versions of Xt, i.e they are
modifications of Xt; hence each of these is a Feller process with the same transition semigroup
Pt as Xt since Ft is the natural enlargement of σ(Xs : s ≤ t). These facts will be the base of the
connection between Feller process and Hunt process defined below.

Definition 2.1.6. Let X = (Xt,Ft, t ≥ 0) be a temporally homogeneous Markov process with
state space (E,B) and semigroup P. Then, X is called a Hunt process if and only if

(i) it is right continuous,

(ii) it has the strong Markov property,

(iii) it is quasi left continuous, in a sense that, for any sequence of stopping times Tn which
increases to a stopping time T , limn→∞XTn = XT on {T <∞} almost surely.

Note that quasi left continuity implies left continuity as each t ≥ 0 is a stopping time. In
Chapter 9.5 of [7], it is shown that any Feller process can be constructed as a Hunt process.
Such a version of the Feller process is called a regular Feller process.

2.1.1 Quitting time and equilibrium measure

Let X = (Xt, t ≥ 0) be a Hunt process on (E,B) and µ be a σ-finite measure on B.

Definition 2.1.7. For some q > 0, the q-resolvent kernel U (q) is defined as

U (q)(x,A) =

∫ ∞
0

e−qtPx(Xt ∈ A)dt, (2.3)

and the potential kernel U is defined as

U(x,A) =

∫ ∞
0

Px(Xt ∈ A)dt. (2.4)

Suppose that the potential kernel U has a density u with respect to µ, i.e.

U(x,A) =

∫
A
u(x, y)µ(dy), x ∈ E,A ∈ B, (2.5)

where u is non-negative and measurable on E × E . Let A ∈ E and

∆A = {w|∃t > 0: Xt(w) ∈ A} (2.6)

which is a measurable set. Now, define the quitting time or last exit time γA(w) for a set A as
follows:

γA(w) = sup{t > 0: Xt(w) ∈ A}, if w ∈ ∆A, (2.7)

otherwise γA(w) = 0. Define the hitting time τA(w) for w ∈ Ω

τA(w) = inf{t > 0: Xt(w) ∈ A}, if w ∈ ∆A, (2.8)
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otherwise τA(w) =∞, e.g. for w ∈ Ω \∆A. From these definitions, it is clear that

{γA > 0} = {τA <∞} (2.9)

almost surely.

Definition 2.1.8. The set A is called transient (recurrent) if and only if γA <∞ (γA =∞)

almost surely.

The following theorem gives a last passage time characterisation in terms of a potential
density.

Theorem 2.1.1. ([9]) Let X be a Hunt process with potential kernel U. Suppose that its potential
density u exists and has the following properties:

(i) For each x ∈ E, y → u(x, y)−1 is finite continuous,

(ii) u(x, y) =∞ if and only if x = y, and we set u(x, x)−1 = 0.

Then, for each transient set A, there exists a Radon measure µA such that for any x ∈ E and
B ∈ B,

Ex(γA > 0;X(γA−) ∈ B) =

∫
B
u(x, y)µA(dy). (2.10)

If almost all paths of the process are continuous, then µA has support in ∂A. In general, if A is
open then µA has support in A.

The measure µA is called the equilibrium measure of A. Moreover, the corollary below is
a key feature of potential analysis.

Corollary 2.1.1. ([9]) Under the assumptions of the Theorem 2.1.1, we have

Px(τA <∞) =

∫
E
u(x, y)µA(dy). (2.11)

Corollary 2.1.1 will be a key element of the proofs in Chapter 3.

2.1.2 Conditioning of a Markov process: Doob-h transformation

Let Eδ = E ∪ {δ} be a locally compact metric space E with an isolated cemetery point δ and
P = (Pt, t ≥ 0) be a Borel-measurable semigroup on Eδ. Assume that, for a probability measure
µ on Eδ, there exists a strong Markov process X = (Xt, t ≥ 0) with state space Eδ, probabilities
P = (Px, x ∈ E) and transition semigroup P, satisfying:

(i) P(X0 ∈ A) = µP0(A) :=
∫
µ(dx)P0(x,A),

(ii) there exists a random variable ζ, 0 ≤ ζ ≤ ∞, such that

Xt(w) ∈ E if t < ζ(w) and Xt(w) = δ if ζ(w) ≤ t,
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(iv) t→ Xt(w) is right continuous on [0,∞) and has left limits in E on (0, ζ).

An example of a random variable ζ could be the first entrance time to a Borel set B ∈ E. In
this case, Xt will be a killed Markov process upon entering B and the corresponding semigroup
PB = (PBt , t ≥ 0) will be the killed semigroup.

Definition 2.1.9. A measurable function h : E → R+ is called an excessive function relative to
Pt if

(i) for all x ∈ E and t ≥ 0, Pt[h](x) ≤ h(x),

(ii) for all x ∈ E, limt↓0 Pt[f ](x) = f(x).

An excessive function is called harmonic if Pt[h](x) = h(x), for all x ∈ E. If h is an excessive
(harmonic) function relative to the killed semigroup PB, then h is called an excessive (harmonic)
function on the set B.

Let h be an excessive function and Eh := {x : 0 < h(x) <∞}. Define

hPt[f ](x) :=

 1
h(x)Pt[hf ](x), x ∈ Eh
0, x ∈ E \ Eh.

(2.12)

In Chapter 11.2 in [9], it is shown that, for an excessive function h, hPt is a sub-Markov semigroup
on E. In other words, it is a Markov semigroup such that hPt(x,E) ≤ 1 and it satisfies

hPt(x,E \ Eh) = 0, for all x ∈ Eh and t ≥ 0. (2.13)

Moreover, by setting hPt(δ, {δ}) = 1 and hPt(x, {δ}) = 1− hPt(x,E), a sub-Markov semigroup

hPt can be extended to a Markov semigroup on E. This also suggests that, if h is an harmonic
function, hPt is directly a Markov semigroup.

Indeed, in [9], a stochastic process with semigroup hP is constructed. Such a process is
called a Doob-h transformation of the process of X and denoted Xh. Moreover, it is shown that
Xh is a right-continuous strong Markov process which has left limits except possibly at the time
of death ζ. Also, it is shown that, for any T stopping time, Λ ∈ FT+, and x ∈ Eh, we have

hPx(Λ;T < ζ) =
1

h(x)
Ex[h(XT ); Λ], (2.14)

where Px(Λ;T < ζ) = Px(Λ ∩ {T < ζ}) and Ex[h(XT ); Λ] =
∫

Λ h(XT (w))Px(dw).

2.2 Lévy Processes

Definition 2.2.1. A stochastic process X := {Xt : t ≥ 0} valued in Rd and defined on a
probability space (Ω,F ,P), is called a Lévy process if

(i) it is issued from the origin (i.e. P{X0 = 0} = 1),
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(ii) it has stationary increments (i.e. Xt −Xs is equal in distribution to Xt−s, for 0 ≤ s ≤ t),

(iii) it has independent increments (i.e. Xt −Xs is independent of {Xu : u ≤ s}),

(iv) it is P-almost surely right-continuous (i.e. P{Xt+ := ∃ lims↓tXs = Xt} = 1) with left-
limits (i.e. P{Xt− := ∃ lims↑tXs} = 1) (in short, having cádlág paths).

Examples of a Lévy process include Brownian motion, Poison processes, and compound-
Poisson processes. While a Brownian motion has continuous paths and normally distributed
increments, a Poisson process has discontinuous paths and non-negative increments. This shows
the variety of path types that occur within the class of Lévy processes.

From the definition of a Lévy process, one can easily check that it has the infinite divisi-
bility property, which justifies the definition below.

Definition 2.2.2. For a d-dimensional Lévy process X = (Xt)t≥0, the function

Ψ(θ) := −1

t
logE[eiθ·Xt ] = − logE[eiθ·X1 ], θ ∈ Rd,

is called the characteristic exponent of X.

The characteristic exponent of a Lévy process uniquely describes the path structure of the
process via the following theorem.

Theorem 2.2.1. (Lévy-Khintchine formula for Lévy processes) Suppose that a ∈ Rd, Q is
a d × d Gaussian covariance matrix, and Π is a measure concentrated on Rd\{0} such that∫
Rd(1 ∧ x

2)Π(dx) <∞. From this triple, we define for each θ ∈ Rd

Ψ(θ) = ia · θ +
1

2
θ ·Qθ +

∫
Rd

(1− eiθ·x + iθ · x1(|x|<1))Π(dx). (2.15)

If Ψ is the characteristic exponent of a Lévy process, then it necessarily satisfies (2.15).
Conversely, given (2.15), there exists a probability space (Ω,F ,P), on which a d-dimensional
Lévy process is defined and have Ψ as its characteristic exponent.

Regarding the path structure of a Lévy process, the presence of Q implies the inclusion
of an independent d-dimensional linear Brownian motion with covariance matrix Q, while the
measure Π describes the jump sizes and rates. The condition on Π implies that Π(A) < ∞ for
all Borel set A ∈ Rd such that 0 is in the interior of Ac. The proof of the theorem is discussed
in [12].

2.2.1 Main Properties of a Lévy process

In this section, we will briefly state properties of a Lévy process as connections to other classes
of stochastic processes. Proofs can be found from [12, 9, 2].
Markov property: For the process X, let us denote by F = {Ft : t ≥ 0} the natural filtration,
that is Ft = σ(Xu, u ≤ t), ∀t ≥ 0. Since, in a Lévy process X, the law of Xt+s − Xt is
independent of Ft, for all s, t ≥ 0, then Lévy processes satisfy the Markov property.
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Strong Markov property: Lévy process possesses the strong Markov property which also
could be stated via a stronger statement as in the following theorem. The proof can be found
in [12].

Theorem 2.2.2. Let τ be a stopping time. On {τ <∞}, define the process X̃ = (X̃t, t ≥ 0)

X̃t = Xτ+t −Xτ , t ≥ 0.

Then, on the event {τ < ∞}, the process X̃ is independent of the σ-algebra associated with τ ,
that is Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0}, and has the same law as X. Therefore it is a
Lévy process.

Feller and Hunt properties: Thanks to the shifting property of a Lévy process e.g. Pt[f ](x) =

Ex[f(Xt)] = E[f(x+Xt)], we can show that a Lévy process has the Feller property. It is shown
in general that any Feller process is a Hunt process in the Chapter 2 in [9]. Thus, Lévy process
is a Hunt process with the state space (Rd,B(Rd)).
Time-reversal duality: Since a Lévy process has stationary and independent increments, its
time-reversed process has stationary and independent increments which agree with those of −Y,
which is called a dual process of Y and denoted by Ŷ . More specifically, we have the following
Duality lemma for a Lévy process, see [2].

Lemma 2.2.1. For each fixed t > 0, the time-reversed process (Y(t−s)− − Yt, 0 ≤ s ≤ t) and the
dual process Ŷ = (−Ys, 0 ≤ s ≤ t) have the same law under P.

Duality relationships can also be expressed via the corresponding semigroups (Pt, t ≥ 0)

and (P̂t, t ≥ 0) or q-resolvents U (q) and Û (q) as stated in [2] via the following lemma.

Lemma 2.2.2. Suppose that f and g are non-negative, bounded and measurable functions. Then,

Ex[g(x)f(Xt)] = Ex[f(x)g(X̂t)],

∫
Rd
g(x)Pt[f ](x)dx =

∫
Rd
f(x)P̂t[g](x)dx (2.16)

and for q > 0, ∫
Rd
g(x)U

(q)
t [f ](x)dx =

∫
Rd
f(x)Û

(q)
t [g](x)dx. (2.17)

These duality results are also true when the Lévy process is killed when entering an open
or closed subset D ∈ Rd. Indeed, let (PDt , t ≥ 0) be a semigroup of a killed Lévy process Yt upon
entering D. That means,

PDt [f ](x) = Ex[f(Yt); t < τD] (2.18)

where f is a bounded and measurable function and τD := inf{t > 0 : Yt ∈ D}. Then, the
following result called Hunt’s switching identity is proven in [2].

Lemma 2.2.3. (Hunt’s switching identity) Suppose that f and g are non-negative measurable
functions and D is an open or closed domain. Then,∫

Rd
g(x)PDt [f ](x)dx =

∫
Rd
f(x)P̂Dt [g](x)dx (2.19)

14



and for q > 0, ∫
Rd
g(x)U

(q)
D [f ](x)dx =

∫
Rd
f(x)Û

(q)
D [g](x)dx (2.20)

where (U
(q)
D , q ≥ 0) and (Û

(q)
D , q ≥ 0) are corresponding q-resolvents.

The above duality results are for the time reversal from the deterministic fixed time t and
valid for a Lévy process only.

2.2.2 Notions of reflecting path behaviour

In this section, we will briefly discuss notions that reflect how a Lévy process explores Rd.

Transience and recurrence: A Lévy process X is said to be transient if, for all a > 0,

P
(∫ ∞

0
1(|Xt|<a)dt <∞

)
= 1

and recurrent if, for all a > 0,

P
(∫ ∞

0
1(|Xt|<a)dt =∞

)
= 1

It turns out that a Lévy process is either transient or recurrent as the theorem states below.

Theorem 2.2.3. Let Ψ be a characteristic exponent of a Lévy process X. Then X is transient
if and only if, for some sufficiently small ε > 0,∫

|z|<ε
Re
( 1

Ψ(z)

)
dz <∞, (2.21)

and otherwise X is recurrent.

The proof of the theorem can be found in [12]. Transience and recurrence properties have
also an interpretation on how a Lévy process behaves pathwise.

Theorem 2.2.4. Let X be a Lévy process. Then,

(i) X is transient if and only if
lim
t→∞
|Xt| =∞

almost surely. In other words, the transience property for a Lévy process implies that it
drifts to infinity.

(ii) If X is not a compound Poisson process, then it is recurrent if and only if, for all x ∈ Rd,

lim inf
t→∞
|Xt − x| = 0

almost surely. This means that, if a Lévy process is not a compound Poisson process and is
recurrent, then we can always find a point on the path of X sufficiently close to any fixed
point x ∈ Rd and vice-versa.
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The proof of the theorem is discussed in [12].

Polarity of points: A point y ∈ Rd is said to be

(i) polar if for every x,
Px(Xt = y for some t > 0) = 0, (2.22)

(i) essentially polar if for Lebesgue almost every x,

Px(Xt = y for some t > 0) = 0. (2.23)

Theorem 2.2.5. For dimension d ≥ 2, all points are essentially polar.

It is clear that polar points are essentially polar and the theorem below gives a condition when
we have polarity for essentially polar points.

Definition 2.2.3. For a Lévy process, the q-resolvent kernel is defined as

U (q)(x, dy) =

∫ ∞
0

e−qtPx(Xt ∈ dy)dt, x ∈ Rd. (2.24)

When q = 0, U := U (0) is called the resolvent.

Theorem 2.2.6. If the resolvent kernel is absolutely continuous, then every essentially polar
point is polar.

Although main concern of the thesis is on the d-dimensional stable Lévy process for d ≥ 2,
which will be defined in Section 2.3, we will also use the Lamperti transformation (Section 2.4.1)
where such processes can be expressed via one dimensional Lévy process through a particular
space and time change. Hence, we will briefly state notions reflecting path behaviour of one
dimensional Lévy process.
Notions for a real-valued Lévy process: In order to understand the fluctuations of a d-
dimensional stable Lévy process around the sphere or hyperplane, we need to understand hitting
points, path variation and regularity of the half line for a real-valued Lévy process.

Definition 2.2.4. A real-valued Lévy process X is said to hit a point x ∈ R if

P(Xt = x for some t > 0) > 0.

The following theorem provides a criteria if a Lévy process can hit points. The proof of
the theorem can be found in [2].

Theorem 2.2.7. Suppose that a real-valued Lévy process X is not a compound Poisson process.
Then, X can hit points if and only if∫

R
Re
( 1

1 + Ψ(z)

)
dz <∞. (2.25)
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Path variation: For a real-valued Lévy process X, its Lévy-Khintchine exponent takes the
form

Ψ(z) = iaz +
1

2
σ2z2 +

∫
R

(1− eizx + izx1(|x|<1))Π(dx). (2.26)

To discuss boundary issuance problems for Lévy processes in Chapter 4, we need notions of
bounded variation and regularity of points.

Definition 2.2.5. A stochastic process X is said to have a bounded variation if, for all n ∈ N
and division G : 0 = t0 < t1 < ...tn

sup
n,G

Σn
i=1|Xti+1 −Xti | <∞. (2.27)

We will now state a theorem that reveals a path of a Lévy process has bounded variation
based on the Lévy-Khintchine exponent given in (2.26). The proof of the theorem can be found
in [12].

Theorem 2.2.8. A real-valued Lévy process with Lévy-Khintchine exponent (2.26) corresponding
to the triple (a, σ,Π) has paths of bounded variation if and only if

σ = 0 and
∫
R

(1 ∧ |x|)Π(dx) <∞. (2.28)

Finiteness of the integral in (2.28) also allows for the Lévy-Khintchine exponent of any
such bounded variation process to be rewritten in the form

Ψ(z) = −ibz +

∫
R

(1− eizx)Π(dx), (2.29)

where b ∈ R is called the drift coefficient and relates to a and Π via

b = −
(
a+

∫
(|x|<1)

xΠ(dx)
)
. (2.30)

Thanks to the representation (2.29), it is easy to detect the presence of a drift term for a bounded
variation Lévy process as

lim
|z|→∞

Ψ(z)

z
= −ib. (2.31)

Regularity of the half line: Finally, we would like to discuss when a real-valued Lévy process
immediately enters to the upper or the lower half line. Let τ+

0 = inf{t > 0: Xt > 0} for a Lévy
process X. Due to the Blumenthal 0 − 1 law, the probability P(τ+

0 = 0) is zero or one. Based
on this fact, we can give the following definition.

Definition 2.2.6. For a real-valued Lévy process X, we say that 0 is

(i) regular for (0,∞), if P(τ+
0 = 0) = 1,

(ii) irregular for (0,∞), if P(τ+
0 = 0) = 0, and
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(iii) regular for (−∞, 0), if −X is regular for the upper half line.

The regularity property helps to analyse issuance from the boundary problems [16].

Theorem 2.2.9. For a real-valued Lévy process X, the point 0 is regular for (0,∞) if and only
if one of the following three situations occurs:

(i) X is a process of unbounded variation,

(ii) X is a process of bounded variation and b > 0 where b is the drift in the representation
(2.29),

(iii) X is a process of bounded variation, b = 0, and∫ 1

0

xΠ(dx)∫ x
0 Π(−∞,−y)dy

=∞. (2.32)

We now shift to the main section of the introduction where we define d-dimensional stable
Lévy processes and we study their path behaviour around the unit sphere or an hyperplane.

2.3 Isotropic Stable Lévy Processes

In this section, we will present isotropic stable Lévy processes. We will also state their main
properties as well as fluctuation results regarding the unit sphere or an hyperplane.

Definition 2.3.1. A process X = (Xt, t ≥ 0) with probabilities {Px, x ∈ Rd} is called a d-
dimensional stable process if it is a Lévy process and if there exists a stability index α such that,
for c > 0, and x ∈ Rd \ {0},

under Px, the law of (cXc−αt, t ≥ 0) is equal to the law of (Xt, t ≥ 0) under Pcx.

As a Lévy process, a stable process must have the infinite divisibility property. It turns
out that α needs to be in (0, 2] (see Section 1.2.6 in [15]). The case α = 2 corresponds to the
d-dimensional Brownian motion, which has a continuous path. The processes we construct in
this thesis are more interesting in the jump setting and thus we restrict ourselves to the pure
jump setting of α ∈ (0, 2).

Although the distribution of any 2-stable Lévy process is invariant under any orthogonal
transformation, this is not necessarily the case when α ∈ (0, 2). Hence, we give the following
definition for an isotropic stable Lévy process.

Definition 2.3.2. X is called an isotropic stable process if, for all orthogonal transformations
B : Rd 7→ Rd and x ∈ Rd,

under Px, the law of (BXt, t ≥ 0) is equal to the law of (Xt, t ≥ 0) under PBx.
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As a Lévy process, an isotropic stable process of index (0, 2) has a characteristic triplet
(0, 0,Π) [15], where the jump measure Π satisfies

Π(B) = C

∫
B

1

|y|α+d
dy, B ⊂ B(Rd),

where C could be any constant. For normalisation purposes, the coefficient C is usually chosen
as

C :=
2αΓ((d+ α)/2)

πd/2|Γ(−α/2)|

to give normalised characteristic exponent Ψ. Equivalently, this means that X = {Xt : t ≥ 0}
is an isotropic α-stable process in Rd with characteristic exponent

Ψ(θ) = − logE(eiθXt) = |θ|α, θ ∈ R.

From now on, we restrict our work to the isotropic setting and we use the term stable
process to mean isotropic stable Lévy process for short.

2.3.1 Path behaviour

To understand how a stable process explores Rd, let us first focus on properties of transience,
recurrence, and polarity.

Theorem 2.3.1. For dimension d ≥ 2, a stable process is transient if and only if α < d.

Indeed, for small ε using polar coordinates, we have∫ ε

−ε

1

|z|α
dz = Cd

∫ ε

0

1

rα−d+1
dr

where Cd is a positive constant that only depends on d. Then, due to the integral test (2.21),
we have that it is transient if and only if α < d.

Since throughout the thesis, we will work only on the cases α ∈ (0, 2) and d ≥ 2, we
always have the transience property, which, in turn, implies the existence of a unique resolvent
measure. Recall that, for a Lévy process, the q-resolvent measure is defined as

U (q)(dx) =

∫ ∞
0

e−qtP(Xt ∈ dx)dt, x ∈ Rd. (2.33)

When q = 0, U := U (0) is called the resolvent.

Theorem 2.3.2. When X is a transient stable process, its resolvent exists and is absolutely
continuous with respect to the Lebesque measure with resolvent density given by

u(x) = 2−απ−d/2
Γ((d− α)/2)

Γ(α/2)
|x|α−d. (2.34)
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The proof of the theorem can be found from [15]. Thanks to Theorem 2.3.2 together with
Theorems 2.2.5 and 2.2.6, we have polarity for all points. This means any stable process in
higher dimensions (e.g. when d ≥ 2) cannot hit any points with positive probabilities.

2.3.2 Spatial fluctuations and the unit sphere

In this subsection, we are interested in the existing fluctuation identities, which explain how a
stable process behaves in relation to a sphere centered around the origin. Results relating to
other spheres can be obtained by a shifted stable process due to the shifting property. Let us
denote Sd−1(0, a) = {x ∈ Rd : |x| = a} for some a > 0.

Hitting of a sphere: Let τ�a = inf{t > 0: |Xt| = a} and σa(dz) be the surface measure on
Sd−1(0, a) normalized to have unit total mass. In [14], the hitting probability and the hitting
distribution of the stable process is characterised and the results are given in the theorem below.

Theorem 2.3.3. For any a > 0 and any stable process X issued from x ∈ Rd \ {0}, we have
the following results:

(i) If α ∈ (0, 1), X cannot hit the sphere Sd−1(0, a) for all |x| 6= a, e.g. Px(τ�a =∞) = 1.

(i) If α ∈ (1, 2), X can hit the sphere Sd−1(0, a) with the probability of

Px(τ�a <∞) =
Γ(α+d

2 − 1)Γ(α2 )

Γ(d2)Γ(α− 1)

2F1

(
d−α

2 , 1− α
2 ,

d
2 ; |x|

2

a2

)
, a > |x|,( |x|

a

)α−d
2F1

(
d−α

2 , 1− α
2 ,

d
2 ; a2

|x|2
)
, a ≤ |x|,

(2.35)

and its hitting distribution is given by

Px(Xτ�a
∈ dy) =

Γ(α+d
2 − 1)Γ(α2 )

Γ(d2)Γ(α− 1)

||x|2 − a2|α−1ad−α

|x− y|α+d−2
σa(dy)1(|x|6=a) + σx(dy)1(|x|=a).

(2.36)

The proof of the theorem can be found in [14].
First entrance and exit of a ball: Now, let us denote τ⊕a = inf{t > 0: |Xt| < a} and
τ	a = inf{t > 0: |Xt| > a} for some a > 0. Since a stable process is transient when d ≥ 2, we
have Px(τ	a <∞) = 1 for any |x| < a, while

Px(τ⊕a =∞) =
Γ(d/2)

Γ((d− α)/2)Γ(α/2)

∫ (|x|2/a2)−1

0
(u+ 1)−d/2uα/2−1du (2.37)

for any |x| > a. To provide the hitting distribution, let us first denote the function

ga(x, y) = π−(d/2+1)Γ(d/2) sin(πα/2)
|a2 − |x|2|α/2

|a2 − |y|2|α/2
|x− y|−d

for any x, y ∈ Rd \ Sd−1(0, a) and state the following theorem which is proven in [14].

Theorem 2.3.4. When |x| < a, we have Px(Xτ	a
∈ dy) = ga(x, y)dy, for any |y| > a, and when

|x| > a, we have Px(Xτ⊕a
∈ dy, τ⊕a <∞) = ga(x, y)dy, for any |y| ≤ a.
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Killed stable process upon entering/exiting a ball: Let us describe some additional
identities which will be useful for our dicsussion. These identities pertains to how stable process
explores Rd regarding a sphere. With the notions of Bd := {x ∈ Rd : |x| < 1} and τ⊕1 := inf{t >
0: Xt ∈ Bd}, let XBd := (Xt, t ≤ τ⊕1 ) be the process Xt killed upon entering Bd. The law of XBd

is characterized in [5]. In particular, for any |x| > 1 and |y| > 1, let Rx(dy) be the resolvent of
the killed process defined as

Rx(dy) =

∫ ∞
0

dtPx(Xt ∈ dy, t < τ⊕1 ) = Ex
[∫ ∞

0
dt1{t<τ⊕1 ,Xt∈dy}

]
. (2.38)

According to Theorem III.3.9 in [14], its potential density rx(y) defined by Rx(dy) = rx(y)dy

exists and is given by

rx(y) = 2−απ−d/2
Γ(d/2)

Γ(α/2)2
|x− y|(α−d)

∫ ζ+(x,y)

0
u
α
2
−1(u+ 1)−

d
2 du (2.39)

with ζ+(x, y) = ||x|2 − 1|||y|2 − 1|/|x − y|2 for any x, y ∈ Bcd. This identity is also true when
|x| < 1 and Xt is killed upon entering Bcd for any x, y ∈ Bd.

Point of closest/furthest reach from the origin: For the d-dimensional isotropic stable
process X with d ≥ 2, the facts that X is transient, any sphere of radius r > 0 is regular for both
its interior and exterior for X, and X has càdlàg paths ensure that the process XG(t), where

G(t) := sup{s ≤ t : |Xs| = inf
u≤s
|Xu|}, t ≥ 0,

is well defined as the point of closest reach to the origin up to time t in the sense that XG(t)− =

XG(t) and |XG(t)| = inf0≤s≤t |X(s)|. Moreover, since the process (G(t), t ≥ 0) is monotone
increasing, we can define m := limt→∞G(t) almost surely. Then, due to the transient property
of X, almost surely, m = G(t) for all t sufficiently large and

|Xm| = inf
s≥0
|X(s)|.

In Theorem 1.1 in [16], the law of Xm is given by

Px(Xm ∈ dz) = cα,d
(|x|2 − |z|2)α/2

|z|α
|x− z|−ddz, |z| < |x|

where cα,d is a suitable constant that only depends on α and d.

On the other hand, define G(t) = sup{s ≤ t : |Xs| = supu≤s |Xu|}, t ≥ 0, and write

G(τ	1 −) = sup{s < τ	1 : |Xs| = sup
u≤s
|Xu|}, t ≥ 0

for the instant of furthest reach from the origin immediately before first exit from Bd. From the
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definition, it is clear that Xm = XG(τ	1 −). Then, due to Corollary 1.3(ii) in [16],

Px(XG(τ	1 −) ∈ dz,Xτ	1
∈ dv) = cα,d

(|z|2 − |x|2)α/2

(|v|2 − |z|2)α/2|z − v|d|z − x|d
dzdv,

for |x| < |z| < 1 and |v| > 1.

Riesz-Bogdan-Z̀ak transform: Finally, let Kx = x
|x|2 , x ∈ Rd be the transformation in

Rd that converts the interior of Bd to its exterior and vice versa while Sd−1 := {x ∈ Rd : |x| = 1}
is mapped to itself through this transformation. Let us define a change of measure for an
isotropic d-dimensional stable process (X,Px), x ∈ Rd\{0} given by

dP◦x
dPx

∣∣∣
Ft

=
|Xt|α−d

|x|α−d
, t ≥ 0. (2.40)

Then, the following theorem in [6] is used to convert the results derived for the stable process
outside of the unit ball to the one inside of the ball and vice versa.

Theorem 2.3.5. (d-dimensional Riesz-Bogdan-Z̀ak transform, d ≥ 2) Suppose that X is a
d-dimensional isotropic stable procees with d ≥ 2. Define

η(t) = inf

{
s > 0:

∫ s

0
|Xu|−2αdu > t

}
, t ≥ 0.

Then, for all x ∈ Rd \ {0}, (KXη(t), t ≥ 0) under Px is equal in law to (Xt, t ≥ 0) under P◦Kx.

As stable process is transient when d ≥ 2, |X| tends to infinity as t → ∞. Then, due to
the above theorem, the converted process KX tends to 0. That is natural since the change of
measure 2.40 is proven to be the measure to condition the stable process to hit the origin [15].

2.4 Self-similar Markov processes

Recall that every Feller process has a modification with paths which are almost surely right-
continuous with left limits and thus it has quasi-left continuous paths, that is paths which are
left-continuous at increasing sequence of stopping times. Such Feller process is said to be a
regular Feller process.

Definition 2.4.1. A [0,∞)-valued regular Feller process Z = (Zt, t ≥ 0) is called a positive
self-similar Markov process (pssMp) with the index α, if there exists a constant α > 0 such that,
for any x > 0 and c > 0,

the law of (cZc−αt, t ≥ 0) under Px is equal to the law of (Zt, t ≥ 0) under Pcx,

(2.41)
where Px is the law of Z when it is issued from x.
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2.4.1 The Lamperti transform

For a Lévy process ξ, define the integrated exponential process I := (It, t ≥ 0) via

It =

∫ t

0
eαξtds, t ≥ 0. (2.42)

Since the process I is increasing, we can define a time change to ξ by using I as

ϕ(t) = inf{s > 0: Is > t} t ≥ 0. (2.43)

Then, the following connection between the class of exponentially killed Lévy process and positive
self-similar Markov process up to an absorption time ζ to the origin, that is with the lifetime
ζ = inf{t > 0: Zt = 0}, is proved by Lamperti in [17].

Theorem 2.4.1. (The Lamperti transform) For a fixed α > 0, we have

(i) If (Z,Px), x > 0, is a positive self-similar Markov process with index of self-similarity α,
then up to absorption at the origin, it can be represented as

Zt1(t<ζ) = eξϕ(t) , t ≥ 0, (2.44)

such that ξo = log x and either

(1) Px(ζ =∞) = 1 for all x > 0, in which case, ξ is a Lévy process satisfying lim supt↑∞ ξt =

∞,

(2) Px(ζ <∞ and Zζ− = 0) = 1 for all x > 0, in which case, ξ is a Lévy process satisfying
lim supt↑∞ ξt = −∞, or

(3) Px(ζ < ∞ and Zζ− > 0) = 1 for all x > 0, in which case, ξ is a Lévy process killed
at an indpendent and exponentially distributed random time.

In all cases, we may have ζ = I∞.

(ii) Conversely, for each x > 0, suppose that ξ is a given (killed) Lévy process issued from
log x. Define

Zt = eξϕ(t)1(t<I∞), t ≥ 0. (2.45)

Then, Z defines a positive self-similar Markov process, with the self-similarity index α, up
to its absorption time ζ = I∞ which satisfies Z0 = x.

2.4.2 MAPs and the Lamperti-Kiu transform

In the previous section, a representation of the positive self-similar process is given through
the Lamperti transform. Now, we summarise the analogous result regarding the Rd-valued
self-similar Markov processes.
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Definition 2.4.2. A regular Feller process Z = (Zt, t ≥ 0) on Rd \ {0}, with the cemetery state
at the origin, is called a self-similar Markov process (ssMp) with the index α, if there exists a
constant α > 0 such that, for any x ∈ Rd \ {0} and c > 0,

the law of (cZc−αt, t ≥ 0) under Px is Pcx, (2.46)

where Px is the law of Z when it is issued from x.

Now, we would like to decompose any Rd-valued self-similar Markov process into its radial
part and angular part in the polar coordination and represent the radial part in a way similar
to the Lamperti transform. To do so, we need the concept of a Markov additive process defined
below. Let E be a locally compact, complete, and separable metric space with cemetery state δ.

Definition 2.4.3. A regular Feller process (ξ,Θ) = ((ξt,Θt), t ≥ 0) defined on R×E with initial
probabilities Px,θ, for each x ∈ R, θ ∈ E, is called a Markov additive process (MAP), if for every
bounded measurable function f : R× E → R, t, s ≥ 0, and (x, θ) ∈ R× E, on {Θt = φ, t < ζ},

Ex,θ[f(ξt+s − ξt,Θt+s)1(t+s<ζ)|Gt] = E0,φ[f(ξs,Θs)1(s<ζ)], (2.47)

where ζ = inf{t > 0: Θt = δ}, ξζ = −∞, and (Gt, t ≥ 0) is the filtration generated by the natural
enlargement of the MAP .

In the above definition, ξ is called the ordinate and Θ is called the modulator. Moreover,
it is possible to show that Θ alone is a regular Feller process. In the scope of the thesis, we
will choose E = Sd−1 := {x ∈ Rd : |x| = 1} to represent Θ as an angular part and ξ as a radial
part of the polar decomposition of the Rd-valued self-similar Markov process to make use of the
Lamperti-Kiu transform due to below theorem.

Theorem 2.4.2. (Generalised Lamperti-Kiu transform) The process Z is a ssMp with index
α > 0 if and only if there exists a killed MAP, (ξ,Θ) on R× Sd−1 such that

Zt = eξϕ(t)Θϕ(t), t ≤ Iζ

where
ϕ(t) = inf{s > 0:

∫ s

0
eαξudu > t}, t ≤ Iζ ,

and Iζ =
∫ ζ
o e

αξsds is the lifetime of Z until absorption at the origin.

In the same way as we define isotropic property for a stable process, a self-similar Markov
process Z = (Zt, t ≥ 0) is called isotropic if the law of (U−1Z,Px) is equal to that of (Z,PU−1x)

for every orthogonal d-dimensional matrix U and x ∈ Rd. For the isotropic self-similar Markov
process, we have more specific results given below.

Theorem 2.4.3. Let Z = (Zt, t ≥ 0) be a self-similar Markov process with underlying MAP
(ξ,Θ) through Lamperti-Kiu representation. Then,
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(i) Z is an isotropic ssMp if and only if ((ξ, U−1Θ),Px,θ) is equal in law to ((ξ,Θ),Px,U−1θ),
that means Θ is also an isotropic Markov process;

(ii) If Z is an isotropic ssMp, then (|Z|, t ≥ 0), where | · | denotes the Euclidian norm, is equal
in law to a positive self-similar Markov process, thus ξ is a Lévy process.

The proof of the above results are given in Chapter 11.5 of [15].

Example 2.4.1. Radial part of an isotropic stable process: For an isotropic stable process
X with an index α ∈ (0, 2), denote by Rt its radial part, i. e. Rt = |Xt|, t ≥ 0. We know that
a d-dimensional stable process X never hits a point, thus never hits the origin, when d > α.
Thus Rt never hits 0. Then, the above theorem states that R is a positive self-similar Markov
process and the underlying ξ through the Lamperti transformation is a Lévy process. Moreover,
it is shown in [15] that the underlying Lévy process ξ belongs to the class of hypergeometric Lévy
processes with the characteristic exponent given as

Ψξ(z) = 2α
Γ(1

2)(−iz + α)

Γ(−1
2 iz)

Γ(1
2)(iz + d)

Γ(1
2(iz + d− α))

, z ∈ R. (2.48)

Since X is transient when d > α, R is also transient making ξ drifts towards ∞. Moreover, ξ is
regular for (−∞, 0) and (0,∞).

2.5 Excursions for Markov processes

2.5.1 Excursions away from a point

For any Markov process X = (Xt, t ≥ 0) and any fixed point b ∈ Rd, we would like to decompose
the path of X in terms of the random times C := {t|Xt = b} and the resulting pieces of path will
be defined over the complement of the closure C. These pieces of path are called "excursions
away from b". To give a precise definition, we need to understand on additive functionals and
local times of a Markov processes.
Additive functionals: A family of functions {At, t ≥ 0} : Ω → [0,∞] is called an additive
functional of X if

(a) t → At(w) is non-decreasing, right continuous and A0(w) = 0 except for w ∈ Λ where Λ

is a negligible set, that is Px(Λ) = 0 for all measure Px,

(b) for each t, At is measurable in Ft, and

(c) for each t and s, At+s = At +As · θt, where θt is a shift operator, almost surely for all Px.

An example of an additive functional can be constructed by setting

At(w) =

∫ t

0
f(Xs(w))ds (2.49)
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for a positive, bounded, measurable function f . It is also known that continuous additive
functional has a strong additive property, that is, if T is a stopping time then almost surely

Lt+T = LT + Lt · θT . (2.50)

A useful feature of additive functionals could be explained by the following theorem. Recall
that, for a fixed λ > 0, a positive, measurable function ϕ is said to be λ-excessive for the process
X, if

e−λtPtϕ ≤ ϕ (2.51)

and
e−λtPtϕ→ ϕ as t→ 0. (2.52)

Moreover, a λ-excessive function is said to be uniformly λ-excessive if the convergence in (2.52)
is uniform. The theorem below gives connection between excessive functions and additive func-
tionals. Its proof can be found in [4].

Theorem 2.5.1. [4]. For a fixed λ > 0, if a bounded uniformly λ-excessive function f satisfies
e−λtPtf → 0 as t→∞, then there exists an additive functional L, such that f is the λ−potential
of L, that is

f(x) = Px
∫ ∞

0
e−λtdLt. (2.53)

Moreover, for all w except that is in negligible sets for all Px, Lt(w) is continuous and satisfies
Lt+s(w) = Lt(w) + Ls(θtw) for all s and t, as well as such additive functional L is unique for
all t.

Local time: Let σ be the time of hitting the point {b}, that is σ = inf{t > 0: Xt = b}. To
define excursions away from the point, we consider only a point regular itself, hence we assume
that {b} is regular itself, that is Pb(σ = 0) = 1. Thanks to the previous theorem, by choosing
the λ-excessive function f(x) = Exe−λσ and λ = 1, we can find a unique continuous additive
functional {Lt; t ≥ 0} such that

Exe−σ = Ex
∫ ∞

0
e−tdLt (2.54)

and such {Lt; t ≥ 0} is called the local time at {b} for the process X.

In [4], the justification why this particular continuous additive functional L is called "local
time at {b}" is given based on the fact that

LR ⊂ {t|Xt = b} ⊂ LI , (2.55)

where LI and LR are respectively the set of points of increase and of right increase defined as

LI = LI(w) = {t|Lt−ε(w) < Lt+ε(w) for all ε > 0},
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and
LR = LR(w) = {t|Lt(w) < Lt+ε(w) for all ε > 0}.

It is also shown that the difference of the above two sets is countable and dLt(w) puts no mass
at points. Thus, the measure dLt(w) puts all its mass on LI(w) hence on LR(w). Therefore, for
any positive measurable function f , the identity∫ t

0
f(Xs)dLs = f(b)Lt (2.56)

holds for all t almost surely. These facts show that L = (Lt; t ≥ 0) grows exactly on {t|Xt = b}.
Note that if L is a local time, then kL is also a local time for any constant k > 0. Hence, local
times can be defined uniquely up to a multiplicative constant.

Inverse local time: For a local time L = (Lt; t ≥ 0), its right continuous inverse L−1 =

(L−1(t), t ≥ 0) is defined as

L−1(t) := inf{s : L(s) > t} t ≥ 0. (2.57)

Note that, in line with the above definition, we have

L−1(t−) := inf{s : L(s) ≥ t} = lim
s→t−

L−1(s) t > 0. (2.58)

In Proposition 7, Chapter 4 of [2], the below statement regarding inverse local time is proven.

(i) For every t ≥ 0, both L−1(t) and L−1(t−) are stopping times,

(ii) The process L−1 is increasing, right-continuous and adapted to the filtration FL−1
t
,

(iii) For all t > 0, we have

L−1(L(t)) = inf{L−1(u) : L−1(u) > t} = inf{s > t : Xs = b}

and
L−1(L(t)−) = sup{L−1(u) : L−1(u) < t} = sup{s > t : Xs = b},

Note that L−1 is a Lévy process and it has non-decreasing path. Such a Lévy process is called
a subordinator.

Excursion measure: Since the point b is regular, the complement of C, that is [0,∞) \ C,
will be a countable union of disjoint open intervals which is called an excursion intervals. Let
G = G(w) denote the strictly positive left ends of each of such excursion interval. Then, it is
shown in [4] that there exist an excursion measure P̂ associated with the process Xt killed at
time σ and with the local time L, such that the excursion formula

Ex
∑
s∈G

Zsf · θs = Ex
∫ ∞

0
ZtP̂ (f)dLt (2.59)
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holds for all x, all positive previsible Z and all positive measurable f .

2.5.2 Excursions away from a set

In this section, we briefly state the notion of an excursion away from a set in an analogue way
to the notion of an excursion away from a set. The concept of an excursion away from a set
relies on the particular properties of additive functionals which will be stated below.
Regular λ-potential: For a continuous additive functional {At, t ≥ 0} and a positive λ, let its
λ-potential

Ex
∫ ∞

0
e−λtdAt = f(x)

be finite for all x ∈ E. Then, it is clear that f is λ-excessive and for any increasing sequence of
stopping times Tn with the limit T , we have

P λTnf(x) := Ex
∫ ∞
Tn

e−λtdAt → P λT f(x), n→∞.

Such λ-potential is called a regular λ-potential and the theorem below provides possibility to
define an excursion away from a set for any Markov process.

Theorem 2.5.2. For a regular λ-potential function f , there exists a unique continuous additive
functional A such that

f(x) = Ex
∫ ∞

0
e−λtdAt, x ∈ E. (2.60)

The proof of the theorem is given in [4].
Local time on a set: Let B ⊂ E be a closed subset in E and σB := inf{t > 0|Xt ∈ B}. Also,
let every point of B is regular for B, that is

Px{σB = 0} = 1

for all x ∈ B. Then, the function
f(x) = Exe−σB (2.61)

is 1-excessive and finite, thus a regular 1-potential. Hence, due to Theorem 2.5.2, there exists a
continuous additive functional {LB(t), t ≥ 0} such that

Exe−σB = Ex
∫ ∞

0
e−tdLB(t). (2.62)

In a similar way for the case of a local time on a point, we can see that LB grows exactly at
{t|Xt ∈ B}. Hence, LB is called a local time on B.
Excursions measure: Moreover, let CB := {t|Xt(w) ∈ B} and GB := GB(w) is the strictly
positive left ends of the open intervals making up the complement of CB. Then, as was in the
previous section, there exists a continuous additive functional {Lt, t ≥ 0} which grows on CB
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and a family of excursion measures {P̂x, x ∈ B} associated with the process Xt killed at time
σB and with the local time L, such that the excursion formula

Ex
∑
s∈GB

Zsf · θs = Ex
∫ ∞

0
ZtP̂Xt(f)dLt (2.63)

holds for all x, all positive previsible Z and all positive measurable f . The proof and the detailed
discussion is given in [4]. The pair (P̂ , L) is also called as the an exit system.

2.5.3 Excursions for a Lévy process

Assume a Lévy process Y nor −Y is not a subordinator and not killed. Define the running
maximum and running minimum processes as

Y t = sup
s≤t

Ys and Y t = inf
s≤t

Ys

respectively. Then, both of the processes Y − Y and Y − Y are strong Markov processes [12].
Local times: It is shown in [2] that there exists a random measure, called as a local time at
maximum, L on [0,∞) with the following properties:

(i) a continuous, non-decreasing, [0,∞)-valued, and adapted process,

(ii) its support agrees with the closure of the set {t ≥ 0: Yt = Y t},

(iii) if T is any stopping time such that YT = Y T on {T < ∞}, then ((YT+t − YT , Y T+t −
YT , LT+t − LT ), t ≥ 0) is independent of FT on {T < ∞} and has the same law as
((Yt, Y t − Yt, Lt), t ≥ 0) under P.

Similarly, there exists a local time at minimum, if we use the above findings to the dual process
−Y. We will denote it as L̂.
Excursions: As the processes L and L̂ are also a local times at 0 for the reflected processes
Y − Y and Y − Y correspondingly, their inverse (L−1

t , t ≥ 0) and (L̂−1
t , t ≥ 0) are subordinators

and killed when L∞ <∞ or L̂∞ <∞. Moreover, for the countable set of times {t > 0 : ∆−1
t :=

L−1
t − L

−1
t− > 0}, the excursion of Y from its maximum can be identified as

εt(s) = YL−1
t−+s − YL−1

t−
, 0 ≤ s ≤ ∆L−1

t (2.64)

which has right-continuous paths with left limits and strictly negative on (0, ζ), where ζ is its
path lifetime. From the definition, it is clear that ε(ζ) ≥ 0 when ζ < ∞. Hence, the lifetime ζ
can also be defined as ζ := inf{t > 0: ε(t) > 0}.

The excursions (εt, t < L∞) form a stopped Poisson point process on [0,∞)×U(R), where
U(R) is the space of paths of right-continuous with left limits and strictly negative-valued on
(0, ζ), and with the intensity measure dt × dn. The excursion of Y from its minimum can be
defined in a similar way using L̂, the local time at minimum.
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The Ascending and Descending Ladder Processes: Moreover, we can define

Ht =

YL−1
t
, t < L∞

∞, t = L∞
(2.65)

and the range of the process H agrees with the range of Y . Similarly,

Ĥt =

YL̂−1
t
, t < L̂∞

∞, t = L̂∞
(2.66)

and the range of the process Ĥ agrees with the range of Y . Both of the processes H and Ĥ are
subordinators and jumps at the end points of each excursion intervals. Then, for example, the
Lévy measure of H is given by n(ε(ζ) ∈ dx) for any x > 0. The processes H and Ĥ are called as
the ascending ladder height process and the descending ladder height process, correspondingly.
Wiener-Hopf Factorisation: If we denote the Laplace exponents of H and Ĥ by k and k̂,
correspondingly, that is

k(λ) =
1

t
logE[e−λHt ] and k̂(λ) =

1

t
logE[e−λĤt ] (2.67)

for any λ, t ≥ 0, we have the following result called as a Wiener-Hopf factorisation.

Theorem 2.5.3. Let Ψ is the characteristic exponent of a Lévy process Y , k and k̂ are the
Laplace exponents of the ascending and descending ladder height processes for Y . Then, for any
z ∈ R, we have

Ψ(z) = k(−iz)k̂(iz). (2.68)

2.5.4 Radial excursion theory

Based on the results above for the excursions of real-valued Lévy processes and the Lamperti-Kiu
representation of self-similar Markov processes in Section 2.4.2, Kyprianou et al [16] introduced
Radial Excursion theory for the stable Lévy processes which will be explained in Chapter 4.
The main idea of the Radial Excursion theory is to represent d-dimensional stable Lévy process
via a MAP consisting of the polar decomposition where its modular part can be represented
by a Lévy process through Lamperti-Kiu transform. The Radial Excursion theory serves main
tool in our analysis to extend conditioned stable processes to be issued from the boundary in
Chapter 4.

2.6 Time reversal duality: Hunt-Nagasawa duality

We are interested in the time-reversal from the first time when the stable process hits some
open or closed subset in Rd. Thus, we would like to briefly summarise time-reversal from
the particular case of a random time for the general class of temporally homogeneous Markov
processes, introduced by Nagasawa in [18].
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2.6.1 Temporally homogeneous Markov processes

Let E be a locally compact metric space and B denote the Borel field of E. Let {∂} be a cemetery
state and E∗ = E ∪ {∂}. Define the space of mappings W := {w : [0,∞]→ E∗} satisfying:

(w1) There exists a killing time ζ(w) ∈ [0,∞] such that w(t) ∈ E for t < ζ(w) and w(t) = ∂ for
t ≥ ζ(w),

(w2) w(t) is a càdlàg function in [0, ζ(w)).

Let Xt(w) = w(t) be the coordinate mapping. The shifted path (wt : t ≥ 0) of w is defined
by Xs(wt) = Xt+s(w) for any s ≥ 0. Let N be the σ-field of W generated by {{Xs ∈ A}, s ≥
0, A ∈ B}. Put Wt = {w : w ∈ W, ζ(w) > t}(t ≥ 0), that is the set of all trajectories survived
up to time t, and Nt = σ({Xs ∈ A}; s ∈ [0, t], A ∈ B) be the σ-field of Wt generated by
{{Xs ∈ A}, s ∈ [0, t], A ∈ B},

Definition 2.6.1. Let {Pa; a ∈ E} be a system of a probability measures on (W,N ) satisfying:

(p1) For every t ≥ 0 and A ∈ B, the mapping a→ Pa[Xt ∈ A] is B-measurable;

(p2) Pa[X0 = a] = 1 for each a ∈ E;

(p3) Pa[Xt+s ∈ A|Nt] = PXt [Xs ∈ A], Pa-almost everywhere on Wt for all t, s ≥ 0, a ∈
E,A ∈ B.

Then, a system X = (Xt, ζ,Nt,Pa) is said to be a temporally homogeneous Markov process.

Let X = (Xt, ζ,Nt,Pa) be a temporally homogeneous Markov process. For a measure ν
on (E,B), we set

Pν [B] =

∫
E
ν(da)Pa[B], B ∈ N .

Let N = ∩νN (Pν) where N (Pν) is the completion of N by Pν , that is a σ-algebra generated
by N that contains all the Pν-null sets. (ν varies over all probability measures on (E,B)).
Similarly, let Nt = ∩νNt(Pν) where Nt(Pν) is the completion of Nt by Pν .

Let ζ ′(w) : W → [0,∞] be an N -measurable function on W with values [0,∞] and Zt(w)

be defined for w ∈ W0 ⊂ W and t ∈ [0, ζ
′
(w)] with values in E and put W ′

t = {ζ ′ > t} ∩W0

for t ≥ 0, that is the set of trajectories in W0 and that haven’t died before time t. Let Mt =

σ({Zs ∈ A, ζ ′ > t};A ∈ B, x ∈ [0, t]) andM be a σ-field on W0 containing allMt, t ≥ 0.

Definition 2.6.2. Let P be a measure on (W0,M), which is σ-finite on (W
′
t ,Mt) for every

t ≥ 0. A system (Zt, ζ
′
,Mt,P), for brevity (Zt,P), is said to have temporally homogeneous

Markov property with a transition probability P (t, a, A), if, for every compact set A,

P[Zt ∈ A|Ms] = P[Zt ∈ A|Zs] = P (t− s, Zs, A), P− a.e. on W
′
s, 0 ≤ s < t.

Further, if Z0 is defined and
P[Zo ∈ A] = µ(A).

Then a system is said to have the initial measure µ.
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2.6.2 Time reversal of the temporally homogeneous Markov process

Now, we give definitions of particular types of random times, called an L-time and an almost
L-time. Then, we state Nagasawa’s time reversal duality concepts from such L-times.

Definition 2.6.3. A function τ(w) : W → {−∞} ∪ [0,∞] is called a random time of type L
(briefly, L-time) if it has the properties:

(L1) τ(w) is N -measurable and τ(w) ≤ ζ(w),

(L2) {s < τ(w)− t <∞} = {s < τ(wt) <∞}, for any t, s ≥ 0.

Also, τ is said to be an almost L-time if it satisfies (L1) and, instead of (L2),

(L
′
2) {s < τ(w)− t <∞} = {s < τ(wt) <∞}, Pa-a.e for any t, s ≥ 0.

In [18], it was shown that the killing time ζ(w) and the last exit time from an open set
D ⊂ E are L-times.

Definition 2.6.4. Let τ be an almost L-time and W0 = {w : 0 < τ(w) <∞}. Set, for w ∈W0,

Zt(w) =

Xτ(w)−t−, 0 < t < τ(w),

∂, t ≥ τ(w),

(if there exists Xτ−, we permit t = 0). The process (Zt,Pν) defined on the space (W0,N|w0) is
said to be the reversed process of (Xt,Pν) from an almost L-time τ, where ν is a σ-finite measure
on (E,B).

Let B(E),C(E), and C0(E) be the spaces of bounded B-measurable functions, bounded
continuous functions, and continuous functions with compact supports, respectively. For any
γ > 0, define

Gγ(a,A) = Ea
[ ∫ ∞

0
e−γt1{Xt∈A}dt

]
.

In [18], it was shown that, under the following conditions, the reversed process (Zt,Pν) is a
temporally homogeneous Markov process with a transition probability.

A.1 Assume that G0(a, ·) is σ-finite. For a σ-finite measure ν, put

η(A) =

∫
E
ν(da)G0(a,A), (2.69)

for A ∈ B, then there exists a transition probability P̂ (t, a, A) such that∫
Ttf(a)g(a)η(da) =

∫
f(a)T̂tg(a)η(da) (2.70)

for every f, g ∈ B0(E), where Ttf(a) = Ea[f(Xt)] and T̂tf(a) =
∫
P̂ (t, a, db)f(b).

A.2 ν is a σ-finite measure on (E,B) satisfying

Pν [Zt ∈ K] <∞, t > 0 (2.71)
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and ∫ ∞
0

e−γtdtPν [Zt ∈ K] <∞, γ > 0 (2.72)

for each compact K.

A.3. Putting

Ĝγf(a) =

∫ ∞
0

e−γtdtT̂tf(a), γ > 0, (2.73)

for any f ∈ C0(E),

(i) T̂tf(a) is right continuous in t, and

(ii) Ĝγf(Zt) is right continuous in t,Pa-a.e. for any γ > 0.

Theorem 2.6.1 (Nagasawa [18]). (i) If a Markov process X and a measure ν satisfy A.1,
A.2, and A.3, then the reversed process {(Zt,Pν), (t > 0)} of (Xt,Pν) from an almost
L-time τ has temporally homogeneous Markov property and its transition probability is
P̂ (t, a, A), i.e.

Pν [Zt ∈ A|Zr, 0 < r < s] = Pν [Zt ∈ A|Zs] = P̂ (t− s, Zs, A),Pν − a.e. on

{s < τ <∞}, 0 < s < t. (2.74)

(ii) Moreover, if the process (Xt,Pν) satisfies,

A.0.1 Pν [0 < τ <∞ and Xτ− does not exist] = 0

A.0.2 Pν [Z0 ∈ K] <∞ for every compact set K, and

A.0.3 T̂f (f(a)) ∈ C(E) for each F ∈ C0(E),

then (i) is true for the reversed process {(Zt,Pν), (t ≥ 0)} and (2.74) is true for 0 ≤ s < t.

We will use Theorem 2.6.1 to establish our results on the time-reversal from the hitting time to
show duality relationships between the conditioned stable process and its time-reversed process
from the hitting time both in the Chapter 3 and 4. Note that the key relationship to reveal
time-reversal duality given in Equation 2.19 and Equation 2.70 are the same for the deterministic
or the random cases.

Now, we have finished reviewing existing theories and results used for our analysis.
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Chapter 3

Oscillatory attraction and repulsion
from a subset of the unit sphere or
hyperplane for isotropic stable Lévy
processes

Mateusz Kwaśnicki1, Andreas E. Kyprianou2, Sandra Palau3 Tsogzolmaa Saizmaa4

Abstract

Suppose that S is a closed set of the unit sphere Sd−1 = {x ∈ Rd : |x| = 1} in dimension d ≥ 2,
which has positive surface measure. We construct the law of absorption of an isotropic stable
Lévy process in dimension d ≥ 2 conditioned to approach S continuously, allowing for the interior
and exterior of Sd−1 to be visited infinitely often. Additionally, we show that this process is in
duality with the unconditioned stable Lévy process. We can replicate the aforementioned results
by similar ones in the setting that S is replaced by D, a closed bounded subset of the hyperplane
{x ∈ Rd : (x, v) = 0} with positive surface measure, where v is the unit orthogonal vector and
where (·, ·) is the usual Euclidean inner product. Our results complement similar results of the
authors [17] in which the stable process was further constrained to attract to and repel from S

from either the exterior or the interior of the unit sphere.
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3.1 Introduction

Let X = (Xt, t ≥ 0) be a d-dimensional stable Lévy process (d ≥ 2) with probabilities (Px, x ∈
Rd). This means that X has càdlàg paths with stationary and independent increments, and
there exists an α > 0 such that, for c > 0, and x ∈ Rd,

under Px the law of (cXc−αt, t ≥ 0) is equal to Pcx.

The latter is the property of so-called self-similarity. It turns out that stable Lévy processes
necessarily have α ∈ (0, 2]. The case α = 2 is that of standard d-dimensional Brownian motion,
thus has a continuous path. All other α ∈ (0, 2) have no Gaussian component and are pure
jump processes. In this article we are specifically interested in phenomena that can only occur
when jumps are present. We thus restrict ourselves henceforth to the setting α ∈ (0, 2).

Although Brownian motion is isotropic, this need not be the case in the stable case when
α ∈ (0, 2). Nonetheless, we will restrict to the isotropic setting. To be more precise, this means,
for all orthogonal transformations U : Rd 7→ Rd and x ∈ Rd,

the law of (UXt, t ≥ 0) under Px is equal to (Xt, t ≥ 0) under PUx.

For convenience, we will henceforth refer to X as a stable process.

As a Lévy process, our stable process of index (0, 2) has a characteristic triplet (0, 0,Π),
where the jump measure Π satisfies

Π(B) =
2αΓ((d+ α)/2)

πd/2|Γ(−α/2)|

∫
B

1

|y|α+d
`d(dy), B ⊆ B(Rd), (3.1)

where `d is d-dimensional Lebesgue measure5. This is equivalent to identifying its characteristic
exponent as

Ψ(θ) = −1

t
logE(eiθ·Xt) = |θ|α, θ ∈ Rd,

where we write P in preference to P0.

In this article, we characterise the law of a stable process conditioned to continuously
approach a closed subdomain of the surface of a unit sphere, say S ⊆ Sd−1 = {x ∈ Rd : |x| = 1},
which has non-zero surface measure. Moreover, our conditioning will allow the stable process
to approach S by visiting the exterior and interior of Sd−1 infinitely often. We note that when
α ∈ (1, 2), stable processes will hit the unit sphere with probability 1 and otherwise, when
α ∈ (0, 1] they hit the unit sphere with probability zero; see e.g. [25] or [16]. The aforesaid
conditioning is thus only of interest when α ∈ (0, 1].

In addition to constructing the conditioned process, we develop an expression for the law
of the limiting point of contact on S. Moreover, we show that, when time is reversed from the

5We will distinguish integrals with respect to one-dimensional Lebesgue measure as taking the form
∫
·dx,

where as higher dimensional integrals will always indicate the dimension, for example
∫
· `d(dx).
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strike point on S, the resulting process can be described as nothing more than the stable process
itself.

It turns out that the methodology we use here is robust enough to cover a similar suite
of results for the case of an isotropic stable process conditioned to a closed subdomain of an
arbitrary hyperplane in Rd that is orthogonal to an arbitrary unit-length vector v ∈ Rd.

Our results naturally complement those of the recent paper [17], which considers a similar
type of conditioning, albeit requiring the stable process to additionally remain either inside or
outside of the unit ball. Other related works include [9] and [14], who considered a real valued
stable process conditioned to hit 0 continuously and a real valued stable process conditioned to
continuously approach the boundary of the interval [−1, 1] from the outside, respectively. In
order to make our results pertinent, we restrict ourselves to the case that d ≥ 2.

3.2 Oscillatory attraction towards the patch S

Let D(Rd) denote the space of càdlàg paths ω : [0,∞)→ Rd ∪ ∂ with lifetime ζ(ω) = inf{s > 0 :

ω(s) = ∂}, where ∂ is a cemetery point. The space D(Rd) will be equipped with the Skorokhod
topology, with its closed σ-algebra F and natural filtration (Ft, t ≥ 0). The reader will note
that we will also use a similar notion for D(E) later on in this text in the obvious way for an
E-valued Markov process. We will always work with X = (Xt, t ≥ 0) to mean the coordinate
process defined on the space D(Rd). Hence, the notation of the introduction indicates that
P = (Px, x ∈ Rd) is such that (X,P) is our stable process.

We want to construct the law of the stable process conditioned to continuously limit to
S ∈ Sd−1 whilst visiting both Bd := {x ∈ Rd : |x| < 1} and B̄cd := Rd \ B̄d infinitely often
at arbitrarily small times prior to striking S. We shall denote the associated probabilities by
PS = (PS

x, x ∈ Rd\S). For a more precise definition of what is meant by this form of conditioning,
let us introduce the stopping times,

τβ = inf{t > 0 : β−1 < |Xt| < β}, for β > 1. (3.2)

Whenever it is well defined, we write, for t ≥ 0, Λ ∈ Ft and x 6∈ S,

PS
x(Λ, t < ζ) = lim

β→1
lim
ε→0

Px
(
Λ, t < τβ

∣∣ τSε <∞) , (3.3)

where

τSε = inf{t > 0 : Xt ∈ Sε} and Sε := {x ∈ Rd : 1− ε ≤ |x| ≤ 1 + ε and arg(x) ∈ S}.

Our first main result clarifies that the process (X,PS) is well defined. In the theorem below, and
thereafter, we will understand σ1 to mean the Lebesgue surface measure on Sd−1 normalised to
have unit mass, i.e. σ1(Sd−1) = 1.
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Theorem 3.2.1. Suppose that α ∈ (0, 1] and the closed set S ⊆ Sd−1 is such that σ1(S) > 0.
For α ∈ (0, 1], the limit (3.3) makes sense. Therefore, the process (X,PS) is well defined such
that

dPS
x

dPx

∣∣∣∣
Ft

=
HS(Xt)

HS(x)
, t ≥ 0, x 6∈ S, (3.4)

where
HS(x) =

∫
S
|x− θ|α−dσ1(dθ), x 6∈ S.

Although excluded from the conclusion of Theorem 3.2.1, it is worth dwelling for a mo-
ment on the extreme case S = {θ}, for θ ∈ Sd−1. It has been shown in [20] that, when α ∈ (0, 1),
conditioning a stable process to continuously limit to a point (which, by stationary and inde-
pendent increments, can always be arranged to be θ ∈ Sd−1) results in a family of probability
measures (P{θ}x , x 6= θ) which can be identified via a Doob h-transform with hθ(x) = |x− θ|α−d.
Although the sense in which the conditioning is performed cannot be contextualised via (3.3),
we see that the resulting h-transformation is consistent with the use of the harmonic function
HS.

The way in which we will prove Theorem 3.2.1 will be to prove the following subtle result
which establishes the leading order behaviour of the probability of hitting the set Sε.

Theorem 3.2.2. Let S ⊆ Sd−1 be a closed subset such that σ1(S) > 0.

(i) Suppose α ∈ (0, 1). For x 6∈ S,

lim
ε→0

εα−1Px(τSε <∞) = 21−2αΓ((d+ α− 2)/2)

πd/2Γ(1− α)

Γ((2− α)/2)

Γ(2− α)
HS(x). (3.5)

(ii) When α = 1, we have that, for x 6∈ S,

lim
ε→0

| log ε| Px(τSε <∞) =
Γ((d− 1)/2)

π(d−1)/2
HS(x). (3.6)

Theorem 3.2.2 also gives us the opportunity to understand the strike position of the
conditioned stable process. Indeed, let S′ be a closed subset of S. Define S′ε = {x ∈ Rd : 1− ε ≤
|x| ≤ 1 + ε and arg(x) ∈ S′} and τS′ε := inf{t > 0: Xt ∈ S′ε}. Then, {τS′ε < ∞} ⊆ {τSε < ∞}
and thanks to Theorem 3.2.2, when α ∈ (0, 1), we have

lim
ε→0

Px(τS′ε <∞|τSε <∞) = lim
ε→0

εα−1Px(τS′ε <∞)

εα−1Px(τSε <∞)
=
HS′(x)

HS(x)
, x 6∈ S.

A similar statement also holds when α = 1 by changing the scaling in ε to | log ε|. This gives us
the following result.

Corollary 3.2.1. For a closed S ⊆ Sd−1 such that σ1(S) > 0 and α ∈ (0, 1], we have that for
all closed S′ ⊆ S,

PS
x(Xζ− ∈ S′) =

HS′(x)

HS(x)
, x 6∈ S. (3.7)

40



In light of the above Corollary, it is worth remarking that we can also see the probabilities
PS as the result of first conditioning to continuously hit Sd−1 and then conditioning the strike
point to be in S. Indeed, we note that, for A ∈ Ft and t ≥ 0,

PSd−1

x (A|Xζ− ∈ S) = ESd−1

x

[
1A

PSd−1

Xt
(Xζ− ∈ S)

PSd−1

x (Xζ− ∈ S)

]

= Ex
[
1A

HSd−1(Xt)

HSd−1(x)

HS(Xt)

HSd−1(Xt)

HSd−1(x)

HS(x)

]
= Ex

[
1A

HS(Xt)

HS(x)

]
= PS

x(A).

Moreover, by shrinking S′ ⊆ S ⊆ Sd−1 to a singleton θ ∈ Sd−1, one can similarly show that

PS
x(A|Xζ− = θ) = P{θ}x (A).

This has the flavour of a Williams’ type decomposition that was shown for general Lévy processes
conditioned to stay positive and subordinators conditioned to remain in an interval; see e.g [11]
and [19].

3.3 Oscillatory repulsion from the patch S and duality

Roughly speaking, we want to describe what we see when we time reverse the process (X,PS)

from its strike point on S, i.e. its so-called dual process. Such a process will necessarily avoid
visiting S. Recalling that, for α ∈ (0, 1], the stable process hits spherical surfaces with probability
zero (cf. [16, 25]), a heuristic guess for the aforesaid dual process is the stable process itself (see
Figure 3-1). This turns out to be precisely the case. In order to make this rigorous, we will use
the language of Hunt-Nagasawa duality for Markov processes.

Suppose that Y = (Yt, t ≤ ζ) with probabilities Px, x ∈ E, is a regular Markov process on
an open domain E ⊆ Rd (or more generally, a locally compact Hausdorff space with countable
base), with cemetery state ∆ and killing time ζ = inf{t > 0 : Yt = ∆}. Let us additionally write
Pν =

∫
E ν(da)Pa, for any probability measure ν on the state space of Y .

Suppose that G is the σ-algebra generated by Y and write G(Pν) for its completion by the
null sets of Pν . Moreover, write G =

⋂
ν G(Pν), where the intersection is taken over all probability

measures on the state space of Y , excluding the cemetery state. A finite random time k is called
an L-time (generalized last exit time) if, given a coordinate process ω = (ωt, t ≥ 0) on D(E),

(i) k is measurable in G, and k ≤ ζ almost surely with respect to Pν , for all ν,

(ii) {s < k(ω)− t} = {s < θt ◦ k} for all t, s ≥ 0,

where θt is the Markov shift of ω to time t. The most important examples of L-times are killing
times and last exit times from closed sets.
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Figure 3-1: The process (X,PS) when time reversed is stochastically equal in law to (X,P).

Theorem 3.3.1. Suppose that α ∈ (0, 1]. For a given closed set S ⊂ Sd−1 with σ1(S) > 0, write

ν(da) :=
σ1(da)

σ1(S)
, a ∈ S. (3.8)

For every L-time k of (X,P), the process (X(k−t)−, t < k) under Pν is a time-homogeneous
Markov process whose transition probabilities agree with those of (X,PS).

3.4 The setting of a subset in an Rd−1 hyperplane

As alluded to in the introduction, the methods used in Sections 3.2 and 3.3 are robust enough
to deal with the setting of an arbitrary (d − 1)-dimensional hyperplane in Rd. Without loss of
generality, we can describe such a hyperplane with unit orthogonal vector v ∈ Sd−1 via

Hd−1 = {x ∈ Rd : (x, v) = 0},

where (·, ·) is the usual Euclidean inner product. Henceforth, we will assume that v ∈ Sd−1 is
given, as it otherwise plays no role in the forthcoming. We are interested in defining the law of
the stable process conditioned to hit D ⊆ Hd−1 in a similar spirit to the discussion in Section
3.2.

To this end, let us define

κβ = inf{t > 0 : −β < (v,Xt) < β}, for β > 0.

Whenever it is well defined, we will write, for t ≥ 0, Λ ∈ Ft and x 6∈ D,

PD
x (Λ, t < ζ) = lim

β→0
lim
ε→0

Px
(
Λ, t < κβ

∣∣ τDε <∞) , (3.9)
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where

τDε = inf{t > 0 : Xt ∈ Dε} and Dε := {x ∈ Rd : −ε ≤ (v, x) ≤ ε and x̂ ∈ D}.

Here x̂ denotes the orthogonal projection of x onto Hd−1; in other words. x̂ = x − v(v, x). We
can gather the analogous conclusions of Theorems 3.2.1, 3.2.2, 4.4.3 and Corollary 4.3.1 into one
theorem.

Theorem 3.4.1. Suppose that α ∈ (0, 1] and the closed and bounded set D ⊆ Hd−1 is such that
0 < `d−1(D) <∞, where we recall that `d−1 is (d− 1)-dimensional Lebesgue measure.

(i) Suppose α ∈ (0, 1). For x 6∈ D,

lim
ε→0

εα−1Px(τDε <∞) = 21−απ−(d−2)/2 Γ(d−2
2 )Γ(d−α2 )Γ(2−α

2 )2

Γ(1−α
2 )Γ(d−1

2 )Γ(2− α)
MD(x), (3.10)

where
MD(x) =

∫
D
|x− y|α−d`d−1(dy), x 6∈ D.

(ii) Suppose α = 1. For x 6∈ D,

lim
ε→0

| log ε| Px(τDε <∞) =
Γ(d−2

2 )

π(d−2)/2
MD(x). (3.11)

(iii) The limit (3.9) makes sense, therefore the process (X,PD) is well defined and

dPD
x

dPx

∣∣∣∣
Ft

=
MD(Xt)

MD(x)
, t ≥ 0, x 6∈ D. (3.12)

(iv) We have for all closed D′ ⊆ D,

PD
x (Xζ− ∈ D′) =

MD′(x)

MD(x)
, x 6∈ D. (3.13)

(v) Write ν(da) := `d−1(da)/`d−1(D), a ∈ D. For every L-time k of (X,P), the process
(X(k−t)−, t < k) under Pν is a time-homogeneous Markov process whose transition proba-
bilities agree with those of (X,PD).

Roughly speaking, Theorem 3.4.1 are to be expected as, following the ideas of [22] one
may map Sd−1 onto Hd−1 via a standard sphere inversion transformation, which, thanks to
the Riesz–Bogdan–Żak transform, also transforms the paths of the stable processes into that
of a h-transformed stable processes; see [8]. The proofs we have given below, however, are
direct nonetheless, following similar steps to those of Theorems 3.2.1, 3.2.2 and 4.4.3, as well as
Corollary 4.3.1.
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3.5 Heuristic for the proof of Theorem 3.2.2

Let us begin with a sketch of the proof of Theorem 3.2.2. We start by recalling an identity
that is known in quite a general setting from the potential analysis literature; see for example
Section 13.11 of [13] and Section VI.2 of [7]. Suppose that A is a bounded closed set and let
τA = inf{t > 0 : Xt ∈ A}. Let µA be a finite measure supported on A, which is absolutely
continuous with respect to Lebesgue measure and define its potential by

UµA(x) :=

∫
A
|x− y|α−dµA(dy), x ∈ Rd.

On account of the fact that µA is absolutely continuous, recalling that |x|α−d is the potential
of the stable process issued from the origin, stationary and independent increments allows us to
identify

UµA(x) =

∫
A
|x− y|α−dmA(y)`d(dy) = Ex

[∫ ∞
0

mA(Xt)dt

]
, x /∈ A,

where mA is the density of µA with respect to Lebesgue measure, `d. As the support of µA is
precisely A, we must have mA(y) = 0 for all y /∈ A. As such, the Strong Markov Property tells
us that

UµA(x) = Ex
[
1{τA<∞}

∫ ∞
τA

mA(Xt)dt

]
= Ex

[
UµA(XτA)1{τA<∞}

]
, x /∈ A. (3.14)

Note, the above equality is also true when x ∈ A as, in that case, τA = 0.

Replacing τA by a general stopping time τ in the above calculation changes the first
equality in (3.14) to an inequality, thus giving the excessive property

UµA(x) ≥ Ex
[
UµA(Xτ )1{τ<∞}

]
, x ∈ Rd. (3.15)

This family of inequalities together with the Strong Markov Property easily gives us the classical
result that (UµA(Xt), t ≥ 0) is a supermartingale.

Let us now suppose that µ can be constructed in such a away that it is supported on
A such that, for all x ∈ A, Uµ(x) = 1. We then recover from identity (3.14) the corollary to
Theorem 1 in Chapter 5 of [13], see also equation (21) in the same chapter, which states that

Px(τA <∞) = Uµ(x), x 6∈ A.

Returning to the problem at hand, we can use the principals above to develop a ‘guess
and verify’ approach to the proof, in particular, since we are not chasing an exact formula for
Px(τSε <∞), but rather the asymptotic leading order behaviour. Indeed, suppose we can ‘guess’
a measure, say µSε , supported on Sε, such that

UµSε (x) = 1 + o(1), x ∈ Sε as ε→ 0, (3.16)
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so that
(1 + o(1))Px(τSε <∞) = UµSε (x), x 6∈ Sε. (3.17)

Then, this would be a good basis from which to draw out the leading order decay in ε, especially
if our guess of µε is such that Uµε is tractable.

In one dimension, we know from Lemma 1 of [26], that for a one-dimensional symmetric
stable process, the unique measure that satisfies (3.16) has density (1− y)−α/2(1 + y)−α/2, i.e.∫ 1

−1
|x− y|α−1(1− y)−α/2(1 + y)−α/2dy = 1, x ∈ [−1, 1]. (3.18)

We can use this to build a reasonable choice of µSε . Indeed, writing X = |X| arg(X), when
X begins in the neighbourhood of S, then |X| begins in the neighbourhood of 1 and arg(X),
essentially, from within S. On short-time scales and short-range, the time change |X| behaves
similarly to a one-dimensional stable process. Moreover, arg(X) is an isotropic process. A
reasonable guess for µSε would be to base it on the measure

µε(dy) = cα,d(|y| − (1− ε))−α/2(1 + ε− |y|)−α/2`d(dy), (3.19)

restricted to Sε, where we recall cα,d is a constant to be determined so that (3.16) holds. As we
will shortly see, when α ∈ (0, 1), the constant cα,d does not depend on ε, however, when α = 1,
in order to respect (3.16) we need to make it depend on ε.

3.6 Proof of Theorem 3.2.2 (i)

As alluded to in the previous section, we will work with the guess µSε given by the measure µε
defined in (3.19) restricted to Sε. In order to show (3.16), we will take advantage of some of the
symmetric features of µε, when seen as a measure over Sd−1

ε = {x ∈ Rd : 1 − ε ≤ |x| ≤ 1 + ε}.
For a subset A ⊂ Sd−1

ε we define µAε the restriction of µε to A. In particular, writing µ(1)
ε as µε

restricted to Sd−1
ε and µ(2)

ε as µε restricted to Ŝε := Sd−1
ε \Sε, we have the obvious difference

UµSε (x) = Uµ(1)
ε (x)− Uµ(2)

ε (x), x ∈ Sε. (3.20)

Moreover, we would like to introduce

µ
(2)
ε,δ := µε|Ŝδε

where Ŝδε = Sd−1
ε \Sδε and

Sδε := {x ∈ Rd : 1−ε < |x| < 1+ε and arg(x) ∈ Sδ}, where Sδ = {x ∈ Sd−1 : dist(arg(x),S) < δ},
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for some small δ > 0, which, in due course, will depend on ε. Note that, since S is closed, Sδ

(resp. Sδε) shrinks to S (resp. Sε) when δ → 0. Then, we also have that

UµS
δ

ε (x) = Uµ(1)
ε (x)− Uµ(2)

ε,δ (x), x ∈ Sε. (3.21)

The estimate (3.21) will be useful for a certain lower bound that will give us what we need
to prove Theorem 3.2.2. We need to prove two technical lemmas first. The first one deals with
the term Uµ

(1)
ε .

Lemma 3.6.1. Suppose that we choose

cα,d =
Γ((d+ α− 2)/2)

2απd/2Γ(1− α)Γ((2− α)/2)
.

Then,
lim
ε→0

sup
x∈Sd−1

ε

|Uµ(1)
ε (x)− 1| = 0.

Proof. Appealing to (A.1), we have, for x ∈ Sd−1
ε ,

Uµ(1)
ε (x)

= cα,d

∫
Sd−1
ε

|x− y|α−d(|y| − (1− ε))−α/2(1 + ε− |y|)−α/2`d(dy)

=
2cα,dπ

(d−1)/2

Γ((d− 1)/2)

∫ 1+ε

1−ε

rd−1

(r − (1− ε))α/2(1 + ε− r)α/2
dr

∫ π

0

sind−2 θdθ

(|x|2 − 2|x|r cos θ + r2)(d−α)/2

=
2cα,dπ

d/2

Γ(d/2)
|x|α−d

∫ |x|
1−ε

2F1

(
d−α

2 , 1− α
2 ; d2 ; (r/|x|)2

)
rd−1

(r − (1− ε))α/2(1 + ε− r)α/2
dr

+
2cα,dπ

d/2

Γ(d/2)

∫ 1+ε

|x|

2F1

(
d−α

2 , 1− α
2 ; d2 ; (|x|/r)2

)
rα−1

(r − (1− ε))α/2(1 + ε− r)α/2
dr. (3.22)

With a simple change of variables we can reduce this more simply to

Uµ(1)
ε (x) =

2cα,dπ
d/2

Γ(d/2)

∫ 1

1−ε
|x|

2F1

(
d−α

2 , 1− α
2 ; d2 ; r2

)
rd−1(

r − 1−ε
|x|

)α/2(
1+ε
|x| − r

)α/2 dr

+
2cα,dπ

d/2

Γ(d/2)

∫ 1+ε
|x|

1

2F1

(
d−α

2 , 1− α
2 ; d2 ; r−2

)
rα−1(

r − 1−ε
|x|

)α/2(
1+ε
|x| − r

)α/2 dr. (3.23)

For the first term on the right-hand side of (3.23), we can appeal to (A.1) and (A.2) to deduce
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that

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣∣2cα,dπd/2Γ(d/2)

∫ 1

1−ε
|x|

2F1

(
d−α

2 , 1− α
2 ; d2 ; r2

)
rd−1(

r − 1−ε
|x|

)α/2(
1+ε
|x| − r

)α/2 dr

−
2cα,dπ

d/2Γ(1− α)

Γ((d− α)/2)Γ((2− α)/2)

∫ 1

1−ε
|x|

(1− r2)α−1rd−1(
r − 1−ε

|x|

)α/2(
1+ε
|x| − r

)α/2 dr

−
2cα,dπ

d/2Γ(1− α)

Γ(α/2)Γ((d+ α− 2)/2)

∫ 1

1−ε
|x|

rd−1(
r − 1−ε

|x|

)α/2(
1+ε
|x| − r

)α/2 dr

∣∣∣∣∣ = 0.

(3.24)

Note that, by using the transformation r = (1− ε+ 2εu)/|x|,∫ 1

1−ε
|x|

rd−1
(
r − 1− ε

|x|

)−α/2(1 + ε

|x|
− r
)−α/2

dr

= |x|α−d(2ε)1−α
∫ (|x|−1+ε)/2ε

0
(2εu+ 1− ε)d−1u−α/2(1− u)−α/2du

≤ |x|α−d(2ε)1−αΓ((2− α)/2)2

Γ(2− α)
, (3.25)

which tends to zero uniformly in x ∈ Sd−1
ε as ε→ 0.

The asymptotic (3.25) also tells us that the approximating term of interest in (3.24) is the
middle term. For that, we can use (A.8) to observe

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣∣
∫ 1

1−ε
|x|

(1− r2)α−1rd−1
(
r − 1− ε

|x|

)−α/2(1 + ε

|x|
− r
)−α/2

dr

− 2α−1

∫ 1

1−ε
|x|

(1− r)α−1
(
r − 1− ε

|x|

)−α/2(1 + ε

|x|
− r
)−α/2

dr

∣∣∣∣∣ = 0

(3.26)

and

2αcα,dπ
d/2Γ(1− α)

Γ(α/2)Γ((d+ α− 2)/2)

∫ 1

1−ε
|x|

(1− r)α−1
(
r − 1− ε

|x|

)−α/2(1 + ε

|x|
− r
)−α/2

dr

=
2αcα,dπ

d/2Γ(1− α)

Γ(α/2)Γ((d+ α− 2)/2)

∫ 1− 1−ε
|x|

0
uα−1

(
1− 1− ε

|x|
− u
)−α/2(1 + ε

|x|
− 1 + u

)−α/2
dr

=
2αcα,dπ

d/2Γ(1− α)Γ((2− α)/2)Γ(α)

Γ(α/2)Γ((d+ α− 2)/2)Γ((2 + α)/2)

(
|x| − 1 + ε

1 + ε− |x|

)α/2
2F1

(
α/2, α; 1 + α/2;−|x| − 1 + ε

1 + ε− |x|

)
. (3.27)

The second term on the right-hand side of (3.23) can be dealt with similarly. Indeed,
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using (A.2) we can produce an analogous statement to (3.24), from which, the leading order
approximating term is the integral

2cα,dπ
d/2Γ(1− α)

Γ(α/2)Γ((d+ α− 2)/2)

∫ 1+ε
|x|

1
(1− r−2)α−1rd−1

(
r − 1− ε

|x|

)−α/2(1 + ε

|x|
− r
)−α/2

dr

∼
2αcα,dπ

d/2Γ(1− α)

Γ(α/2)Γ((d+ α− 2)/2)

∫ 1+ε
|x|

1
(r − 1)α−1

(
r − 1− ε

|x|

)−α/2(1 + ε

|x|
− r
)−α/2

dr

=
2αcα,dπ

d/2Γ(1− α)

Γ(α/2)Γ((d+ α− 2)/2)

∫ 1+ε
|x| −1

0
uα−1

(
u+ 1− 1− ε

|x|

)−α/2(1 + ε

|x|
− 1− u

)−α/2
du

=
2αcα,dπ

d/2Γ(1− α)Γ((2− α)/2)Γ(α)

Γ(α/2)Γ((d+ α− 2)/2)Γ((2 + α)/2)

(
1 + ε− |x|
|x| − 1 + ε

)α/2
2F1

(
α/2, α; 1 + α/2;−1 + ε− |x|

|x| − 1 + ε

)
, (3.28)

uniformly for x ∈ Sd−1
ε as ε→ 0, where we have again used (A.8) to develop the right-hand side.

Somewhat remarkably, if we add together the right-hand side of (3.27) and (3.28), using
the identity in (A.6), we see that the sum is equal to

2αcα,dπ
d/2Γ(1− α)Γ((2− α)/2)

Γ((d+ α− 2)/2)
= 1, (3.29)

where the equality with unity follows from the choice of cα,d in the statement of the lemma.

Piecing together then uniform estimates above as well as the simplification of the two
integrals (3.27) and (3.28) as well as the decay of the term (3.25) in (3.24) and the analogous
term when dealing with the second term on the right-hand side of (3.23), the statement of the
lemma follows.

Next we deal with the term Uµ
(2)
ε,δ .

Lemma 3.6.2. Recalling that cα,d is the constant given in Lemma 3.6.1, take δ(ε) = ε(1−α)/2(d−α),
then

lim sup
ε→0

sup
x∈Sε

ε(α−1)/2Uµ
(2)
ε,δ(ε)(x) ≤ Cα,d,

where

Cα,d = cα,d
22−απ(d−1)/2Γ((2− α)/2)2

Γ(2− α)Γ((d− 1)/2)
.

In particular,
lim
ε→0

sup
x∈Sε

Uµ
(2)
ε,δ(ε)(x) = 0.
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Proof. Since x ∈ Sε and y ∈ Ŝδε, i.e. |x− y| > δ, we have,

sup
x∈Sε

Uµ
(2)
ε,δ (x) =

∫
Ŝδε

1

|x− y|d−α
µε(dy)

≤ 1

δd−α

∫
Ŝδε

µε(dy)

≤ 1

δd−α
2π(d−1)/2

Γ((d− 1)/2)

∫ 1+ε

1−ε
rd−1mε(r)dr, (3.30)

where mε(r) = cα,d(r − (1− ε))−α/2(1 + ε− r)−α/2. It is easy to see that∫ 1+ε

1−ε
mε(r)dr = cα,d

∫ 1+ε

1−ε
(r − (1− ε))−α/2(1 + ε− r)−α/2dr

= cα,dε
1−α21−αΓ((2− α)/2)2

Γ(2− α)
. (3.31)

Putting (3.30) and (3.31) together we have

sup
x∈Sε

Uµ
(2)
ε,δ (x) ≤ cα,d

22−απ(d−1)/2Γ((2− α)/2)2

Γ(2− α)Γ((d− 1)/2)
× ε1−α

δd−α
(1 + ε)d−1. (3.32)

By choosing δ = δ(ε), the result follows.

Let us now return to the proof of Theorem 3.2.2. We show that we can make careful sense
of (3.16) and (3.17). Using (3.20) in (3.14) we see that for x 6∈ S,

UµSε (x) = Ex
[
(Uµ(1)

ε (XτSε
)− 1); τSε <∞

]
+ Px(τSε <∞)− Ex

[
Uµ(2)

ε (XτSε
); τSε <∞

]
≤ Ex

[
(Uµ(1)

ε (XτSε
)− 1); τSε <∞

]
+ Px(τSε <∞). (3.33)

Then, due to Lemma 3.6.1, for each x 6∈ S and υ > 0, we can choose ε sufficiently small such
that

UµSε (x) ≤ (1 + υ)Px(τSε <∞). (3.34)

Since we can take υ arbitrarily small, we have the lower bound on a liminf version of the
statement of Theorem 3.2.2 given by

lim inf
ε→0

εα−1UµSε (x) ≤ lim inf
ε→0

εα−1Px(τSε <∞), x 6∈ S. (3.35)

On the other hand, suppose instead of S, we replace its role by Sδ(ε), where δ(ε) was
given in the statement of Lemma 3.6.2, we have from the excessive property (3.15) associated
to UµSδ(ε)ε that

UµS
δ(ε)

ε (x) ≥ Ex
[
UµS

δ(ε)

ε (XτSε
); τSε <∞

]
, x 6∈ S. (3.36)
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Now appealing to (3.21), we get

UµS
δ(ε)

ε (x) ≥ Ex
[
Uµ(1)

ε (XτSε
)− 1; τSε <∞

]
+ Px(τSε <∞)− Ex

[
Uµ

(2)
ε,δ(ε)(XτSε

); τSε <∞
]
.

Appealing to Lemmas 3.6.1 and 3.6.2, for each υ > 0, we can choose ε small enough such that,
for each x 6∈ S,

UµS
δ(ε)

ε (x) ≥ (1− υ)Px(τSε <∞). (3.37)

Hence, since we can choose υ as small as we like, we have

lim sup
ε→0

εα−1UµS
δ(ε)

ε (x) ≥ lim sup
ε→0

εα−1Px(τSε <∞), x 6∈ S. (3.38)

It follows from (3.35) and (3.38) that, as soon as

lim sup
ε→0

εα−1UµS
δ(ε)

ε (x) = lim inf
ε→0

εα−1UµSε (x), x 6∈ S, (3.39)

and noting that UµSε ≤ UµS
δ(ε)

ε , we have

lim
ε→0

εα−1UµSε (x) = lim
ε→0

εα−1Px(τSε <∞), x 6∈ S.

Let us thus complete the proof by verifying the limit on the equality (3.39) holds and by finding
the left-hand side limit in the previous equation.

To this end, using that |x − y|α−d is continuous on Sε and, when x 6∈ S, without less of
generality, we can take ε small enough so that x /∈ Sε. For each x /∈ S, using the Mean Valued
Theorem, there exists a r∗ε ∈ (1− ε, 1 + ε) such that

UµSε (x) =

∫
Sε

|x− y|α−dmε(|y|)`d(dy)

= (r∗ε)
d−1

∫
S
|x− r∗εθ|α−dσ1(dθ)

∫ 1+ε

1−ε
mε(r)dr, (3.40)

where we recall that mε(r) = cα,d(r − (1− ε))−α/2(1 + ε− r)−α/2. By using (3.31) we get

εα−1UµSε (x) = (r∗ε)
d−121−αcα,d

Γ((2− α)/2)2

Γ(2− α)

∫
S
|x− r∗εθ|α−dσ1(dθ), x /∈ S. (3.41)

Taking limits in (3.41) as ε → 0 and recalling the value of cα,d from the statement of
Lemma 3.6.1, we have, for x 6∈ S

lim
ε→0

εα−1UµSε (x) = 21−2αΓ((d+ α− 2)/2)

πd/2Γ(1− α)

Γ((2− α)/2)

Γ(2− α)

∫
S
|x− θ|α−dσ1(dθ). (3.42)

An application of the recursion formula for gamma functions allows us to identify the right-hand
side as equal to that of the right-hand side of (3.5). Very little changes in the above calculation if
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we replace S by Sδ(ε). As such, (3.42) allows us to conclude (3.39), and thus gives the statement
of the Theorem 3.2.2. �

3.7 Proof of Theorem 3.2.2 (ii)

The proof needs some adaptation when we deal with the case α = 1. Principally, we need to focus
on Lemmas 3.6.1 and 3.6.2. What is different in these two lemmas is that the normalisation
constant cα,d must now depend on ε. The replacement for Lemma 3.6.1 and Lemma 3.6.2
(combined into one result) now takes the following form.

Lemma 3.7.1. Suppose that we define, for 0 < ε < 1,

µε(dy) =
c1,d

| log ε|
(|y| − (1− ε))−α/2(1 + ε− |y|)−α/2`d(dy), (3.43)

and
c1,d =

Γ((d− 1)/2)

π(d+1)/2
.

(i) We have
lim
ε→0

sup
x∈Sd−1

ε

|Uµ(1)
ε (x)− 1| = 0.

(ii) take δ(ε) = | log ε|−1/2(d−1), then

lim sup
ε→0

sup
x∈Sε

√
| log ε|Uµ(2)

ε,δ(ε)(x) <∞,

so that
lim
ε→0

sup
x∈Sε

Uµ
(2)
ε,δ(ε)(x) = 0.

Proof. We give only a sketch proof of both parts for the interested reader to use as a guide to
reproduce the finer details.

(i) The essence of the proof is an adaptation of the proof of Lemma 3.6.1. We pick up the
proof of the latter at the analogue of (3.23), albeit α = 1 and cα,d is replaced by c1,d/| log ε|, i.e.

Uµ(1)
ε (x) =

2c1,dπ
d/2

| log ε|Γ(d/2)

∫ 1

1−ε
|x|

2F1

(
d−1

2 , 1
2 ; d2 ; r2

)
rd−1(

r − 1−ε
|x|

)1/2(
1+ε
|x| − r

)1/2
dr

+
2c1,dπ

d/2

| log ε|Γ(d/2)

∫ 1+ε
|x|

1

2F1

(
d−1

2 , 1
2 ; d2 ; r−2

)
r1−1(

r − 1−ε
|x|

)1/2(
1+ε
|x| − r

)1/2
dr. (3.44)

Appealing to (A.4), noting that log(1− r2) ∼ log(1− r) + log 2, as r → 1, we can deduce that
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there is an unimportant constant, say χ, such that

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣∣ 2c1,dπ
d/2

| log ε|Γ(d/2)

∫ 1

1−ε
|x|

2F1

(
d−1

2 , 1
2 ; d2 ; r2

)
rd−1(

r − 1−ε
|x|

)1/2(
1+ε
|x| − r

)1/2
dr

+
2c1,dπ

d/2

| log ε|Γ((d− 1)/2)Γ(1/2)

∫ 1

1−ε
|x|

rd−1 log(1− r)(
r − 1−ε

|x|

)1/2(
1+ε
|x| − r

)1/2
dr

−
c1,dχ

| log ε|

∫ 1

1−ε
|x|

rd−1(
r − 1−ε

|x|

)1/2(
1+ε
|x| − r

)1/2
dr

∣∣∣∣∣ = 0. (3.45)

A similar uniform limiting control can be undertaken by subtracting off analogous terms from
the second integral in (3.44), i.e. the integral

2c1,dπ
d/2

| log ε|Γ(d/2)

∫ 1+ε
|x|

1

2F1

(
d−1

2 , 1
2 ; d2 ; r−2

)
(
r − 1−ε

|x|

)1/2(
1+ε
|x| − r

)1/2
dr.

Using (3.25), again noting α = 1, we can uniformly control the last term in (3.45) and note that
it is O(1/| log ε|). Similarly to (3.26), the second term in (3.45) has the same behaviour as

−
2c1,dπ

d/2

| log ε|Γ((d− 1)/2)Γ(1/2)

∫ 1− 1−ε
|x|

0

log u

(1+ε−|x|
|x| + u)1/2( |x|−(1−ε)

|x| − u)1/2
du. (3.46)

To evaluate (3.46), using the change of variable u = a− (a+ b)/(t2 + 1)∫ a

0

log u√
(b+ u)(a− u)

du = 2

∫ ∞√
b
a

log
(
a− a+ b

t2 + 1

) dt

t2 + 1

=

∫ arctan
√

a
b

0
log(a− (a+ b) sin2w)dw

=

∫ arctan
√

a
b

0
log a+ log

(
1− sin2w

a
a+b

)
dw

= arctan

√
a

b
log(a+ b)− L

(π
2
− 2 arctan

√
a

b

)
− π

2
log 2,(3.47)

where we have used formula 4.226(5) of [15], which tells us that∫ u

0
log
(

1− sin2w

sin2 v

)
dw = −u log sin2 v − L(

π

2
− v + u)− L(

π

2
− v − u), (3.48)

for any −π
2 ≤ u ≤ π

2 and | sinu| ≤ | sin v| where L(x) is the Lobachevsky function. Note that,
Lobachevsky’s function is defined and represented as

L(x) = −
∫ x

0
log cos θ dθ = x log 2− 1

2

∞∑
k=1

(−1)k−1 sin 2kx

k2
. (3.49)
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Using (3.47) to evaluate (3.46) as well to evaluate the partner integral to (3.46), which comes
from the analogous control of the second integral in (3.44), we get a nice cancellation of terms
(as happened at this stage of the argument for α ∈ (0, 1)), to give us the controlled feature that

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣∣Uµ(1)
ε (x) +

2c1,dπ
d/2

| log ε|Γ((d− 1)/2)Γ(1/2)

π

2
log ε

∣∣∣∣∣ = 0.

Noting that with the indicated choice of c1,d, we have

2c1,dπ
d/2

Γ((d− 1)/2)Γ(1/2)

π

2
= 1,

which concludes the proof of part (i).

(ii) For the second part, the proof is almost identical to the proof of Lemma 3.6.2. Indeed,
following the calculations through to (3.32), recalling that we have replaced cα,d by c1,d/| log ε|,
we get, up to an unimportant constant χ′,

sup
x∈Sε

Uµ
(2)
ε,δ (x) ≤ χ′ 1

| log ε|δd−1
. (3.50)

Hence, by taking δ = δ(ε) = | log ε|−1/2(d−1) the statement of part (ii) follows.

With Lemma 3.7.1 in hand, we can now complete the proof of Theorem 3.2.2 (ii). Inequal-
ities (3.34) and (3.37) are still at our disposal for the same reasons as before. The proof thus
boils down to the asymptotic treatment of the term UµSε (x) as in (3.40) for x 6∈ S. Recalling
that we have replaced cα,d by c1,d/| log ε| we get from (3.31) and the constant c1,d given in the
statement of Lemma 3.7.1,

lim
ε→0

| log ε| Px(τSε <∞) =
Γ((d− 1)/2)

π(d+1)/2
Γ(1/2)2HS(x) =

Γ((d− 1)/2)

π(d−1)/2
HS(x),

where we have used that Γ(1/2) =
√
π.

3.8 Proof of Theorem 3.2.1

Recall the definition τβ := inf{t > 0: 1/β < |Xt| < β} for β > 1 and fix ε0 > 0 such that, for
all 0 < ε < ε0, (1− ε, 1 + ε) ⊂ (1/β, β). Then, by applying the Markov property at time t, we
have, for any Λ ∈ Ft,

Px(Λ, t < τβ|τSε <∞) = Ex
[
1{Λ,t<τβ}

PXt(τSε <∞)

Px(τSε <∞)

]
. (3.51)

The event {t < τβ} implies that either |Xt| > β > 1 or |Xt| < 1/β < 1. Hence, for all 0 < ε < ε0

and y ∈ Sd−1
ε , on {t < τβ},

|Xt − y|α−d < max{((1− ε0)− 1/β)α−d, (β − (1 + ε0))α−d}.
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Hence, on {t < τβ}, we have from (3.37) and (3.41) that we can choose ε sufficiently small such
that

εα−1PXt(τSε <∞) < K1,

for some constant K1 ∈ (0,∞). In a similar spirit, using (3.34) and (3.41), since x 6∈ S and S is
closed, it follows similarly that there is another constant K2 ∈ (0,∞) such that, for x given in
(3.51), we can choose ε sufficiently small such that

εα−1Px(τSε <∞) > K2.

Theorem 3.2.2, dominated convergence and monotone convergence gives us, for all Λ ∈ Ft, t ≥ 0,

lim
β→1

lim
ε→0

Px(Λ, t < τβ|τSε <∞) = lim
β→1

Ex
[
1{Λ,t<τβ} lim

ε→0

εα−1PXt(τSε <∞)

εα−1Px(τSε <∞)

]
= Ex

[
1Λ
HS(Xt)

HS(x)

]
,

as required. �

3.9 Proof of Theorem 4.4.3

Recall the notation for a general Markov process (Y, P) on E preceding the statement of Theorem
4.4.3. We will additionally write P := (Pt, t ≥ 0) for the semigroup associated to (Y, P).

Theorem 3.5 of Nagasawa [23], shows that, under suitable assumptions on the Markov
process, L-times form a natural family of random times at which the pathwise time-reversal

←
Y t:= Y(k−t)−, t ∈ [0, k],

is again a Markov process. Let us state Nagasawa’s principle assumptions.

(A) The potential measure UY (a, ·) associated to P, defined by the relation∫
E
f(x)UY (a,dx) =

∫ ∞
0
Pt[f ](a)dt = Ea

[∫ ∞
0

f(Xt) dt

]
, a ∈ E, (3.52)

for bounded and measurable f on E, is σ-finite. Assume that there exists a probability measure,
ν, such that, if we put

µ(A) =

∫
UY (a,A) ν(da) for A ∈ B(R), (3.53)

then, there exists a Markov transition semigroup, say P̂ := (P̂t, t ≥ 0) such that∫
E
Pt[f ](x)g(x)µ(dx) =

∫
E
f(x)P̂t[g](x)µ(dx), t ≥ 0, (3.54)

for bounded, measurable and compactly supported test-functions f, g on E.

(B) For any continuous test-function f ∈ C0(E), the space of continuous and compactly
supported functions, and a ∈ E, assume that Pt[f ](a) is right-continuous in t for all a ∈ E and,
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for q > 0, U (q)

Ŷ
[f ](

←
Y t) is right-continuous in t, where, for bounded and measurable f on E,

U
(q)

Ŷ
[f ](a) =

∫ ∞
0

e−qtP̂t[f ](a)dt, a ∈ E,

is the q-potential associated to P̂.

Nagasawa’s duality theorem, Theorem 3.5. of [23], now reads as follows.

Theorem 3.9.1 (Nagasawa’s duality theorem). Suppose that assumptions (A) and (B) hold.
For the given starting probability distribution ν in (A) and any L-time k, the time-reversed
process

←
Y under Pν is a time-homogeneous Markov process with transition probabilities

Pν(
←
Y t∈ A |

←
Y r, 0 < r < s) = Pν(

←
Y t∈ A |

←
Y s) = pŶ (t− s,

←
Y s, A), Pν-almost surely, (3.55)

for all 0 < s < t and closed A in R, where pŶ (u, x,A), u ≥ 0, x ∈ R, is the transition measure
associated to the semigroup P̂.

Completing the proof of Theorem 4.4.3

We will make a direct application of Theorem 4.7.1, with Y taken to be the process (X,Pν)

where ν satisfies (3.8). Recall that its potential is written U and we will denote its transition
semigroup by (Pt, t ≥ 0). Moreover, the dual process, formerly Ŷ , is taken to be (X,PS) and we
will, in the obvious way, work with the notation US in place of UŶ , P

S in place of P̂ and so on.
We need only to verify the two assumptions (A) and (B).

In order to verify (A), writing

U(x,dy) =

∫ ∞
0

Px(Xt ∈ dy)dt =
Γ((d− α)/2)

2απd/2Γ(α/2)
|x− y|α−d`d(dy), x, y ∈ Rd,

we have, up to a multiplicative constant,

η(dx) =

∫
Rd
U(a,dx)ν(da) =

1

σ1(S)

∫
S
|x− a|α−dσ1(da) ∝ HS(x)dx. (3.56)

Now, we need to verify that (A.54) holds. Hunt’s switching identity (cf. Chapter II.1 of [4]) for
(X,P), states that

Pt(y,dx)dy = Pt(x,dy)dx, x, y ∈ Rd.

Using Hunt’s switching identity together with (3.56), we have for x, y ∈ Rd \ S

Pt(y,dx)η(dy) = Pt(y,dx)HS(y)dy = Pt(x,dy)
HS(y)

HS(x)
HS(x)dx = PS

t (x, dy)η(dx).

Let us now turn to the verification of assumption (B). This assumption is immediately satisfied
on account of the fact that PS is a right-continuous semigroup by virtue of its definition as a
Doob h-transform with respect to the Feller semigroup P of the stable process.
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With both (A) and (B) in hand, we are ready to apply Theorem 4.7.1 and the desired
result thus follows. �

3.10 Proof of Theorem 3.4.1

For the proof of Theorem 3.4.1, we focus on just part (i) and (ii) as the proof of parts (iii)–(v)
are essentially verbatim the same as for the case of S ∈ Sd−1. Moreover, for both parts (i) and
(ii) we will provide only a sketch proof as the reader will quickly see that the proof is not hugely
different form that of Theorem 3.2.2, albeit for a few technical details.

(i) The substance of the proof of part (i) is thus to follow a similar strategy as with Theorem
3.2.2 and build a measure ρDε such that the analogue of (3.16) holds, i.e. UρDε (x) = 1 + o(1), for
x ∈ D so that (1 + o(1))Px(τDε <∞) = UρDε (x), x 6∈ Dε. More precisely, we develop analogues
of Lemmas 3.6.1 and 3.6.2 to help make this precise.

Following what we have learned for µSε , our choice of ρDε is built from the base measure

ρε(dy) = kα,d((v, y) + ε)−α/2(ε− (v, y))−α/2`d(dy). (3.57)

for an appropriate choice of kα,d. As in (3.20) the we can work with the decomposition,

UρDε (x) = Uρ(1)
ε (x)− Uρ(2)

ε (x), x ∈ Dε, (3.58)

where ρ(1)
ε (resp. ρ

(2)
ε ) is the restriction of ρε to Hd−1

ε := {x ∈ Rd : −ε < (v, x) < ε} (resp.
to D̂ε := Hd−1

ε \ Dε). This helps with lower bounding lim infε→0 ε
α−1Px(τDε <∞) by following

steps of (3.33)–(3.35) together with the last paragraph of the Proof of Theorem 3.2.2, for which
an analogue of Lemma 3.6.1 is needed.

For each |u| < ε, define the following sets: Dδ = {x ∈ Hd−1 : dist(x,D) < δ}, Dδε = {y ∈
Hd−1
ε : ŷ ∈ Dδ} (recalling ŷ is the orthogonal projection of y on to Hd−1) and D̂δε = Hd−1

ε \ Dδε.
Moreover, for any u ∈ R, we define Hd−1(u) = {x ∈ Rd : (v, x) = u}, D(u) := {y ∈ Hd−1(u) : ŷ ∈
D}, Dδ(u) := {y ∈ Hd−1(u) : ŷ ∈ Dδ}, and D̂δ(u) = Hd−1(u) \ Dδ(u). Similarly, in the spirit of
(3.21) we can use the decomposition

UρD
δ

ε (x) = Uρ(1)
ε (x)− Uρ(2)

ε,δ (x), x ∈ Dε, (3.59)

where ρ(2)
ε,δ is the restriction of ρε to D̂δε. which helps with lim supε→0 ε

α−1Px(τDε < ∞) by
following steps (3.36)–(3.39) together with the last paragraph of the Proof of Theorem 3.2.2, for
which an analogue of Lemma 3.6.2 is needed.

Let us address the technical detail that differs from the proof of Theorem 3.2.2 that we
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alluded to above. For x ∈ Dε,

Uρ(1)
ε (x)

= kα,d

∫
Hd−1
ε

|x− y|α−d((v, y) + ε)−α/2(ε− (v, y))−α/2`d(dy)

= kα,d

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫
Hd−1(u)

|x− y|α−d`d−1(dy)

= kα,d

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫
Hd−1((v,x))

(|x− ẑ|2 + |(v, x)− u|2)
α−d
2 `d−1(dẑ),

where ẑ is the orthogonal projection of y ∈ Hd−1(u) onto Hd−1((v, x)), which satisfies |ẑ − y| =
|(v, x)− u| and `d−1(dẑ) = `d−1(dy). Note also that (v, x − ẑ) = 0, for ẑ ∈ Hd−1((v, x)), and
hence x−Hd−1((v, x)) is equal to Hd−1(0), which, in turn, can otherwise be identified as Rd−1.
Therefore, if we used generalised polar coordinates to integrate over Hd−1((v, x)) identified as
x− Rd−1, we have

Uρ(1)
ε (x)

= kα,d

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫
Hd−1((v,x))

(
|x− ẑ|2 + |(v, x)− u|2

)α−d
2
`d−1(dẑ)

=
2kα,dπ

(d−2)/2

Γ((d− 2)/2)

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫ ∞
0

∫
Sd−2

(
r2 + |(v, x)− u|2

)α−d
2
rd−2drσ1(dθ)

=
2kα,dπ

(d−2)/2

Γ((d− 2)/2)

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫ ∞
0

(
r2 + |(v, x)− u|2

)α−d
2
rd−2dr

=
kα,dπ

(d−2)/2

Γ((d− 2)/2)

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫ ∞
0

(
w + |(v, x)− u|2

)α−d
2
w
d−3
2 dw (3.60)

=
kα,dπ

(d−2)/2Γ(1−α
2 )Γ(d−1

2 )

Γ(d−2
2 )Γ(d−α2 )

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2|(v, x)− u|α−1du

=
kα,dπ

(d−2)/2Γ(1−α
2 )Γ(d−1

2 )

Γ(d−2
2 )Γ(d−α2 )

∫ 1

−1
(1 + w)−α/2(1− w)−α/2|ε−1(v, x)− w|α−1dw, (3.61)

where, in the penultimate equality, we used a classical representation of the Beta function (see
formula 3.191.2 in [15]), which tells us that, for any Re(ν) > Re(γ) > 0 and z > 0,∫ ∞

0
(y + z)−νyγ−1dy = zγ−ν

Γ(ν − γ)Γ(γ)

Γ(ν)
,

and in the final equality, we have changed variables using w = εu. Next, we observe that
|ε−1(v, x)| ≤ 1 on account of the fact that x ∈ Dε ⊆ Hd−1

ε . Now choose kα,d, so that

kα,dπ
(d−2)/2Γ(1−α

2 )Γ(d−1
2 )

Γ(d−2
2 )Γ(d−α2 )

= 1. (3.62)
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We can now appeal directly to (3.18) to deduce that, for x ∈ Dε

Uρ(1)
ε (x) = 1. (3.63)

In the spirit of (3.33)–(3.35), it now follows that, for x 6∈ D and ε sufficiently small,

UρDε (x) ≤ Px(τDε <∞).

So that
lim inf
ε→0

UρDε (x) ≤ lim inf
ε→0

Px(τDε <∞), x 6∈ D. (3.64)

Now we turn our attention to (3.59). Noting that when x ∈ Dε, |x− y| > δ for y ∈ D̂δε, we
have, for all x ∈ Dε,

Uρ
(2)
ε,δ (x) = kα,d

∫
D̂δε

|x− y|α−d((v, y) + ε)−α/2(ε− (v, y))−α/2`d(dy)

≤ kα,dδα−d
∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫
Dδ((v,x))

`d−1(dŷ)

≤ δα−dkα,d`d−1(Dδ)

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

= δα−dε1−αkα,d`d−1(Dδ)21−αΓ((2− α)/2)2

Γ(2− α)
,

where we have used the calculation in (3.31) in the final equality. Choosing δ = δ(ε) =

ε(1−α)/2(d−α), and noting that `d−1(Dδ) is uniformly bounded from above by an unimportant
constant for e.g. all δ < 1 (thanks to the assumption that `d−1(D) <∞), we see that

lim
ε→0

sup
x∈Dε

Uρ
(2)
ε,δ(ε)(x) = 0.

In a similar spirit to (3.36)–(3.38), we now have that

lim sup
ε→0

εα−1UρD
δ(ε)

ε (x) ≥ lim sup
ε→0

εα−1Px(τDε <∞), x 6∈ D. (3.65)

Matching up the left-hand side of (3.64) with that of (3.65), we can proceed in a similar fashion
to (3.41) – (3.42), leading to the statement of Theorem 3.4.1 (i) as promised. The calculation is
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based around the fact that

lim
ε→0

εα−1UρDε (x) = lim
ε→0

kα,dε
α−1

∫
Dε

|x− y|α−d((v, y) + ε)−α/2(ε− (v, y))−α/2`d(dy)

= lim
ε→0

kα,dε
α−1

∫ ε

−ε
(u+ ε)−α/2(ε− u)−α/2du

∫
D(u)
|x− ŷ|α−d`d−1(dŷ)

= kα,d2
1−αΓ((2− α)/2)2

Γ(2− α)

∫
D
|x− y|α−d`d−1(dy)

= 21−απ−(d−2)/2 Γ(d−2
2 )Γ(d−α2 )Γ(2−α

2 )2

Γ(1−α
2 )Γ(d−1

2 )Γ(2− α)

∫
D
|x− y|α−d`d−1(dy), (3.66)

where we have used the calculation in (3.31) and (3.62) in the third equality.

(ii) The setting α = 1 requires yet another delicate handing of the associated potentials.
Given that all the main ideas are now present in the paper, we simply lay out the key points of
the proof, leaving the remaining detail for the reader.

Our calculations begin in the same way as in part (i), in particular, we work with the
core measure ρε as in (3.57), albeit (as with Theorem 3.2.2 (ii)) replacing k1,d by k1,d/| log ε|,
to be used in the constructions (3.58) and (3.59). An immediate complication we have is in
evaluating Uρ(1)

ε (x), for x ∈ Dε, can be seen when we pick up the computations for part (i) at
(3.60). Indeed, at that point, we are confronted with the integral∫ ∞

0

(
w + |(v, x)− u|2

) 1−d
2
w
d−3
2 dw =∞.

The solution to this is to adjust the core measure ρε as follows. Since D is bounded, we can
choose an R > 0 sufficiently large that, D ⊂ Sd−2(0, R) := {y ∈ Hd−1 : |y| ≤ R} strictly contains
D. Denote Sd−2

ε (0, R) = {x ∈ Hd−1
ε : x̂ ∈ Sd−2(0, R)}, where x̂ is the orthogonal projection of x

on to Hd−1. Suppose we now make a slight adjustment and replace ρε by

ρε(dy) =
k1,d,R

| log ε|
((v, y) + ε)−α/2(ε− (v, y))−α/21(y∈Sd−2

ε (0,R))`d(dy),

for an appropriate choice of k1,d,R. We may now continue the argument from (3.60) with the
calculation

| log ε|Uρ(1)
ε (x) =

kα,d,Rπ
(d−2)/2

Γ((d− 2)/2)

∫ ε

−ε
(u+ε)−1/2(ε−u)−1/2du

∫ R

0

(
w+ |(v, x)− u|2

) 1−d
2
w
d−3
2 dw.

(3.67)
Denote by I(R, ε, x) the right-hand side of 3.67, ensuring that ε is small enough that ε� R.
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Appealing to (A.8),

I(R, ε, x) =
kα,d,Rπ

(d−2)/2

Γ((d− 2)/2)

∫ ε

−ε
(u+ ε)−1/2(ε− u)−1/2du

∫ R

0

(
w + |(v, x)− u|2

) 1−d
2
w
d−3
2 dw

=
kα,d,Rπ

(d−2)/2

Γ((d− 2)/2)

∫ ε

−ε
(ε2 − u2)−1/2|(v, x)− u|1−ddu

∫ R

0

( w

|(v, x)− u|2
+ 1
) 1−d

2
w
d−3
2 dw

=
kα,d,Rπ

(d−2)/2

Γ((d− 2)/2)

∫ ε

−ε
(ε2 − u2)−1/2|(v, x)− u|1−d

R(d−1)/2

(d− 1)/2
2F1

(
d− 1

2
,
d− 1

2
;
d+ 1

2
;− R

|(v, x)− u|2

)
du,

where we have used the identity in (A.9). One of the many identities for hypergeometric func-
tions, see [2], offers us the growth condition, for c− a ∈ N, as |z| → ∞,

2F1(a, a; c; z) ∼ Γ(c)(log(−z)− ψ(c− a)− ψ(a)− 2γ)(−z)−a

Γ(a)(c− a− 1)!
+

Γ(c)2(−z)−c

Γ(a)2((c− a)!)2
, (3.68)

where γ is an unimportant constant and ψ(z) = Γ′(z)/Γ(z) is the di-gamma function. In the
spirit of previous calculations, we can thus find to leading order, uniformly over x ∈ Dε,

Uρ(1)
ε (x) ∼ 2

πd/2kα,d,R
Γ((d− 2)/2)

, (3.69)

which remarkably does not depend on R. This means we should choose the constant

kα,d,R =
Γ((d− 2)/2)

2πd/2

for this asymptotic to serve our purpose.

At this point in the proof, recalling the fundamental decomposition (3.58), it is worth
bringing in the term Uµ

(2)
ε and noting that one can compute with relatively coarse estimates

that
sup
x∈Dε

∣∣∣Uρ(2)
ε (x)

∣∣∣ ≤ C

| log ε|
,

for some unimportant constant C > 0. Together with (3.69), in a calculation similar to (3.66)
we can put the pieces together to get the asymptotic, for x 6∈ D and ε sufficiently small,

lim
ε→0

| log ε| Px(τDε <∞) = lim
ε→0

| log ε| UρDε (x)

= lim
ε→0

Γ((d− 2)/2)

2πd/2

∫
Dε

|x− y|1−d(ε2 − (v, y)2)−1/2`d(dy)

= lim
ε→0

Γ((d− 2)/2)

πd/2

∫ ε

−ε
(ε2 − u2)−1/2du

∫
D(u)
|x− ŷ|1−d`d−1(dŷ)

=
Γ((d− 2)/2)

π(d−2)/2
MD(x). (3.70)

The proof is complete.
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Appendix: Hypergeometric identities

We work with the standard definition for the hypergeometric function,

2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1.

Of the many identities for hypergeometric functions, we need the following:

2F1(a, b, c; z) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b2F1(c− a, c− b, 1 + c− a− b; 1− z)

+
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b, a+ b− c+ 1; 1− z), (A.1)

for c− a− b /∈ Z. Hence, thanks to continuity,

lim
ε→0

sup
r∈[1−ε,1]

∣∣∣∣∣2F1

(d− α
2

, 1− α

2
;
d

2
; r2
)

− Γ(d/2)Γ(1− α)

Γ((d− α)/2)Γ((2− α)/2)
(1− r2)α−1 − Γ(d/2)Γ(α− 1)

Γ(α/2)Γ((d+ α− 2)/2)

∣∣∣∣∣ = 0.

(A.2)

We will need to apply a similar identity to (A.1) but for the setting that c − a − b = 0,
which violates the assumption behind (A.1). In that case, we need to appeal to the formula

2F1(a, b, a+ b, z) =
Γ(a+ b)

Γ(a)Γ(b)

( ∞∑
k=0

(a)k(b)k
(k!)2

(2ψ(k + 1)− ψ(a+ k)− ψ(b+ k))(1− z)k

− log(1− z) 2F1(a, b, 1, 1− z)
)
, (A.3)

for |1− z| < 1 where the di-gamma function ψ(z) = Γ′(z)/Γ(z) is defined for all z 6= −n, n ∈ N.

Again, thanks to continuity, we can write

lim
ε→0

sup
r∈[1−ε,1]

∣∣∣∣∣2F1

(d− 1

2
,
1

2
;
d

2
; r2
)

+
Γ(d/2)

Γ((d− 1)/2)Γ(1/2)
log(1− r2)

− 2Γ(d/2)(ψ(1)− ψ((d− 1)/2)− ψ(1/2))

Γ((d− 1)/2)Γ(1/2)

∣∣∣∣∣ = 0. (A.4)

A second identity that is needed is the following combination formula, which states that
for any |z| < 1, we have

2F1(a, b; c; z) =
Γ(b− a)Γ(c)

Γ(c− a)Γ(b)
(−z)−a2F1

(
a, a− c+ 1; a− b+ 1;

1

z

)
+

Γ(a− b)Γ(c)

Γ(c− b)Γ(a)
(−z)−b2F1

(
b− c+ 1, b;−a+ b+ 1;

1

z

)
. (A.5)
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Its proof can be found, for example at [1]. In the main body of the text, we use this identity for
the setting that a = α/2, b = α and c = 1 + α/2. This gives us the identity

2F1

(α
2
, α; 1 +

α

2
; z
)

=
Γ(α/2)Γ((2 + α)/2)

Γ(α)
(−z)−α/22F1

(
α/2, 0; 1− α/2;

1

z

)
+

Γ(−α/2)Γ((2 + α)/2)

Γ((2− α)/2)Γ(α/2)
(−z)−α2F1

(
α/2, α; 1 + α/2;

1

z

)
=

Γ(α/2)Γ((2 + α)/2)

Γ(α)
(−z)−α/2

− (−z)−α2F1

(
α/2, α; 1 + α/2;

1

z

)
,

where we have used the recursion formula for gamma functions twice in the final equality. This
allows us to come to rest at the following useful identity

(−z)−α/22F1

(
α/2, α; 1 + α/2;

1

z

)
+ (−z)α/22F1

(α
2
, α; 1 +

α

2
; z
)

=
Γ(α/2)Γ((2 + α)/2)

Γ(α)
.

(A.6)

We are also interested in integral formulae, for which the hypergeometric function is used
to evaluate an integral. The first is aversion of formula 3.665(2) in [15] which states that, for
any 0 < |a| < r and ν > 0, as∫ π

0

sind−2 φ

(a2 + 2ar cosφ+ r2)ν
dφ =

1

r2ν
B
(d− 1

2
,
1

2

)
2F1

(
ν, ν − d

2
+ 1;

d

2
;
a2

r2

)
, (A.7)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the Beta function. The second is formula 3.197.8 in [15],
which states that, for Re(µ) > 0, Re(ν) > 0 and | arg(u/β)| < π,∫ u

0
xν−1(u− x)µ−1(x+ β)λdx = βλuµ+ν−1B(µ, ν)2F1

(
−λ, ν;µ+ ν;−u

β

)
. (A.8)

The third is 3.194.1 of [15] and states that, for | arg(1 + βu)| > π and Re(µ) > 0, Re(ν) > 0,∫ u

0
xµ−1(1 + βx)−νdx =

uµ

µ
2F1(ν, ν − µ; 1 + µ;−βu), (A.9)

where 2F1 in the above identity is understood as its analytic extension in the event that |βu| > 1.
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Chapter 4

Attraction to and repulsion from a
subset of the unit sphere for isotropic
stable Lévy processes

Andreas E. Kyprianou1, Sandra Palau2 Tsogzolmaa Saizmaa3

Abstract

Taking account of recent developments in the representation of d-dimensional isotropic stable
Lévy processes as self-similar Markov processes, e.g. deep factorisation or radial excursions of
stable processes cf. [17, 20, 22], we consider a number of new ways to condition its path. Suppose
that S is a region of the unit sphere Sd−1 = {x ∈ Rd : |x| = 1}. We construct the aforesaid
stable Lévy process conditioned to approach S continuously from either inside or outside of
the sphere. Additionally, we show that these processes are in duality with the stable process
conditioned to remain inside the sphere and absorb continuously at the origin and to remain
outside of the sphere, respectively. Our results extend the recent contributions of [12], where
similar conditioning is considered, albeit in one dimension as well as providing analogues of
the same and very classical results for Brownian motion, [13]. As in [12], we appeal to recent
fluctuation identities related to the deep factorisation of stable processes, cf. [17, 20, 22].
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4.1 Introduction

Let X = (Xt, t ≥ 0) be a d-dimensional stable Lévy process with probabilities (Px, x ∈ Rd). This
means that X has càdlàg paths with stationary and independent increments as well as respecting
a property of self-similarity: There is an α > 0 such that, for c > 0, and x ∈ Rd, under Px, the
law of (cXc−αt, t ≥ 0) is equal to Pcx. It turns out that stable Lévy processes necessarily have
the scaling index α ∈ (0, 2]. The case α = 2 pertains to a standard d-dimensional Brownian
motion, thus has a continuous path. The processes we construct are arguably less interesting in
the diffusive setting and thus we restrict ourselves to the isotropic pure jump setting of α ∈ (0, 2)

in dimension d ≥ 2.

To be more precise, this means, for all orthogonal transformations U : Rd 7→ Rd and
x ∈ Rd,

the law of (UXt, t ≥ 0) under Px is equal to (Xt, t ≥ 0) under PUx.

For convenience, we will henceforth refer to X just as a stable process.

The stable Lévy process has a the jump measure Π that satisfies

Π(B) =
2αΓ((d+ α)/2)

πd/2|Γ(−α/2)|

∫
B

1

|y|α+d
dy, B ⊆ B(Rd).

The constant in the definition of Π(B) can be arbitrary, however, our choice corresponds to the
one one that allows us to identify the characteristic exponent Lévy process as

Ψ(θ) = −1

t
logE(eiθ·Xt) = |θ|α, θ ∈ Rd,

where we write P in preference to P0; more precisely, the coefficient of |θ|α is one.

In this article, we characterise the law of a stable process conditioned to hit continuously a
part of the surface, say S ⊆ Sd−1 = {x ∈ Rd : |x| = 1}, either from the inside or from the outside
of the unit sphere. We develop an expression for the law of the limiting point of contact on S.
Moreover, we show that, when time reversed from the strike point on S, the resulting process
can also be seen as a conditioned stable process. The extreme cases that S = Sd−1 (the whole
unit sphere) and S = {ϑ} ∈ Sd−1 (a single point on the unit sphere) are included in our analysis,
however, we will otherwise insist that the Lebesgue surface measure of S is strictly positive.

Our results relate to the recent work of [12], who considered a real valued Lévy process
conditioned to continuously approach the boundary of the interval [−1, 1] from the outside. In
order to avoid repetition, we always remain in two or more dimensions. As in [12], we rely
heavily on recent fluctuation identities that are connected to the deep factorisation of the stable
process; cf. [17, 20, 22]. The results here are also related the classical results of Doob [13], who
deals with similar conclusions for Brownian motion and as well as echoing the general theory
of conditioned stochastic processes in the potential-analytic sense (via a Doob h-transform), see
e.g. Chapter 14 of [11].
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4.2 Attraction towards the patch S

For convenience, we will work with the definition Bd = {x ∈ Rd : |x| < 1}. Let D(Rd) denote
the space of càdlàg paths ω : [0,∞)→ Rd ∪ ∂ with lifetime k(ω) = inf{s > 0 : ω(s) = ∂}, where
∂ is a cemetery point. The space D(Rd) will be equipped with the Skorokhod topology, with its
Borel σ-algebra F and natural filtration (Ft, t ≥ 0). The reader will note that we will also use
a similar notion for D(R × Sd−1) later on in this text in the obvious way. We will always work
with X = (Xt, t ≥ 0) to mean the coordinate process defined on the space D(Rd). Hence, the
notation of the introduction indicates that P = (Px, x ∈ Rd) is such that (X,P) is our stable
process.

Consider a subset S ⊆ Sd−1 such that it has strictly positive Lebesgue surface measure or
it is a point. We want to construct the law of X conditioned to approach S continuously from
within B̄cd := Rd\B̄d. From a potential-theoretic perspective, this law can be obtained as a Doob
h-transform of the killed stable process in Bcd, provided that h is a positive harmonic function
in Bcd which is equal to zero in Bd and which goes to zero at infinity and at Sd−1 \ S; cf. [11,
Chapter 14]. In this paper, we want to give a probabilistic construction, which identifies a more
physical meaning to the conditioning in terms of the paths of the stable process; see e.g. the
classical work of [3, 9]. Similarly, we want the law of X conditioned to approach S continuously
from within Bd. More precisely, via an appropriate limiting procedure, we want to build a new
family of probabilities P∨ = (P∨x , x ∈ B̄cd) such that

P∨x (Xs ∈ B̄cd, s < k and Xk− ∈ S) = 1, x ∈ B̄cd,

with a similar statement holding when the conditioning is undertaken from within Bd.

As we are considering two or higher dimensions, the process (X,P) is transient in the sense
that limt→∞ |Xt| =∞ almost surely. Defining

G(t) := sup{s ≤ t : |Xs| = inf
u≤s
|Xu|}, t ≥ 0,

we thus have by monotonicity and the transience of (X,P) that G(∞) := limt→∞G(t) exists
and, moreover, XG(∞) describes the point of closest reach to the origin in the range of X.

We can similarly define G(t) = sup{s ≤ t : |Xs| = supu≤s |Xu|}, t ≥ 0, so that G(τ	1 −) is
the point of furthest reach from the origin prior to exiting Bd, where

τ	1 = inf{t > 0 : |Xt| > 1}.

Let us turn to what we mean by conditioning to attract to the set S from either the interior
or the exterior of the sphere. If S is not a point, we define Aε = {rθ : r ∈ (1, 1 + ε), θ ∈ S}
and Bε = {rθ : r ∈ (1 − ε, 1), θ ∈ S}, for 0 < ε < 1 and define the corresponding events
C∨ε := {XG(∞) ∈ Aε}, and C∧ε := {XG(τ	1 −) ∈ Bε}. Let

τ⊕1 = inf{t > 0 : |Xt| < 1}.
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We are interested in the asymptotic conditioning

P∨x (A, t < k) = lim
ε→0

Px(A, t < τ⊕1 |C
∨
ε ), (A.1)

when x ∈ B̄cd and
P∧x (A, t < k) = lim

ε→0
Px(A, t < τ	1 |C

∧
ε ), (A.2)

when x ∈ Bd, for all A ∈ Ft.

When S = {ϑ} ∈ Sd−1, we need to adapt slightly the sets Aε and Bε so that Aε = {rφ : r ∈
(1, 1 + ε), φ ∈ Sd−1, |φ− ϑ| < ε} and Bε = {rφ : r ∈ (1− ε, 1), φ ∈ Sd−1, |φ− ϑ| < ε}.

We will go a little further in due course and give a fuller description of these two conditioned
processes by including the cases that X is issued from the unit sphere itself but not within S,
i.e. Sd−1 \ S. For now, we have our first main result, given immediately below, for which we
define the function

HS(x) =


||x|2 − 1|α/2

∫
S
|θ − x|−dσ1(dθ) if σ1(S) > 0,

||x|2 − 1|α/2|ϑ− x|−d if S = {ϑ},

(A.3)

for |x| 6= 1, where σ1(dθ) is the Lebesgue surface measure on Sd−1 normalised to have unit
mass. It is worthy of note that, when S = Sd−1, the integral in (A.3) can be computed precisely.
Indeed, up to an unimportant (for our purposes) multiplicative constant, C > 0, which may
change from line to line, we note that, for |x| > 1,∫

Sd−1

|x− θ|−dσ1(dθ) = C

∫ π

0

(sinφ)d−2

(|x|2 − 2|x| cosφ+ 1)d/2
dφ

= C|x|−d2F1(d/2, 1; d/2, |x|−2)

= C|x|−d
(

1− 1

|x|2

)−1

,

where we have used the hypergeometric identity in (A.1) of the Appendix. We can perform a
similar calculation when |x| < 1 and, obtain, up to a multiplicative constant, C > 0, that∫

Sd−1

|x− θ|−dσ1(dθ) = C
(
1− |x|2

)−1
. (A.4)

All together, noting that we may ignore multiplicative constants, we have

HSd−1(x) =


|x|α−d

(
1− |x|−2

)α
2
−1 if |x| > 1

(1− |x|2)
α
2
−1 if |x| < 1.

(A.5)

As the next result will make clear, HS is a positive harmonic function for both (Xt, t < τ	1 )

and (Xt, t < τ⊕1 ). From the potential-theoretic perspective, it can be described as an integral of
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the Martin kernel over S. Then, by the Martin boundary theory, the h-conditioned process will
approach S with probability one, see [11, Chapter 14] as well as the classical results of Doob for
Brownian motion, cf. Theorem 7.1 [13].

Theorem 4.2.1 (Stable process conditioned to attract to S continuously from one side). Let
S ⊆ Sd−1 be an closed set with σ1(S) > 0 or S = {ϑ} for a fixed point ϑ ∈ Sd−1. Then for all
points of issue x ∈ Rd \ Sd−1 we have

dP∨x
dPx

∣∣∣∣
Ft

= 1(t<τ⊕1 )

HS(Xt)

HS(x)
, if x ∈ B̄cd (A.6)

and otherwise
dP∧x
dPx

∣∣∣∣
Ft

= 1(t<τ	1 )

HS(Xt)

HS(x)
, if x ∈ Bd. (A.7)

In particular, (P∨x , x ∈ B̄cd) and (P∧x , x ∈ B̄cd) are Markovian families.

Remark 4.2.1. The choice of limiting conditioning procedure that we have used reflects a
similar approach taken in [12] in one dimension. It is worth noting at this point that the choice
of C∨ε and C∧ε are by no means the only possibilities as far as performing a limiting conditioning
that results in (A.6) and (A.7). For example, once the reader is familiar with the proof of
Theorem 4.2.1, it will quickly become clear that, when S is not a singleton, by defining e.g.
C∨ε = {Xτ⊕1

∈ Bε}, or indeed C∨ε = {Xτ⊕1 −
∈ Aε}, the limit (A.1) will still produce the change

of measure (A.6). Once the reader is familiar with the proof of Theorem 4.2.1, it is a worthwhile
exercise to verify the two proposed alternative definitions of C∨ε for the limiting process by
appealing to the fluctuation identities in e.g. [20]. Other definitions of C∨ε giving a consistent
limit may indeed also be possible.

Whilst the above theorem deals with the construction of the conditioned process up to but
not including its terminal position, we characterise the latter in the next result, which resonates
with Theorem 14.8 of [11].

Proposition 4.2.1 (Distribution of the hitting location). Suppose that S ⊆ Sd−1 be a closed set
with σ1(S) > 0. Let S′ be an closed subset of S. Then for any x ∈ Rd \ B̄d, we have

P∨x (Xk− ∈ S′) =

∫
S′ |θ − x|

−dσ1(dθ)∫
S |θ − x|−dσ1(dθ)

, (A.8)

with an identical result holding for Xk− under P∧x , with x ∈ Bd.

4.3 Lamperti–Kiu representation and radial excursions

The basic definition of the stable process conditioned to attract continuously to S from one side
is not quite complete. Strictly speaking, we could think about defining the process to include
the points of issue in Sd−1 \ S. It turns out that this is possible. However, we first need to
remind the reader of the recently described radial excursion theory, see [20, 21]. The starting
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point for the aforementioned is the Lamperti–Kiu transform which identifies the stable process
as a self-similar Markov process.

To describe it, we need to introduce the notion of a Markov Additive Process, henceforth
written MAP for short. Let Sd−1 = {x ∈ Rd : |x| = 1}. With an abuse of previous notation,
we say that (Ξ,Υ) = ((Ξt,Υt), t ≥ 0) is a MAP if it is Feller process on Rn × Sd−1, with
probabilities Px,θ, x ∈ Rn, θ ∈ Sd−1, such that, for any t ≥ 0, the conditional law of the process
((Ξs+t − Ξt,Υs+t) : s ≥ 0), given ((Ξu,Υu), u ≤ t), is that of (Ξ,Υ) under P0,θ, with θ = Υt.
For a MAP pair ((Ξt,Υt), t ≥ 0), we call Ξ the ordinate and Υ the modulator.

According to one of the main results in [1], there exists a MAP on R× Sd−1, which we
will henceforth write as (ξ,Θ), with probabilities P = (Px,θ, x ∈ R, θ ∈ Sd−1) such that the
d-dimensional stable process can be written

Xt = exp{ξϕ(t)}Θϕ(t) t ≥ 0, (A.9)

where
ϕ(t) = inf

{
s > 0 :

∫ s

0
eαξudu > t

}
. (A.10)

Whilst Θ alone is a Feller process, it is not necessarily true that ξ alone is. However, it is
a consequence of isotropy that this is the case here. Moreover, ξ alone is a Lévy process whose
characteristic exponent is known (but not important in the current context); see for example [8].
What is important for our purposes is to note for now that it has paths of unbounded variation,
and therefore is regular for the upper and lower half line (in the sense of Definition 6.4 of [16]).

It is not difficult to show that the pair ((ξt−ξt,Θt), t ≥ 0), forms a strong Markov process,
where ξ

t
:= infs≤t ξs, t ≥ 0 is the running minimum of ξ. On account of the fact that ξ, alone,

is a Lévy process, (ξt − ξ
t
, t ≥ 0) is also a strong Markov process. Suppose we denote by

` = (`t, t ≥ 0) the local time at zero of ξ − ξ, then we can introduce the following processes

H−t = −ξ`−1
t

and Θ−t = Θ`−1
t
, t ≥ 0,

and define (H−
`−1
t

,Θ−
`−1
t

) = (∂, †), a cemetery state, if `−1
t = ∞. Then, the pair (`−1, H−),

without reference to the associated modulation Θ−, are Markovian and play the role of the
descending ladder time and height subordinators of ξ. Moreover, the strong Markov property
tells us that (`−1

t , H−t ,Θ
−
t ), t ≥ 0, defines a Markov Additive Process on R2× Sd−1, whose first

two elements are ordinates that are non-decreasing. In this sense, ` also serves as an adequate
choice for the local time of the Markov process (ξ − ξ,Θ) on the set {0} × Sd−1. (See [20]).

Suppose we define gt = sup{s < t : ξs = ξ
s
}, and recall that the regularity of ξ for (−∞, 0)

and (0,∞) ensures that it is well defined, as is g∞ = limt→∞ gt. Set

dt = inf{s > t : ξs = ξ
s
}.
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For all t > 0 such that dt > gt the process

(εgt(s),Θ
ε
gt

(s)) := (ξgt+s − ξgt ,Θgt+s), s ≤ ζgt := dt − gt,

codes the excursion of (ξ − ξ,Θ) from the set (0, Sd−1) which straddles time t. Such excursions
live in the space U(R× Sd−1), the space of càdlàg paths in R× Sd−1, written in canonical form

(ε,Θε) = ((ε(t),Θε(t)) : t ≤ ζ) with lifetime ζ = inf{s > 0 : ε(s) < 0},

such that (ε(0),Θε(0)) ∈ {0} × Sd−1, (ε(s),Θε(s)) ∈ (0,∞) × Sd−1, for 0 < s < ζ, and ε(ζ) ∈
(−∞, 0].

Taking account of the Lamperti–Kiu transform (A.9), it is natural to consider how the
excursion of (ξ − ξ,Θ) from {0} × Sd−1 translates into a radial excursion theory for the process

Yt := eξtΘt, t ≥ 0.

Ignoring the time change in (A.9), we see that the radial minima of the process Y agree with the
radial minima of the stable process X. Indeed, each excursion of (ξ − ξ,Θ) from {0} × Sd−1 is
uniquely associated to exactly one excursion of (Yt/ infs≤t |Ys|, t ≥ 0), from Sd−1, or equivalently
an excursion of Y from its running radial infimum. Moreover, we see that, for all t > 0 such
that dt > gt,

Ygt+s = eξgt eεgt (s)Θε
gt

(s) = |Ygt |e
εgt (s)Θε

gt
(s), s ≤ ζgt .

This will be useful to keep in mind for the forthcoming excursion computations.

For t > 0, let Rt = dt− t, and define the set G = {t > 0 : Rt− = 0, Rt > 0} = {gs : s ≥ 0}.
The classical theory of exit systems in [23] (see Theorems (4.1) and (6.3) therein) now implies that
there exists an additive functional (Λt, t ≥ 0) and a family of excursion measures, (Nθ, θ ∈ Sd−1)

such that:

(i) Λ is an additive functional of (ξ,Θ), has a bounded 1-potential and is carried by the set
of times {t ≥ 0 : (ξt − ξt,Θt) ∈ {0} × Sd−1},

(ii) the map θ 7→ Nθ is an Sd−1-indexed kernel on U(R× Sd−1) such that Nθ(1− e−ζ) <∞;

(iii) we have the exit formula

Ex,θ

∑
g∈G

F ((ξs,Θs) : s < g)H((εg,Θ
ε
g))


= Ex,θ

[∫ ∞
0

F ((ξs,Θs) : s < t)NΘt(H(ε,Θε))dΛt

]
, (A.11)

for x 6= 0, where F is continuous on the space of càdlàg paths D(R × Sd−1) and H is
measurable on the space of càdlàg paths U(R× Sd−1);
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(iv) under any measure Nθ the process ((ε(s),Θε(s)), s < ζ) is a strong Markov process with
the same semigroup as (ξ,Θ) killed at its first hitting time of (−∞, 0]× Sd−1.

The couple (Λ,N·) is called an exit system. Note that in Maisonneuve’s original formulation, the
pair Λ, N· := (Nθ, θ ∈ Sd−1) is not unique, but once Λ is chosen the measures (Nθ, θ ∈ Sd−1) exist
however, are only unique up to Λ-neglectable sets, i.e. setsA such thatEx,θ(

∫∞
0 1{Θs∈A}dΛs) = 0.

Another example of where this theory has been used is in the construction of excursions from a
set is that of Brownian motion away from a hyperplane; see [7].

Now referring back to `, the local time of ξ− ξ at 0, since it is an additive functional with
a bounded 1-potential, there is an exit system which corresponds to (`,N·). With this choice of
` we assume that the choice of N· is fixed despite the fact that we can induce subtle variations
in N· on a Λ-negligible set of θ ∈ Sd−1 e.g. by setting Nθ ≡ 0 there. The reader is referred to
Chapter VII of [4] for further discussion on this matter. Note that Nθ is not isotropic in θ. For
example, excursions that begin at the ‘North Pole’, say 1, are, with high frequency, arbitrarily
small and hence will end near to 1. That said, depending on the event A, it is possible that
Nθ(A) does not depend on θ ∈ Sd−1; for example, Nθ(ζ =∞). The reason for this is that it must
agree with the rate at which the infinite excursion of ξ− ξ occurs, according to the local time `.
More generally, we have that, for all orthogonal transformations U : Rd 7→ Rd and f such that
Nθ(f(ε,Θε)) < ∞, θ ∈ Sd−1, isotropy implies that Nθ(f(ε, UΘε)) = NUθ(f(ε,Θε)). On account
of the fact that ` is only defined up to a multiplicative constant, we can use the common value
of Nθ(ζ = ∞) to fix a normalisation the local time, or equivalently, of the excursion measures
(Nθ, θ ∈ Sd−1). We thus fix it to take the value of unity. The place at which this choice of
normalisation becomes relevant is when we cite certain identities from (cf. (A.39) below) from
[20], in which this assumption was also made. Henceforth, this is the exit system we will work
with and the system of excursion associated to it is what we call our radial excursion theory.

Later in our proofs we will use a variant of the above excursion theory based on the MAP
(ξ − ξ,Θ), where ξ is the process ξt = sups≤t ξs, t ≥ 0. We leave the details until that point in
the text. With our excursion theory in hand, we can now proceed to identify the completion of
Theorem 4.2.1.

Theorem 4.3.1. Let S ⊆ Sd−1 be an closed set with σ1(S) > 0 or S = {ϑ} for a fixed point
ϑ ∈ Sd−1. The processes (X, IP∨) and (X, IP∧) can be extended in a consistent way to include
points of issue x ∈ Sd−1 \ S with pathwise continuous entry via

P∨x (Xt ∈ dy, t < k) :=
Γ(d/2)

Γ(α/2 + 1)Γ((d− α)/2)

HS(y)

h(x)
Nx (Xε(t) ∈ dy, t < ς) , |y| > 1

(A.12)
and

P∧x (Xt ∈ dy, t < k) :=
Γ(d/2)

Γ(α/2 + 1)Γ((d− α)/2)

HS(y)

h(x)
Nx (Xε(t) ∈ dy, t < ς) , |y| < 1,

(A.13)
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where,

h(x) =

∫
S
|x− θ|−dσ1(dθ)

and, for (ε,Θε) selected from U(R× Sd−1) or U(R× Sd−1), respectively,

Xε(t) = eε(ϕ(t))Θε(ϕ(t)) and ς = ϕ−1(ζ) =

∫ ζ

0
|Xε(u)|αdu. (A.14)

Here, pathwise continuous entry means that

P∨x (lim
t→0

Xt = x) = P∧x (lim
t→0

Xt = x) = 1 (A.15)

for all x ∈ Sd−1 \ S.

Note, referring to the discussion preceding Theorem 4.3.1 that pertains to the choice
of excursion measures and local time, given the choice of local time ` leaves a free choice of
multiplicative constant in the definition of local time, which may depend on x ∈ Sd−1 \S. In the
proof of Theorem 4.3.1, we use a method of continuity of resolvents to pin down the aforesaid
constants. We also note that extending the notion of a Doob h-transformed process to include
certain ‘boundary points’ in the way we have seen in Theorem 4.3.1 can be seen in e.g. [25, 9]
as well as the classical work of Doob [13].

4.4 Repulsion and duality

In this section, we want to introduce two new processes, which will turn out to be dual to (X,P∨)

and (X,P∧) in the sense of time reversal. The two processes we are interested give meaning to
the stable process conditioned to remain in B̄cd and Bd, respectively, in an appropriate sense.

An important tool that we will make use of in analysing the aforesaid time reversed pro-
cesses comes through the so-called Riesz–Bogdan–Żak transform, which relates path behaviour
of the stable process outside of the unit sphere to its behaviour inside the unit sphere. In order
to state it, we need to introduce the process (X,P◦), where the probabilities P◦ = (P◦x, x 6= 0)

are given by
dP◦x
dPx

∣∣∣∣
Ft

=
|Xt|α−d

|x|α−d
, on t < τε := inf{t > 0 : |Xt| < ε} (A.16)

for all ε > 0. Since α < 2 ≤ d, we note that the change of measure rewards paths that approach
the origin and punishes paths that wander far from the origin. Intuitively, it is clear that (X,P◦)
describes the stable process conditioned to continuously approach the origin. Nonetheless, this
heuristic can be made into a rigorous statement, see for example [18, 20, 21, 22]. The reader will
also note from these references (and it is easy to prove that) that (X,P◦) is also a self-similar
Markov process with the same index of self-similarity as (X,P).

Theorem 4.4.1 (Riesz–Bogdan–Żak transform). Suppose we write Kx = x/|x|2, x ∈ Rd for
the classical inversion of space through the sphere Sd−1. Then, in dimension d ≥ 2, for x 6= 0,
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(KXη(t), t ≥ 0) under Px is equal in law to (X,P◦Kx), where η(t) = inf{s > 0 :
∫ s

0 |Xu|−2αdu >
t}.

Let us return to our duality concerns. To this end, let us introduce the probabilities

H	(x) = Px(τ⊕1 =∞) =
Γ(d/2)

Γ((d− α)/2)Γ(α/2)

∫ |x|2−1

0
(u+ 1)−d/2uα/2−1du, (A.17)

for |x| > 1, where the second inequality is lifted from [5], and,

H⊕(x) = |x|α−dH	(Kx),

for |x| < 1.

These two functions are positive harmonic for X and can be used to define the two families
of probabilities P	 = (P	x , |x| > 1) and P⊕ = (P⊕x , |x| < 1) via the Doob h-transforms,

dP	x
dPx

∣∣∣∣
Ft

=
H	(Xt)

H	(x)
1(t<τ⊕), t ≥ 0, |x| > 1 (A.18)

and,
dP⊕x
dPx

∣∣∣∣
Ft

=
H⊕(Xt)

H⊕(x)
1(t<τ	), t ≥ 0, |x| < 1. (A.19)

The first of these two changes of measure corresponds to the stable process conditioned to avoid
entering Bd by a simple restriction on the probability space (remembering that limt→∞ |Xt| =

∞). Note from Theorem 4.4.1 that

H	(Kx) = PKx(τ⊕1 =∞) = P◦x(τ{0} < τ	1 ),

where τ{0} = inf{t > 0 : |Xt−| = 0}. The second change of measure, (A.19), is a composi-
tion of conditioning the stable process to be absorbed continuously at the origin, followed by
conditioning it not to exit Bd via a simple restriction on the probability space (noting that
limt→∞ |Xt| = 0 under P◦).

The reader will also note that the Riesz-Bogdan-Żak transform also implies a similar
spatial inversion and time change must hold for the pair (X,P	) and (X,P⊕).

Corollary 4.4.1. For |x| > 1, (KXη(t), t ≥ 0) under P	x is equal in law to (X,P⊕Kx), where
η(t) = inf{s > 0 :

∫ s
0 |Xu|−2αdu > t}. Similarly, for |x| < 1, (KXη(t), t ≥ 0) under P⊕x is equal

in law to (X,P	Kx).

Proof. Suppose that F (Xs, s ≤ t) is a bounded Ft-measurable function for each t ≥ 0. Then,
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for |x| > 1, appealing to Theorem 4.4.1, we have

E	x
[
F (KXη(s), s ≤ t)

]
= Ex

[
F (KXη(s), s ≤ t)

H	(K(KXη(t)))

H	(x)
1(η(t)<τ⊕)

]
= E◦Kx

[
F (Xs, s ≤ t)

H	(KXt)

H	(x)
1(t<τ	)

]
= EKx

[
F (Xs, s ≤ t)

|Xt|α−d

|Kx|α−d
H	(KXt)

H	(K(Kx))
1(t<τ	)

]
= E⊕Kx [F (Xs, s ≤ t)] .

This shows the first half of the claim. The second part of the claim is proved using the same
technique and the details are omitted for brevity given how straightforward they are. �

In the spirit of other cases of conditionings from an extreme boundary point (e.g. condi-
tioning a Lévy process to avoid the origin, cf. [25], or to stay positive, cf. [9]), we can extend
the definitions given in (A.18) and (A.19) by appealing to the Markov property of the excursion
measures Nx and Nx, x ∈ Sd−1.

Theorem 4.4.2. The processes (X,P	) and (X,P⊕) can be extended in a consistent way to
include points of issue on Sd−1. Specifically,

P	x (Xt ∈ dy) = H	(y)Nx (Xε(t) ∈ dy, t < ς) , x ∈ Sd−1, |y| > 1 (A.20)

and similarly

P⊕x (Xt ∈ dy) = H⊕(y)Nx (Xε(t) ∈ dy, t < ς) , x ∈ Sd−1, |y| < 1, (A.21)

(specifically, the normalisation of the excursion measure is unity in both cases) where we have
used the notation given in (A.14). As in Theorem 4.3.1, there is pathwise continuous entry.

Our objective is to pair up (X,P∨), (X,P	) and (X,P∧), (X,P⊕) via Nagasawa’s duality
theorem for time reversal; cf [24]. To this end we need to introduce the notion of L-times.

Suppose that Y = (Yt, t ≤ ζ) with probabilities Px, x ∈ E, is a regular Markov process on
an open domain E ⊆ Rd (or more generally, a locally compact Hausdorff space with countable
base), with cemetery state ∆ and killing time ζ = inf{t > 0 : Yt = ∆}. Let us additionally write
Pν =

∫
E ν(da)Pa, for any probability measure ν on the state space of Y .

Suppose that G is the σ-algebra generated by Y and write G(Pν) for its completion by the
null sets of Pν . Moreover, write G =

⋂
ν G(Pν), where the intersection is taken over all probability

measures on the state space of Y , excluding the cemetery state. A finite random time k is called
an L-time (generalized last exit time) if

(i) k is measurable in G, and k ≤ ζ almost surely with respect to Pν , for all ν,

(ii) {s < k(ω)− t} = {s < k(ωt)} for all t, s ≥ 0,
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where ωt is the Markov shift of ω to time t. The most important examples of L-times are killing
times and last exit times.

Theorem 4.4.3. In what follows, we work with the probability distribution

ν(da) :=
σ1(da)|S
σ1(S)

, a ∈ Rd, (A.22)

if S is closed and σ1(S) > 0 and, otherwise, if S = {ϑ}, ϑ ∈ Sd−1, we understand

ν(da) = δ{ϑ}(da), a ∈ Rd. (A.23)

(i) For every L-time k of (X,P	), the time reversed process (X(k−t)−, t < k) under P	ν is
a time-homogeneous Markov process whose transition probabilities agree with those of
(X,P∨).

(ii) Similarly, for every L-time k of (X,P⊕), the time reversed process (X(k−t)−, t < k) under
P⊕ν is a time-homogeneous Markov process whose transition probabilities agree with those
of (X,P∧).

Nagasawa’s result, [24, Theorem 3.5], allows the definition of the time reversed process
only for t > 0, however we can extend it for t = 0. Indeed, in (i), k < ζ = ∞ with probability
P	 one, and the time-reversal can include t = 0; in (ii), we may have k = ζ < ∞ with positive
probability P⊕, but in this case Xζ− = 0 with probability P⊕ one, and therefore again t = 0 can
be included in the time reversed process. That means, if the duality is true for t > 0, it must
be true for all t ≥ 0.

4.5 Proof of Theorem 4.2.1

We start by recalling two useful identities. In Theorem 1.1 in [20], the law of XG(∞) is given by

Px(XG(∞) ∈ dz) = cα,d
(|x|2 − |z|2)α/2

|z|α
|x− z|−ddz, |x| > |z| > 0, (A.24)

where

cα,d = π−d/2
Γ (d/2)2

Γ ((d− α)/2) Γ (α/2)
.

Similarly, from Corollary 1.1 of [20], it was also shown that

Px(XG(τ	1 ) ∈ dz,Xτ	1
∈ dv) = Cα,d

(|z|2 − |x|2)α/2

(|v|2 − |z|2)α/2|z − v|d|z − x|d
dzdv, (A.25)

for |x| < |z| < 1 and |v| > 1, where

Cα,d =
Γ(d/2)2

πd|Γ(−α/2)|Γ(α/2)
.
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First take x ∈ B̄cd. Let τ
⊕
β := inf{t > 0: |Xt| < β} for any β > 1. For any A ∈ Ft, define

P∨x (A, t < τ⊕β ) = lim
ε→0

Px(A, t < τ⊕β |C
∨
ε ). (A.26)

The Markov property gives us

Px(A, t < τ⊕β |C
∨
ε ) = Ex

[
1{A,t<τ⊕β }

PXt(C∨ε )

Px(C∨ε )

]
. (A.27)

In order to prove the Theorem 4.2.1, it is enough to prove that, for all β > 1, (A.6) is true
for sets of the form A ∩ {t < τ⊕β } ∈ Ft, in which case the full statement (A.6) follows by the
Monotone Convergence Theorem as we take β ↓ 1. Next note from (A.24) that

Px(XG(∞) ∈ Aε) = cα,d

∫
z∈Aε

(|x|2 − |z|2)α/2

|z|α
|x− z|−ddz

= c′α,d

∫ 1+ε

1

∫
S

(|x|2 − r2)α/2

rα
|x− rθ|−drd−1drσ1(dθ),

where c′α,d is an unimportant constant.

Since (|x|2 − r2)α/2|x − rθ|−d is continuous at r = 1 with fixed |x| > 1, for any δ > 0,

there exists ε > 0 such that for all 1 < r < 1 + ε,

(1− δ)(|x|2 − 1)α/2|x− θ|−d < (|x|2 − r2)α/2|x− rθ|−d < (1 + δ)(|x|2 − 1)α/2|x− θ|−d

and ∫ 1+ε

1
rd−α+1dr = cεd−α + o(εd−α),

where c is an unimportant constant. Hence, we have

lim
ε→0

εα−dPx(XG(∞) ∈ Aε) = c′α,d

∫
S
(|x|2 − 1)α/2|x− θ|−dσ1(dθ),

where c′α,d does not depend on x and may change from the previous one. Note, moreover, that
for all fixed β > 1

sup
|x|>β

∫
S(|x|2 − 1)α/2|x− θ|−dσ1(dθ)

|x|α−d
<∞. (A.28)

We can both make use of the limit

lim
ε→0

PXt(XG(∞) ∈ Aε)
Px(XG(∞) ∈ Aε)

=

∫
S |θ −Xt|−d(|Xt|2 − 1)α/2σ1(dθ)∫
S |θ − x|−d(|x|2 − 1)α/2σ1(dθ)

, t < τ⊕β . (A.29)

as well as (A.28) and the Dominated Convergence Theorem to ensure the limit may be passed
through the expectation in (A.27) to give (A.6) on {t < τ⊕β }, thus giving the desired result.

Next we look at the proof of (A.7). In a similar way, it is enough to work with sets of the

78



form A ∩ {t < τ	β } ∈ Ft, with β < 1. From (A.25), recalling C∧ε := {XG(τ	1 −) ∈ Bε}, we have

Px(C∧ε ) = Px(XG(τ	1 −) ∈ Bε)

= Cα,d

∫
z∈Bε

∫
v∈Bcd

(|z|2 − |x|2)α/2

(|v|2 − |z|2)α/2|z − v|d|z − x|d
dzdv

= C ′α,d

∫
z∈Bε

(|z|2 − |x|2)α/2

|z − x|d
dz

∫ ∞
1

rd−1dr

(r2 − |z|2)α/2

∫
Sd−1(0,r)

1

|z − θ|d
σr(dθ), (A.30)

where σr(dθ) is the surface measure on Sd−1(0, r), the sphere centred at 0 of radius r, normalised
to have unit mass and C ′α,d is henceforth a constant whose value may change from line to line,
which depends only on α and d. The Poisson formula (giving the probability that a d-dimensional
Brownian motion issued from z (with |z| < 1) will hit the sphere Sd−1(0, r)) tells us that∫

Sd−1(0,r)

rd−2(r2 − |z|2)

|z − θ|d
σr(dθ) = 1, |z| < 1 < r, (A.31)

see for example Remark III.2.5 in [18]. Putting (A.31) in (A.30) gives us

Px(C∧ε ) = C ′α,d

∫
z∈Bε

(|z|2 − |x|2)α/2

|z − x|d
dz

∫ ∞
1

rd−1

(r2 − |z|2)α/2
1

rd−2(r2 − |z|2)
dr

= C ′α,d

∫
z∈Bε

(|z|2 − |x|2)α/2

|z − x|d
1

(1− |z|2)α/2
dz

= C ′α,d

∫ 1

1−ε

∫
S

(u2 − |x|2)α/2

(1− u2)α/2|uθ − x|d
ud−1duσ1(dθ).

Since (u2− |x|2)α/2|x− uθ|−d is continuous at u = 1 with fixed 0 < |x| < 1, for any δ > 0, there
exists ε > 0 such that for all 1− ε < u < 1,

(1− δ)(1− |x|2)α/2|x− θ|−d < (u2 − |x|2)α/2|x− uθ|−d < (1 + δ)(1− |x|2)α/2|x− θ|−d

and ∫ 1

1−ε

ud−1

(1− u2)α/2
du =

∫ ε

0

(1− r)d−1

rα/2(2− r)α/2
dr = cε1−α/2 + o(ε1−α/2),

for an unimportant constant c > 0.

It is now clear that

lim
ε→0

εα/2−1Px(XG(τ	1 −) ∈ Bε) = C ′α,d

∫
S
(1− |x|2)α/2|x− θ|−dσ1(dθ).

Finally, we get again

lim
ε→0

PXt(XG(τ	1 −) ∈ Bε)
Px(XG(τ	1 −) ∈ Bε)

=

∫
S |θ −Xt|−d(1− |Xt|2)α/2σ1(dθ)∫
S |θ − x|−d(1− |x|2)α/2σ1(dθ)

, t < τ	β . (A.32)

and we can proceed as in (A.26), noting the application of dominated convergence and that for
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every fixed β < 1,

sup
|x|<β

∫
S(|x|2 − 1)α/2|x− θ|−dσ1(dθ)

|x|α−d
<∞.

In a similar manner, when S = {ϑ}, we work with sets of the form A ∩ {t < τ⊕β } ∈ Ft or
A ∩ {t < τ	β′} ∈ Ft, with β

′ < 1 < β, respectively. In this case, Aε = {rφ : r ∈ (1, 1 + ε), φ ∈
Sd−1, |φ−ϑ| < ε} and Bε = {rφ : r ∈ (1− ε, 1), φ ∈ Sd−1, |φ−ϑ| < ε}, thus it is clear by similar
analysis that

lim
ε→0

PXt(XG(∞) ∈ Aε)
Px(XG(∞) ∈ Aε)

= lim
ε→0

PXt(XG(τ	1 −) ∈ Bε)
Px(XG(τ	1 −) ∈ Bε)

=
|θ −Xt|−d||Xt|2 − 1|α/2

|θ − x|−d||x|2 − 1|α/2
. (A.33)

The rest of the proof is otherwise a minor adjustment of what we have seen previously, now
taking account of the continuity of (u, θ) 7→ |u2 − |x|2|α/2|x − uθ|−d as well as the fact that
sup|x|>β((|x|2 − 1)α/2|x − θ|−d)/|x|α−d < ∞ and sup|x|<β′((1 − |x|2)α/2|x − θ|−d)/|x|α−d < ∞,
in order to use dominated convergence. �

4.5.1 Proof of Proposition 4.2.1

To calculate the hitting distribution, recall that P∨ is the law of a stable process conditioned
to attract to S continuously from the outside, and A′ε = {rθ : r ∈ (1, 1 + ε), θ ∈ S′}, that is the
restriction of Aε from the set S to its subset S′ ⊂ S. Then, due to Theorem 1.3 in [20], we have
P∨x (Xk− ∈ S′) = limε→0 Px(XG(∞) ∈ A′ε|C∨ε ). Then

lim
ε→0

Px(XG(∞) ∈ A′ε|C∨ε ) = lim
ε→0

Px(XG(∞) ∈ A′ε|XG(∞) ∈ Aε)

= lim
ε→0

Px(XG(∞) ∈ A′ε)
Px(XG(∞) ∈ Aε)

=

∫
S′ |θ − x|

−dσ1(dθ)∫
S |θ − x|−dσ1(dθ)

, (A.34)

which concludes the statement in the Proposition 4.2.1 for the case when X is issued from
outside. Similar computations give the result when X is issued from inside Bd. �

4.6 Proof of Theorems 4.3.1 and 4.4.2

Proof of Theorem 4.3.1: Let us restrict our attention to the extension of (X,P∨) to include
Sd−1 \ S. We need to prove that the proposed definition of P∨θ , for any θ ∈ Sd−1 \ S, is is
well defined as a finite entity, conforms to the correct normalisation to represent a probability
measure and is consistent with the definition of (X,P∨) given in Theorem 4.2.1 on B̄cd, as well
as offering continuous entry from the boundary Sd−1 \ S.

We start with finiteness. To this end, we must show that, for θ ∈ Sd−1\S

Nθ(HS(Xε(t)); t < ς) <∞, t > 0. (A.35)
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Noting from (A.5) that HS(x) ≤ HSd−1(x) = |x|α−d(1−|x|−2)
α
2
−1, which tends to 0 as |x| → ∞,

it suffices to prove that, for any R > 1,

Nθ((|Xε(t)| ≥ R, t < ς) + Nθ(HS(Xε(t)); |Xε(t)| < R, t < ς) <∞, t > 0. (A.36)

Abusing notation and using τ	R = inf{t > 0 : |Xε
t | > R} in the canonical sense,

Nθ((|Xε(t)| ≥ R, t < ς) ≤ Nθ(t < ς ∧ τ	R ) ≤ n(t < κlogR ∧ ζ) <∞ (A.37)

where κlogR = inf{t > 0 : ε(t) > logR} and n is the excursion measure of ξ − ξ. (The fact that
the second expression in (A.37) is finite is a well known fact from the theory of Lévy processes;
otherwise there would be an infinite rate of having arbitrary large excursions, which occurs with
probability zero.)

Our objective now will be to show that in fact the resolvent

IS(θ) :=

∫ ∞
0

Nθ(HS(Xε(t)); |Xε(t)| < R, t < ς)dt <∞, (A.38)

which ensures that (A.35) is finite for Lebesgue almost all t > 0 and hence, thanks to stochastic
continuity of the excursion measure, for all t > 0.

To prove (A.38) consider |y| ≥ 1 and θ ∈ Sd−1 \ S, we can appeal to Proposition 5.2 of
[20], which identifies, for x ∈ Rd\{0}, and continuous g : Rd 7→ R whose support is compactly
embedded in the exterior of the ball of radius |x|,

Narg(x)

(∫ ζ

0
g(|x|eε(u)Θε(u))du

)
=

Γ((d− α)/2)

2απd/2Γ(α/2)

∫
|x|<|z|

g(z)
(|z|2 − |x|2)α/2

|z|α|x− z|d
dz. (A.39)

This gives us

ρ∨(θ,dy) :=

∫ ∞
0

P∨θ (Xt ∈ dy, t < k)dt

=
Γ(d/2)

Γ((d− α)/2)Γ(α/2 + 1)

HS(y)

h(θ)

∫ ∞
0

Nθ (Xε(t) ∈ dy, t < ς) dt

=
Γ(d/2)

Γ((d− α)/2)Γ(α/2 + 1)

HS(y)

h(θ)
|y|α

∫ ∞
0

Nθ
(

eε(u)Θε(u) ∈ dy, u < ζ
)

du

=
Γ(d/2)

2απd/2Γ(α/2)Γ(α/2 + 1)

||y|2 − 1|α/2

|θ − y|d
HS(y)

h(θ)
dy

=
Γ(d/2)

2απd/2Γ(α/2)Γ(α/2 + 1)

H{θ}(y)HS(y)

h(θ)
dy

where we recall h(θ) =
∫
S |θ − ϑ|

−dσ1(dϑ), the representation of Xε is given in (A.14) and the
fact that eαε(ϕ(t))dϕ(t) = |Xε

t |αdϕ(t) = dt on t < ς.

It now follows that, up to a multiplicative constant C (which in the following calculations
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will play the role of different constants that may change from line to line)

IS(θ) =

∫
1<|y|<R

ρ∨(θ,dy)

=
C

h(θ)

∫
1<|y|<R

H{θ}(y)HS(y)dy

=
C

h(θ)

∫
1<|y|<R

∫
φ∈S

||y|2 − 1|α

|θ − y|d|φ− y|d
dyσ1(dφ). (A.40)

Since Sd−1\S is open, it is easy to see that we can choose ε small enough such that, for θ ∈ Sd−1\S,

{y ∈ Rd : |y| > 1} = {y ∈ Rd : |y| > 1 and |y − θ| > ε}

∪ {y ∈ Rd : |y| > 1 and |y − φ| > ε, for all φ ∈ S}, (A.41)

such that

{y ∈ Rd : |y| > 1 and |y − θ| ≤ ε}

∩ {y ∈ Rd : |y| > 1 and |y − φ| ≤ ε, for some φ ∈ S} = ∅.

Making use of (A.4), (A.5) and (A.1), and that, for r > 1, 2F1(d/2, 1; d/2, r−2) = (1 − r−2)−1,
allowing C to again play the role of a strictly positive constant that may change from line to
line, we have, for θ 6∈ S,

IS(θ) =
C

h(θ)

∫
1<|y|<R

∫
φ∈S

||y|2 − 1|α

|θ − y|d|φ− y|d
dyσ1(dφ)

≤ C

h(θ)

∫
1<|y|<R,|θ−y|≥ε

∫
φ∈S

||y|2 − 1|α

|θ − y|d|φ− y|d
dyσ1(dφ)

+
C

h(θ)

∫
1<|y|<R,|φ−y|≥ε

∫
φ∈S

||y|2 − 1|α

|θ − y|d|φ− y|d
dyσ1(dφ)

≤ ε−d
C

h(θ)

(∫
1<|y|<R

∫
φ∈S

||y|2 − 1|α

|φ− y|d
dyσ1(dφ) +

∫
1<|y|<R

∫
φ∈S

||y|2 − 1|α

|θ − y|d
dyσ1(dφ)

)
≤ ε−d

C

h(θ)

(∫
1<|y|<R

∫
φ∈Sd−1

||y|2 − 1|α

|φ− y|d
dyσ1(dφ) + σ1(S)

∫
1<|y|<R

||y|2 − 1|α

|θ − y|d
dy
)

= ε−d
C

h(θ)

(∫
1<|y|<R

||y|2 − 1|α|y|α−d(1− |y|−2)
α
2
−1dy

+

∫ R

1

∫ π

0

rd−1(r2 − 1)α(sinϑ)d−2

(r2 − 2r cos(ϑ) + 1)d/2
drdϑ

)
= ε−d

C

h(θ)

(∫ R

1
(r2 − 1)

3α
2
−1rdr +

∫ R

1
(r2 − 1)α−1rdr

)
= ε−d

C

h(θ)

(∫ R2

1
(u− 1)

3α
2
−1du+

∫ R2

1
(u− 1)α−1du

)
<∞.
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Now let us turn to the issue of consistency. Recall that (Λ,N·) is an exit system for
the process (ξ,Θ). In particular, under any measure Nθ the process ((ε(s),Θε(s)), s < ζ) is
a strong Markov process with the same semigroup as (ξ,Θ) killed at its first hitting time of
(−∞, 0]× Sd−1, see [23, Theorem 6.3]. As a consequence, for θ ∈ Sd−1 \ S,

E∨θ [g(Xt+s)] =
C

h(θ)
Nθ(HS(Xε

t+s)g(Xε
t+s)1(s+t<ς))

=
C

h(θ)
Nθ
(
HS(Xε

t )1(t<ς)EXε
t

[
HS(Xs)

HS(Xε
t )
g(Xs)1(s<τ	1 )

])
=

C

h(θ)
Nθ
(
HS(Xε

t )1(t<ς)E∨Xε
t
[g(Xs)]

)
= E∨θ

[
HS(Xε

t )1(t<ς)E∨Xε
t
[g(Xs)]

]
, (A.42)

where C = Γ(d/2)/Γ(α/2 + 1)Γ((d− α)/2). Hence, using the notation P∨t [g](x) := E∨x [g(Xt)],

we have P∨t+s[g](x) = P∨t [P∨s [g]](x) for any x ∈ Rd \ (Bd ∪ S), and the required consistency
follows.

To demonstrate the consistent choice of normalisation in our definition of P∨, we will
reconsider a different derivation of the resolvent ρ∨. To this end, suppose that x ∈ B̄c and we
can similarly consider the resolvent of (X,P∨x ). This calculation can be developed using the
nature of the Doob h-transform (A.6) and Theorem III.3.4 in [18] and takes the form

ρ∨(x,dy) =
HS(y)

HS(x)
ρ⊕(x, dy), |x|, |y| > 1, (A.43)

where

ρ⊕(x,dy) =
Γ(d/2)

2απd/2Γ(α/2)2
|x− y|α−d

∫ ζ⊕(x,y)

0
(u+ 1)−d/2uα/2−1du dy (A.44)

and ζ⊕(x, y) = (|x|2 − 1)(|y|2 − 1)/|x− y|2. To show continuity as x→ θ ∈ Sd−1\S, and hence
that the choice of normalisation in (A.12) is correct, we note that, as r → 1,

HS(y)

HS(x)
ρ⊕(rθ,dy) ∼ Γ(d/2)|rθ − y|α−dHS(y)

2απd/2Γ(α/2)2h(θ)

× 2r(|y|2 − 1)|rθ − y|−2ζ(rθ, y)α/2−1(1 + ζ(rθ, y))−d/2

2r(α/2)(r2 − 1)α/2−1
dy

∼ Γ(d/2)(|y|2 − 1)α/2|θ − y|−dHS(y)

2απd/2Γ(α/2)Γ(α/2 + 1)h(θ)
dy

=
Γ(d/2)

2απd/2Γ(α/2)Γ(α/2 + 1)

H{θ}(y)HS(y)

h(θ)
dy (A.45)

Now, we need to show that P∨θ (X0+ = θ) = 1 for any θ ∈ Sd−1 \ S. Since limt↓0 ϕ(t) = 0,

it suffices to show that

P∨θ (X0 6= θ) = Nθ ({limt↓0 ε(t) = 0, limt↓0 Θε(t) = θ}c) = 0. (A.46)
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Let us first observe ε is an excursion of ξ from its running minimum and ξ is a hypergeometric
Lévy process with unbounded variation, hence 0 is regular for (0,∞), that is

P0,θ(τ
+
0 = 0) = 1, θ ∈ Sd−1,

where τ+
0 = inf{t > 0 : ξt > 0}. Classical excursion theory for Lévy processes implies that the

excursions of ξ from its infimum begin continuously. Thanks to isotropy, this is equivalent to
saying

Nθ ({limt↓0 ε(t) = 0}c) = 0. (A.47)

Since the jump measure of X in radial form is

Π(dr, dθ) =
1

r1+α
σ1(dθ)dr, r > 0, θ ∈ Sd−1,

as a consequence, the process (ξ,Θ) has the property that both the modulator and the ordinate
must jump simultaneously (the precise jump rate was explored in [18]). If it were the case that
Nθ ({limt↓0 Θε(t) = θ}c) > 0 (and hence for all θ ∈ Sd−1 by rotational symmetry), this would be
tantamount to a discontinuity in Θ but not in ξ, which is a contradiction since ((ε(s),Θε(s)), s <

ζ) under Nθ has the same semigroup as the isotropic process (ξ,Θ) killed at its first hitting time
of (−∞, 0] × Sd−1. The requirement (A.46) now follows. This completes the proof of Theorem
4.3.1 as far as P∨ is concerned.

The proof of Theorem 4.3.1 for (X,P∧) is essentially the same as soon as we have an
analogous identity for (A.39), but for Nθ. Unfortunately this does not seem to be available in
the literature, and so we spend a little time developing it here. However the remaining details
of the proof of Theorem 4.3.1 we leave to the reader.

The main idea behind the derivation of an analogue to (A.39) for Nθ lies with the use
of the Riesz–Bogdan-Żak transform in Theorem 4.4.1. Let us consider a variant of the radial
excursion process which is based on the MAP (ξ− ξ,Θ), that is associated to X but now under
the change of measure (A.16). The reader will recall that the probabilities P◦ = (P◦x, x 6= 0)

correspond to conditioning the process X to be continuously absorbed at the origin. It turns
out that if (ξ,Θ), with probabilities P◦ = (P◦x,θ, x ∈ R, θ ∈ Sd−1), is the MAP whose Lamperti
transform gives (X,P◦), then (−ξ,Θ), is the MAP whose Lamperti transform gives (X,P); see
Theorem 1.3.6 and Corollary 1.3.17 of [18].

In the spirit of (A.11) we can write down the exit system for the radial excursion process
of (ξ − ξ,Θ) from {0} × Sd−1 under P◦. Suppose that `◦, and (N◦θ, θ ∈ Sd−1)) denote the
associated local time and system of excursion measures. As with excursion theory from the
radial minimum of X, isotropy allows us to conclude that we may choose `◦ to be the local time
at 0 of ξ− ξ, and that ξ (without its modulator Θ) is necessarily a Lévy process under P. Since
limt→∞ ξt = −∞ under P◦, we can also appeal to isotropy again to normalise `◦ in such a way
that N◦(ζ =∞) = 1.

With this set up we can follow the reasoning in [20] and deduce that, for positive, bounded
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and measurable g on Rd,

N◦arg(x)

(∫ ζ

0
g(eε(s)Θε(s))eαε(s)ds

)
= lim
|x|↑1

E◦x
(∫ τ	1

0 g(Xs)ds
)

P◦x(τ	1 =∞)
, (A.48)

where we recall that τ	1 = inf{t > 0 : |Xt| > 1}. Note that the choice of normalisation of `◦ is
implicit in the aforementioned limiting equality. Appealing to numerous calculations involving
the Riesz–Bogdan–Żak transformation e.g. in [18] or indeed [19], we can rewrite the limit

lim
|x|↑1

E◦x
(∫ τ	1

0 g(Xs)ds
)

P◦x(τ	1 =∞)
= lim
|x|↑1

EKx
(∫ τ⊕1

0 g(KXs)|Xs|−2αds
)

PKx(τ⊕1 =∞),

where Kx = x/|x|2. Appealing to the identities provided in (A.17) and (A.44), the limiting
ratio is computable directly giving us in (A.48)

N◦arg(x)

(∫ ζ

0
g(eε(s)Θε(s))eαε(s)ds

)
=

∫
|z|>1

g(Kz)|z|−2α (|z|2 − 1)α/2

| arg(x)− z|d
dz.

An easy change of variables y = Kz, noting the classical analytical facts that dz = |y|−2ddy and
|θ −Ky| = |θ − y|/|y|, for θ ∈ Sd−1,

N◦θ
(∫ ζ

0
g(eε(s)Θε(s))eαε(s)ds

)
=

∫
|y|<1

g(y)|y|α−d (1− |y|2)α/2

|θ − y|d
dz. (A.49)

As noted in [18], the change of measure (A.16) when understood as a change of measure
affecting (ξ,Θ), is equivalent to the martingale change of measure,

dP◦x,θ
dPx,θ

∣∣∣∣
σ((ξs,Θs),s≤t)

= e(α−d)(ξt−x). (A.50)

We can use this to compare the left-hand side of (A.49) with an analogous object albeit for Nθ,
the excursion measure of (ξ− ξ,Θ) from {0}×Sd−1 under P, by studying the effect of (A.50) on
the exit formula (A.11). It is straightforward to show that, for θ ∈ Sd−1 and positive, bounded
and measurable g,

N◦θ
(∫ ζ

0
g(eε(s)Θε(s))ds

)
= Nθ

(∫ ζ

0
g(eε(s)Θε(s))e(α−d)ε(s)ds

)
.

Note that the normalisation of local time for (ξ,Θ) under P is, in effect, chosen by the above
equality. It follows that

Nθ
(∫ ζ

0
g(eε(s)Θε(s))ds

)
=

∫
|y|<1

g(y)
(1− |y|2)α/2

|y|α|θ − y|d
dy. (A.51)

The reader will note that, aside from the domain of integration on the right-hand side, this
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agrees with (A.39).

With (A.51) in hand, as alluded to above, we can now leave the reader to verify that the
proof of Theorem 4.3.1 for (X,P∧) is essentially verbatim the same as for (X,P∨). �

Proof of Theorem 4.4.2: Given the proof of Theorem 4.3.1 above, we refrain from giving
the proof of Theorem 4.4.2, noting only that it is a variant of the arguments given there. The
details are, once again, left to the reader. We additionally note that e.g. in this case of P	, the
excursion may begin anywhere on Sd−1 and, when proving that e.g. Nθ(H	(Xε(t)); t < ς) <∞,
it is much easier to show that the analogue of (A.38) is finite without needing to split space up
as in (A.41). �

4.7 Proof of Theorem 4.4.3

Recall the notation for a general Markov process (Y, P) on E preceding the statement of Theorem
4.4.3. We will additionally write P := (Pt, t ≥ 0) for the semigroup associated to (Y, P).

Theorem 3.5 of Nagasawa [24], shows that, under suitable assumptions on the Markov
process, L-times form a natural family of random times at which the pathwise time-reversal

←
Y t:= Y(k−t)−, t ∈ (0, k),

is again a Markov process. Let us state Nagasawa’s principle assumptions.

(A) The potential measure UY (a, ·) associated to P, defined by the relation∫
E
f(x)UY (a,dx) =

∫ ∞
0
Pt[f ](a)dt = Ea

[∫ ∞
0

f(Xt) dt

]
, a ∈ E, (A.52)

for bounded and measurable f on E, is σ-finite. Assume that there exists a probability measure,
ν, such that, if we put

µ(A) =

∫
UY (a,A) ν(da) for A ∈ B(R), (A.53)

then there exists a Markov transition semigroup, say P̂ := (P̂t, t ≥ 0) such that∫
E
Pt[f ](x)g(x)µ(dx) =

∫
E
f(x)P̂t[g](x)µ(dx), t ≥ 0, (A.54)

for bounded, measurable and compactly supported test-functions f, g on E.

(B) For any continuous test-function f ∈ C0(E), the space of continuous and compactly
supported functions, and a ∈ E, assume that Pt[f ](a) is right-continuous in t for all a ∈ E and,
for q > 0, U (q)

Ŷ
[f ](

←
Y t) is right-continuous in t, where, for bounded and measurable f on E,

U
(q)

Ŷ
[f ](a) =

∫ ∞
0

e−qtP̂t[f ](a)dt, a ∈ E,
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is the q-potential associated to P̂.

Nagasawa’s duality theorem, Theorem 3.5. of [24], now reads as follows.

Theorem 4.7.1 (Nagasawa’s duality theorem). Suppose that assumptions (A) and (B) hold.
For the given starting probability distribution ν in (A) and any L-time k, the time-reversed
process

←
Y under Pν is a time-homogeneous Markov process with transition probabilities

Pν(
←
Y t∈ A |

←
Y r, 0 < r < s) = Pν(

←
Y t∈ A |

←
Y s) = pŶ (t− s,

←
Y s, A), Pν-almost surely, (A.55)

for all 0 < s < t and Borel A in R, where pŶ (u, x,A), u ≥ 0, x ∈ R, is the transition measure
associated to the semigroup P̂.

Proof of Theorem 4.4.3. We give the proof of (i), the proof of (ii) is almost identical albeit
requiring some straightforward adjustments. Once again, we leave the details to the reader.
When t > 0, we use Nagasawa’s duality theorem. However, since the process is conditioned to
hit continuously, its dual processes from the hitting time must leave the sphere continuously.
That means, if the duality is true for t > 0, it must be true for all t ≥ 0.

We will make a direct application of Theorem 4.7.1, with Y taken to be the process (X,P	ν )

where ν satisfies (A.22) or (A.23) according to the nature of S. Accordingly, we will write U	

in place of UY , P	 in place of P etc. Moreover, the dual process, formerly Ŷ , is taken to be
(X,P∨) and we will, in the obvious way, work with the notation U∨ in place of UŶ , P

∨ in place
of P̂ and so on. In essence we need only to verify the two assumptions (A) and (B). Let us
momentarily take the former of these two cases.

In order to verify (A) we will make use of (A.39). Noting that eαεϕ(t)dϕ(t) = dt, we have
for a ∈ Sd−1 \ S and bounded measurable f : Rd \ (Bd ∪ S)→ [0,∞),

U	[f ](a) = E	a
[∫ ∞

0
f(Xt)dt

]
= Na

(∫ ς

0
H	(Xε

t )f(Xε
t )dt

)
= Na

(∫ ς

0
H	(eε(u)Θε(u))f(eε(u)Θε(u))eαεudu

)
= C

∫
Rd\(Bd∪S)

H	(y)f(y)(|y|2 − 1)α/2|a− y|−ddy, (A.56)

where U	[f ](a) =
∫
Rd\(Bd∪S) f(y)U	(a,dy), C > 0 is an unimportant constant and we have

used (A.20) in the second equality.

Next, we need to develop an expression for the reference measure µ. This only needs to
be identified up to a multiplicative constant. As such, in the setting that σ1(S) > 0, recalling
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(A.53), (A.22) and (A.3), we can take (ignoring multiplicative constants in each line)

µ(dy) =

∫
S
ν(da)U	(a,dy)

=

∫
S
σ1(da)H	(y)(|y|2 − 1)α/2|a− y|−ddy

= HS(y)H	(y)dy, y ∈ Rd \ (Bd ∪ S). (A.57)

When S = {ϑ}, we replace the use of (A.22) by (A.23) in the above calculation and the same
answer comes out (up to a multiplicative constant).

Next, we need to verify that (A.54) holds. Indeed, using Hunt’s switching identity (cf.
Chapter II.1 of [2]) for the process (Xt, t < τ⊕1 ), we have for x, y ∈ Rd \ B̄d

µ(dy)P	t (y,dx) = P	t (y,dx)HS(y)H	(y)dy

=
H	(x)

H	(y)
PBd
t (y,dx)HS(y)H	(y)dy

= PBd
t (x, dy)HS(y)H	(x)dx

= P∨t (x,dy)µ(dx),

where PBd
t (x,dy) = Px(Xt ∈ dy, t < τ⊕1 ). Note, as the measure µ is absolutely continuous with

respect to Lebesgue measure, we do not need to deal with the case that x or y belong to Sd−1 \S.

Let us now turn to the verification of assumption (B). This assumption is immediately
satisfied on account of the fact that both P	 and P∨ are right-continuous semigroups by virtue
of their definition as a Doob h-transform with respect to the Feller semigroup PBd of the stable
process killed on entry to Bd. With both (A) and (B) in hand, we can invoke Theorem 4.7.1
and the desired result follows. �

4.8 Concluding remarks

The results in this paper have considered the setting of conditioning a relatively special class of
Markov process to continuously hit a subset of the unit sphere with a one-sided approach. Taking
a step back, one would ideally like to drop a number of the specialisms specific to our approach
e.g. moving to a general Markov process and conditioning it continuously hit a suitably general
domain. The current proofs rely on too many particular features of stable Lévy processes for the
results to directly generalise in this respect. For example, suppose that we drop the assumption
that the stable process continuously approaches S from just one side, but instead we allow it to
continuously approach without radial confinement. This is a topic that has been addressed in
follow-on work [15], for which a mixture of features that are specific to stable Lévy processes
together with general potential-analytic considerations are used. The classical work of Doob
[13] for the setting of Brownian motion also gives insight in how one may go about dealing with
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greater generality.

Appendix: Hypergeometric identity

An identity for the hypergeometric function that has been used twice in the main body of the
text is taken from formula 3.665(2) in [14]. It states that, for any 0 < |a| < r and ν > 0, as∫ π

0

sind−2 φ

(a2 + 2ar cosφ+ r2)ν
dφ =

1

r2ν
B
(d− 1

2
,
1

2

)
2F1

(
ν, ν − d

2
+ 1;

d

2
;
a2

r2

)
, (A.1)
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Chapter 5

Conclusions

In this thesis, we studied new ways of path conditioning of the stable Lévy processes taking
account of the classic potential theoretic approach as well as the recent developments in the
representation of a d-dimensional isotropic stable Lévy process as a self-similar Markov process.

First, in Chapter 3, we characterised a stable Lévy process conditioned to hit subset of
the unit sphere or hyperplane in Rd, d ≥ 2 using classical potential theory approach. The
distribution of the hitting position is also characterised. Then, we reveal time-reversal duality
from any L−time between the conditioned stable Lévy process and underlying stable Lévy
process.

Second, in Chapter 4, we characterised a stable Lévy process conditioned to hit subset of
the unit sphere in Rd, d ≥ 2 with the constraint that the stable Lévy process remains one side of
the sphere. The distribution of the hitting position is also characterised. Moreover, we extend
the conditioned process to be issued from the boundary, e.g. sphere. Finally, we characterise
the time-reversed process of the conditioned processes from any L-time.

In Chapter 4, the question to arise in the conditioning procedure was whether the different
definition of the conditioning could lead to the same result. The choice of the conditioning events
C∨ε and C∧ε were relied on the point of closest reach to the origin in the range of X and the
point of furthest reach from the origin prior to exiting Bd correspondingly. Although we do not
produce the calculations here, it turns out that, by defining e.g. C∨ε = {Xτ⊕1

∈ Bε}, or indeed
C∨ε = {Xτ⊕1 −

∈ Aε}, the limiting conditioning will still produce the same change of measure.
Other definitions of C∨ε giving a consistent limit are also possible. For example, we can choose
C∨ε = {Xτ⊕1 −

∈ Aε, Xτ⊕1
∈ Bε}. The analogue choices for C∧ε also produce consistent results. In

short, we showed that the choice of C∨ε and C∧ε are by no means the only possibilities as far as
performing a limiting conditioning that leads to the same result.

We finish by discussing some of the open questions that have resulted from this research.
In Chapter 3, we were able to condition stable Lévy processes to be attracted to the hyper-plane
in a similar manner to the case where it is attracted to the sphere. However, in Chapter 4, it
was not possible to replicate the result for the sphere to the hyperplane. The reason is that
we used existing characterisation of the point of closest/furthest reach to the sphere for the
stable Lévy process while no such characterisation for closest/furthest reach to the hyperplane
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exists. Moreover, when we extended the conditioned process from the boundary, we used radial
excursions. For the hyperplane setting, there is no analogous excursion theory; this remains an
open problem.

Generally, it remains open whether we can perform analogous conditionings in relation to
the hyperplane as in Chapter 4 and what the associated excessive function looks like.
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