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Complementary Log Regression for Generalized Linear Models 
WALTER W. PIEGORSCH* 

Use and implementation of the complementary log 
regression model are discussed, integrating various sep- 
arate applications of the model under the form of a 
generalized linear model. Some motivation is drawn 
from cases where an underlying random variable is re- 
duced to a dichotomous form. Estimation and testing 
are facilitated by recognizing the complementary log as 
a specific link function within a generalized linear 
framework. Testing for goodness of link via efficient 
scores is also discussed. 

KEY WORDS: Binomial model; Data truncation; Ex- 
tended link family; Goodness-of-link testing; Logistic 
regression; Nonlinear regression. 

1. GENERALIZED LINEAR MODELS FOR 
DICHOTOMOUS DATA 

In many experimental settings, interest is directed at 
the effects of a set of explanatory variables, x1, . 

XK, upon an observed, dependent variate Y. A com- 
monly employed model in these settings relates the mean 
response E(Y) and the explanatory variables in a linear 
fashion: 

E(Y) = ?0 + JlX1 + + 8KXK- 

When the dependent variate is dichotomous, E(Y) is 
simply the probability of response p. The associated 
linear model can be generalized to 

g{E(Y)} = g(p) 

= 130 + /31X1 + + /3KXK, (1.1) 

or simply g(p) = -q, for some function g(). Since it 
links the random and systematic components of the 
linear model, g is known as the link function (Mc- 
Cullagh and Nelder 1989, sec. 2.2). 

The commonly seen link functions in this setting are 
the logit, g(p) = log{p/(1 - p)}; the probit, g(p) = 
I-1(p); and the complementary log-log, g(p) = 
log{-log(1 - p)} (Santner and Duffy 1989, sec. 5.1). 
All three share the feature that they map the unit in- 
terval onto the real line. The logit link also shares the- 
oretical connections with the natural parameter for the 
binomial model, 0 = log{p/(1 - p)}, and provides a 
useful interpretation in certain applications as the log 

odds of success (Cox 1970, sec. 2.3). Its use in (logistic) 
regression has become quite popular in recent years 
(Santner and Duffy 1989, sec. 5). 

The above three link functions may be inappropriate, 
however, for certain experimental applications. In some 
of these cases, a useful alternative link is the comple- 
mentary log 

g(p) = -log(1 - p), (1.2) 

which maps the unit interval onto the positive real line. 
Notice that the inverse function is p = 1 - exp(- -q) 
for r1 > 0. For ' 0, one could define the inverse link 
as simply p = 0, so that the inverse function is contin- 
uous and nondecreasing, V-q. Thus the inverse link can 
be viewed as a form of distribution function, corre- 
sponding to an exponential random variable with unit 
mean. This connection between inverse links and dis- 
tribution functions is common in binary regression models 
(Santner and Duffy 1989, sec. 5.1): The inverse probit 
clearly corresponds to a standard normal distribution, 
while the inverse logit corresponds to a standard logistic 
distribution with density function exl(l + ex)2 (Hastings 
and Peacock 1975, sec. 17). 

The complementary log link has been applied in a 
wide variety of experimental settings. Applications have 
been described for epidemiological investigations where 
risk ratios are of interest (Wacholder 1986), for tests of 
simple independent action in 2 x 2 tables of proportions 
(Wahrendorf, Zentgraf, and Brown 1981), for calcu- 
lations of carcinogenic drug potency (Bernstein, Gold, 
Ames, Pike, and Hoel 1985) and other aspects of car- 
cinogenic dose response (Guess and Crump 1978; 
Whittemore 1983), and for multihit models of disease 
response (Cox 1962; Gart 1991). Cornell and Speckman 
(1967) discuss further applications. The complementary 
log link can also result in cases of data truncation, that 
is, when polytomous or continuous data are truncated 
into a dichotomous response. The goal herein is to pro- 
vide a brief exposition on the use of (1.2), integrating 
estimation and fitting of the model within the gener- 
alized linear framework. Procedures for fitting (1.2) to 
data are discussed briefly in Section 2. Section 3 
presents the details for the truncation phenomenon 
and includes an example. Section 4 deals with possible 
strategies for testing the complementary log link using 
goodness-of-link testing (Pregibon 1985). 

2. FITTING THE COMPLEMENTARY LOG 

Model (1.1) has a generalized linear form, and using 
(1.2), it may be fit via iteratively reweighted least squares 
(Green 1984). Guess and Crump (1978) discussed sta- 
tistical inferences under the inverse model p = 1 - 
exp{ - r} within the context of dose-response experi- 
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mentation (i.e., rq is a function of dose d). These ap- 
proaches require the use of a computer and can be 
performed directly in most programming languages. Al- 
ternatively, the calculations can be performed with the 
GLIM statistical system (Payne 1987). GLIM provides 
likelihoods, maximum likelihood (ML) estimates, ,3, for 
the parameters, and estimates of the asymptotic cov- 
ariance matrix for the ML estimates. Conditions for 
existence and uniqueness of the ML estimates under 
(1.1) are given by Silvapulle (1981). For the comple- 
mentary log link in (1.2), these ensure existence and 
uniqueness of /3 iff the sets 

Yo= { kixilki > 0 

and 

={ kxijki > 
iE=- 1 

exhibit a nonempty intersection, where 

X0, = fi IYi = w; i = 1, . . . , n}, w = O, 1, 

and xi = [1 x1i ... xKi], such that 83'xi > 0. 
Analyses are facilitated by Wacholder (1986), who 

provides simple user-defined GLIM programs ("macros") 
to assist the user in fitting generalized linear models 
that include the link in (1.2). [He referred to use of 
(1.2) as a "health ratio" model, since 1 - p is often 
the probability of avoiding an unhealthy outcome.] To 
satisfy the inherent requirement that r1 = ,3'x > 0, the 
fitting algorithm truncates any iterated r1 values that 
drop below zero to some small positive number, say 
10-7. Iteration then continues from that point. It has 
been noted (Baumgarten, Seliske, and Goldberg 1989), 
however, that Wacholder's macros may fail to achieve 
the true ML estimates, due to sensitivity in the iterative 
procedure to poor initial values. To alleviate this prob- 
lem, more stringent criteria for convergence (e.g., lower 
relative or absolute errors in differences of iterative 
deviances or parameter estimates) are recommended 
(Baumgarten et al. 1989). All calculations for the vari- 
ous activities described in the following sections will be 
performed in GLIM. 

3. DATA TRUNCATION LEADING TO THE 
COMPLEMENTARY LOG LINK 

Consider first an experiment generating a discrete- 
valued response Ui, which is the number of occurrences 
of some phenomenon. This might be the number of 
tumors seen in a certain organ of an experimental an- 
imal, or the number of cells in a tissue or culture re- 
sponding to a chemical stimulus (Collings, Margolin, 
and Oehlert 1981). If the observing mechanism or tech- 
nique is such that only the occurrence of a nonnull state 
is recorded (e.g., "no tumors'" versus "some tumors"), 
the data will be truncated into a dichotomous response. 
The observed variable becomes: 

Y, = 1 if Ui > 0 

= 0 if U = 0. 

Sobel and Elashoff (1975) have referred to this sampling 
scheme as (binomial) "group testing" (also see Chen 
and Swallow 1990). When interest centers on the non- 
response Pr[yj = 0], the data are often referred to as 
"Hansen frequencies" (Bishop et al. 1975, Ex. 14.6-2), 
based on E. W. Hansen's work in the behavioral sci- 
ences (Hansen 1966). 

For the underlying response we often take the Ui as 
independently distributed Poisson random variates with 
mean, say, qi > 0. Then, clearly, Yi - indep. b(1, 1 - 
exp{ - mqi}). This construction, based on Poisson occur- 
rence rates, was discussed in detail by Cochran (1950), 
who had in mind application to bacterial concentrations 
in suspension and the planning of dilution experiments. 
He suggested that the concept was fairly well known, 
starting with the work of McCrady (1915) on the con- 
centration of organisms in liquids. Of interest also is 
the seminal paper by Fisher (1922) on foundations of 
mathematical statistics: One of Fisher's in-depth ex- 
amples involved estimation under (1.2) for serial dilu- 
tion assays. Fisher described an experiment in which a 
soil or water sample was taken, and a series of dilutions 
of the sample was made to determine the presence or 
absence of some microbial contaminant. If fl is the 
mean frequency of microbes in the initial (i = 1) sam- 
ple, and if dilution proceeds by powers of a, then based 
on Poisson occurrence rates the expected proportion of 
plates containing any microbes at the ith dilution is 

1 - exp{-flai-1}, i = 1, . . ., n 

(Fisher 1922, sec. 3). Of interest is estimation of fl. 
This is easily expressed as a generalized linear model, 
since the experimental scenario involves the predictor 
mqi = llai-1. That is, if Yi = 1 when any microbial 
contamination is detected at the ith dilution (Yi = 0 
otherwise), we set K = 1 with known, zero intercept 
(I30 = 0) and single predictor variable xli = llai-1. 
Attention is then directed at estimating I38 = Q. 

In general, if a set of explanatory variables, x1i, . 
XKi, are associated with Yi, a generalized linear model 
could be fit under this model construction using the 
complementary log link and m1i = I30 + /31xli + + 
/3KXKi- 

Next, consider a continuous data setting where the 
underlying variable Vi is the time to failure of an ex- 
perimental unit, indexed by i = 1, . . . , N. Denote the 
cumulative distribution function associated with Vi by 
Fi(t). Often, the observations will be limited to the num- 
ber of units that fail by a specified time t = T. If the 
actual failure times occurring prior to T are recorded, 
this is simply Type I censoring (Lawless 1982, sec. 1.4). 
If, however, it is only known whether or not the ith 
unit failed by time T, we observe 

Yi= 1 if ith unit fails by time T 

=0 otherwise. 
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Thus Yi - indep. b(1, Fi{r}). 
In particular, for Vi - indep. exp(q1i), Fi(T) = 1 - 

exp(--T-qi). Given a set of explanatory variables, xli, 
.. ., XKi, for the ith observation, a generalized linear 
model can be fit using mi = I3O + /31xIi + . . + 3KXKi. 
The appropriate link is an extension of the comple- 
mentary log function: 

g(p) = -T1 log(1 - p), (3.1) 

where (1.2) obtains for T = 1. 

Example 1. Layman, Agyras, and Glynn (1986) 
studied the analgesic effect of iontophoretic treatment 
with the nerve conduction-inhibiting chemical vincris- 
tine on elderly patients complaining of postherpetic 
neuralgia. Patients were interviewed T = 6 weeks after 
undergoing treatment to determine if any improvement 
in the neuralgia was evident. Assuming the actual time 
to cessation of pain (in weeks) follows an exponential 
distribution with possibly differing hazards for treated 
and untreated subjects, the complementary log model 
could be used to examine whether or not vincristine 
treatment was a contributing factor in the cessation of 
pain. The exponential assumption on time to pain ces- 
sation is a simple first choice for this setting. An ex- 
tension could involve, for example, a two-parameter 
exponential model with a "guarantee time" parameter 
4), prior to which no cessation is assumed to occur. 
Clearly, 4) < v. For known 4), the analysis proceeds as 
above, except that T is replaced by T - 4). For unknown 
4), Lawless (1982, sec. 3.5) suggests use of methods for 
known 4) applied over a range of plausible 4) values, 
since numerical instabilities can occur when estimating 
4) under more advanced criteria. 

Table 1 presents the data with the responses Yi = 1 
if pain cessation was reported by T = 6 weeks (Yi = 0 
otherwise); the variable xli indicates treatment, and three 
additional explanatory variables were also recorded: 
X2i = age at treatment, x3i = sex, and x4i = pretreat- 
ment duration of complaint (months); i = 1, . . . , 18. 

Applying the link function in (3.1) with T = 6 and 
under the requirement that i > 0 Vi, one finds that 
there was an analgesic effect attributable to vincristine 
treatment for these subjects; the likelihood ratio (LR) 
for testing the treatment term (i.e., Ho:/31 = 0 versus 
Ho81 :* 0) is 11.84 with 1 df. The three additional 
variables-age, sex, and complaint duration-were not 
seen to significantly improve the fit after inclusion of 
the treatment term in the model. 

Under the reduced model with linear predictor 03O + 
f31x1, the data naturally form a 2 x 2 table: 

X1 
0 1 

y 0 8 3 
1 0 7 

Fitting the simple complementary log (1.2) to these data 
produces GUIM estimates I(3O 1.9 x 10-8 (with 
asymptotic s.e. =1.2 x 10-4) andI(31 =1.2038 (s.e.= 
.4767). It is easy to identify the source of these values 

Table 1. Data From Neuralgia Study 

Y X x2 X3 X4 

1 1 76 M 36 
1 1 52 M 22 
0 0 80 F 33 
0 1 77 M 33 
0 1 73 F 17 
0 0 82 F 84 
0 1 71 M 24 
0 0 78 F 96 
1 1 83 F 61 
1 1 75 F 60 
0 0 62 M 8 
0 0 74 F 35 
1* 1 78 F 3 
1 1 70 F 27 
0 0 72 M 60 
1 1 71 F 8 
0 0 74 F 5 
0 0 81 F 26 

NOTE: Data from Layman et al. (1986). Variables are explained in the text. Patient iden- 
tified by asterisk died of unrelated causes prior to the six-week observation; improvement 
in pain was seen throughout and after treatment, so Y was set to 1. 

under (1.2): at xi = 0, ft =, while at xi = 1, p ='o. 

Write (1.2) as -log(1 - p(xl)) = I30 + (31x1. Then, to 
solve for I30, set xl = 0 and take 

0= -log(1 - 0) = 0. 

To solve for I31, set xl 1, keep 30 = 0 from above, 
and find 

,( = -log(1 - 0.7) - 0 = -log(0.3) 1.204. 

Contrastingly, under the logistic model p exp{,30 + 
/31xj}/(l + exp{/30 + /31x1}), setting xl = 0 produces 
p = exp{,30}/(l + exp{,30}), which is estimated as zero 
from 2 x 2 table. Thus modeling p via the logit link 
forces the estimate of /30-which corresponds under the 
logit model to the empirical log odds of Y = 1 at x1 = 
0 (Santner and Duffy 1989, sec. 5.1)-to diverge 
to -oo. 

4. TESTING GOODNESS OF LINK 

To test the goodness of fit of link functions, Pregibon 
(1985) reviewed a general methodology that involves 
embedding the hypothesized link into an extended fam- 
ily of link functions, say g(p; y). Examples of such 
families exist for binomial models (Aranda-Ordaz 1981; 
Guerrero and Johnson 1982; Pregibon 1980) and may 
involve tolerance distributions (Copenhaver and Mielke 
1977; Prentice 1976) or relative risk formulations (Bres- 
low and Storer 1985). Morgan (1988) provides a useful 
review of such extended families. Some work has also 
considered goodness of link for ordinal regression (Genter 
and Farewell 1985). 

Typically, these link families include as a member the 
popular logit link, g(p) =log{p!(1 - p)}. A simple 
one-parameter family that includes both the logit (-y= 
0) and complementary log(-y =1) link functions is 

g(p; -y) =log{p + -y(l - p)} - log(1 - p) (4.1) 
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(Whittemore 1983) for y > -pl(1 - p). Interest can 
be further restricted, if desired to y ? 0. This is a useful 
family, since the logistic can be a reasonable alternative 
to complementary log regression. Consider the problem 
of assessing possible synergistic activity between two 
stimuli in a 2 x 2 table of proportions. The comple- 
mentary log link would be employed when the null 
model corresponds to simple independent action be- 
tween the stimuli (Wahrendorf et al. 1981). The logistic 
link with additive contributions for the two stimuli cor- 
responds to the null model of no three-way interaction 
in the corresponding 2 x 2 x 2 contingency table, as 
developed by Bartlett (1935). Distinguishing between the 
two links and their corresponding models is of interest 
in certain experimental settings (Piegorsch, Weinberg, 
and Haseman 1986). 

The extended link in (4.1) was considered by Whitte- 
more (1983) to compare the relative fit of the logit 
model to other exponential forms for carcinogenicity 
data. In that context, the complementary log link re- 
sulting when y = 1 in (4.1) can be viewed as a single- 
hit model of cancer initiation (Morgan 1988). Alter- 
native, simplified families that include both logit and 
complementary log links include the forms. 

y log(p) - (1 - y) log(1 -p) 

(logit: y =2; complementary log: y = 0), or 

y log(p) - log(1 - p) 

(logit: y 1; complementary log: y = 0). In both cases, 
one could require 0 ? y ? 1, although the links are 
valid functions for any real y when 0 < p < 1. 

Following Pregibon (1985), testing for the comple- 
mentary log link within the extended family g(p; y) 
involves the new linear predictor, 

v =3o0 + I31x1 + + BKXK + 8Z, (4.2) 

where 8 = yo - y, and z = g'(p; yo), that is, ag(p; y)/de 
evaluated at y = yo. Construction of the z variable 
is based on an assumption of local linearity (in y) of 
g(p; y) near yo; see Pregibon (1980, 1985). [Notice the 
similarity to the misspecification problem in normal lin- 
ear models; cf. Seber (1977, sec. 6.1) and White (1982).] 
Under (4.1), ag(p; y)!Oy = (1 - p)l[p + y(1 - p)]. 
Hypothesizing a complementary log model involves 
yo= 1, so that z = 1 - p. 

Since z usually involves unknown parameters, an ini- 
tial fit of the data to x1, . . . , XK using the comple- 
mentary log link is required to form an estimate for z, 
denoted here by z. This can be, for example, g'(p5; yo), 
where p is the ML estimate of p under Ho:y = yo 
[Further iteration to improve the estimate of z is per- 
formed only if interest exists in calculating the correct 
ML estimates of the f3; or 8; see Pregibon (1980).] Test- 
ing -y = ~Yo is then tantamount to testing 8 = 0. Pregibon 
(1985) specifically suggests use of the score test of 8 = 

0, since it is in fact identical to the score test of -y = 

Yo. Code for constructing score tests in GLIM is given 
by Pregibon (1982). He notes that the number of GLIM 

instructions necessary for calculation of the score sta- 
tistic, say C2, is no larger than that necessary for cal- 
culation of the corresponding LR statistic. 

Under the hypothesis HO:8 = 0, C2 is asymptotically 
distributed as x2 with 1 df. Application of the score test 
for 8 = 0 to (4.1) using C2 iS therefore straightforward. 
Some caveats regarding its use are in order, however. 
For instance, the nature of the link family, or of the 
design matrix associated with the predictor variables, 
may hinder the method by effectively aliasing z with 
some linear combination of the predictor variables. This 
can occur if the null model leads to fitted values for fp 
that are effectively constant (Pregibon 1980), aliasing 

= 1 - tp with the grand mean, or if the linear predictor 
only exhibits one significantly important qualitative pre- 
dictor variable (e.g, a dichotomous indicator). Indeed, 
the latter problem occurs with the neuralgia data from 
Example 1, since the variables X2, X3, X4 do not improve 
the fit of the model over and above the treatment in- 
dicatorx1. Thus z = 1 - f is found to add insignificantly 
to the model fit as well, since it effectively takes on 
only two values (z would be perfectly aliased if the 
variables X2, X3, X4 were dropped entirely from the model). 
Hence, calculation of C2 for these data is effectively 
meaningless. Indeed, many models may describe data 
adequately under a dichotomous predictor (compare, 
however, the failure of the logit model described at the 
end of Example 1); it is only when more than one factor 
influences the outcome that distinguishing among two 
or more links becomes important. 

Example 2. As a further illustration of the good- 
ness-of-link methodology, consider the data in Table 2. 
These data represent results from a laboratory exper- 
iment where rodent alveolar/bronchiolar tissue was ex- 
posed in vitro to asbestos dust, to examine the inflam- 
matory effects of asbestos exposure to mammalian lung 
tissue. The alveolar/bronchiolar cells were pretreated 
with an assumed-benign radioactive marker that is re- 
leased after asbestos dust exposure, indicating whether 
any cell "activated," that is, generated an inflammatory 
response. Of interest was the effect of time (as hours 
after exposure, t) on the inflammatory response; ad- 
ditional explanatory variables of interest included cell 
type (epithelial or interstitial) and original cell location 
(terminal bronchial airway, alveolar duct, or bifurcation 
duct), which were arranged in a 2 x 3 factorial design. 

Each experimental unit-a Petri plate-of cells was 
examined t hours after exposure for evidence of ra- 
dioactivation. Unfortunately, the actual number of cells 
Ui activating on the ith plate could not be recorded. 
Only the presence or absence of any radioactivation 
was recorded per plate. Thus we observe a data trun- 
cation into the observed binomial responses 

Y1 = 1 if ith plate indicates any radioactivation 
- 0 if not. 

As noted in Section 3, the complementary log becomes 
a viable candidate for the link function, assuming a 
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Poisson distribution on the Ui, under this form of data 
truncation. 

Fitting the complementary log link (1.2) to these data 
under the requirement that 4j > 0 Vi yields a significant 
effect due to time: The LR statistic for the linear time 
effect is 68.85 on 1 df. Cell location apparently affects 
the nature of the radioactivated response as well; the 
LR statistic for the location factor is 8.53 on 2 df. No 
other effects (including the location x type interaction) 
were seen to improve the fit after the time and location 
terms were included in the linear predictor. 

To assess the adequacy of the complementary log link 
for the data in Table 2, one can apply the goodness-of- 
link methodology described previously. Hypothesizing 
the family (4.1) with yo = 1 yields a null model cor- 
responding to (1.2). The z variable is simply 1 - p, 
which is estimated as z = 1 - p from a complementary 
log fit of the full model: time, location, type, and the 
location x type interaction. One then includes the ad- 
ditional term 5zi in a GLIM analysis (Pregibon 1980, 
1982) to assess the null hypothesis Ho :8 = 0, with 8 = 
yo - y, versus any departure. The resulting score sta- 
tistic is C2 = 11.02 on 1 df. Clear departure from Ho 
is evidenced. 

A similar goodness-of-link analysis using the logit as 
the null form under (4.1) provides a score statistic of 
C2 = 2.98 on 1 df. This suggests that the logit link may 
be an appropriate altenative under which to formulate 
further inferences. Fitting the logit link to these data 
results in similar statements on the predictor variables 
as noted under (1.2): The LR statistic for the linear 
time effect is 76.77 on 1 df, whereas that for the (cell) 
location factor is 10.22 on 2 df. No other effects were 

seen to significantly improve the fit after the time and 
location terms were included in the linear predictor. 

[Received January 1990. Revised August 1990.] 

Table 2. Rodent Tissue Radioactivation Data From in Vitro Exposure to Asbestos Dust 

Time t (hr) Cell location Cell type Plates examined Plates responding 

0 T E 16 4 
19 T E 10 3 
24 T E 10 10 
31 T E 10 10 

0 T N 16 4 
19 T N 10 3 
24 T N 10 7 
31 T N 10 10 

0 A E 16 4 
19 A E 10 4 
24 A E 10 10 
31 A E 10 10 

0 A N 16 6 
19 A N 10 3 
24 A N 10 8 
31 A N 10 8 

0 B E 16 1 
19 B E 10 3 
24 B E 10 8 
31 B E 10 8 

0 B N 16 2 
19 B N 10 2 
24 B N 10 7 
31 B N 10 5 

NOTE: Cell location is denoted by T (terminal bronchial airway), A (alveolar duct), or B (bifurcation duct). Cell type is denoted by E 
(epithelial) or N (interstitial). 
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